International’Journal on

Advances in Systems and Measurements

[TTTITERIRN
rrrrreeeewys LS
CECODCEEERS 4 \ S

2013 vol. 6 nr. 1&2

The International Journal on Advances in Systems and Measurements is published by IARIA.
ISSN: 1942-261x

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,
staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the
content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,
providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Systems and Measurements, issn 1942-261x
vol. 6, no. 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors
or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and
must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”
International Journal on Advances in Systems and Measurements, issn 1942-261x
vol. 6, no. 1 & 2, year 2013, <start page>:<end page>, http.//www.iariajournals.org/systems_and_measurements/

IARIA journals are made available for free, proving the appropriate references are made when their
content is used.

Sponsored by IARIA
www.iaria.org

Copyright © 2013 IARIA

International Journal on Advances in Systems and Measurements
Volume 6, Number 1 & 2, 2013

Editor-in-Chief
Constantin Paleologu, University ‘Politehnica’ of Bucharest, Romania
Editorial Advisory Board

Vladimir Privman, Clarkson University - Potsdam, USA

Go Hasegawa, Osaka University, Japan

Winston KG Seah, Institute for Infocomm Research (Member of A*STAR), Singapore
Ken Hawick, Massey University - Albany, New Zealand

Editorial Board

Jemal Abawajy, Deakin University, Australia

Ermeson Andrade, Universidade Federal de Pernambuco (UFPE), Brazil
Al-Khateeb Anwar, Politecnico di Torino, Italy

Francisco Arcega, Universidad Zaragoza, Spain

Tulin Atmaca, Telecom SudParis, France

Rafic Bachnak, Texas A&M International University, USA

Lubomir Bakule, Institute of Information Theory and Automation of the ASCR, Czech Republic
Nicolas Belanger, Eurocopter Group, France

Lotfi Bendaouia, ETIS-ENSEA, France

Partha Bhattacharyya, Bengal Engineering and Science University, India
Karabi Biswas, Indian Institute of Technology - Kharagpur, India

Jonathan Blackledge, Dublin Institute of Technology, UK

Dario Bottazzi, Laboratori Guglielmo Marconi, Italy

Diletta Romana Cacciagrano, University of Camerino, Italy

Javier Calpe, Analog Devices and University of Valencia, Spain

Jaime Calvo-Gallego, University of Salamanca, Spain

Maria-Dolores Cano Bafos, Universidad Politécnica de Cartagena,Spain
Juan-Vicente Capella-Hernandez, Universitat Politécnica de Valencia, Spain
Berta Carballido Villaverde, Cork Institute of Technology, Ireland

Vitor Carvalho, Minho University & IPCA, Portugal

Irinela Chilibon, National Institute of Research and Development for Optoelectronics, Romania
Soolyeon Cho, North Carolina State University, USA

Hugo Coll Ferri, Polytechnic University of Valencia, Spain

Denis Collange, Orange Labs, France

Noelia Correia, Universidade do Algarve, Portugal

Pierre-Jean Cottinet, INSA de Lyon - LGEF, France

Marc Daumas, University of Perpignan, France

Jianguo Ding, University of Luxembourg, Luxembourg

Antdénio Dourado, University of Coimbra, Portugal

Daniela Dragomirescu, LAAS-CNRS / University of Toulouse, France

Matthew Dunlop, Virginia Tech, USA

Mohamed Eltoweissy, Pacific Northwest National Laboratory / Virginia Tech, USA
Paulo Felisberto, LARSyS, University of Algarve, Portugal

Miguel Franklin de Castro, Federal University of Cearad, Brazil

Mounir Gaidi, Centre de Recherches et des Technologies de I'Energie (CRTEn), Tunisie
Eva Gescheidtova, Brno University of Technology, Czech Republic

Tejas R. Gandhi, Virtua Health-Marlton, USA

Marco Genovese, Italian Metrological Institute (INRIM), Italy

Teodor Ghetiu, University of York, UK

Franca Giannini, IMATI - Consiglio Nazionale delle Ricerche - Genova, Italy

Gongalo Gomes, Nokia Siemens Networks, Portugal

Jodo V. Gomes, University of Beira Interior, Portugal

Luis Gomes, Universidade Nova Lisboa, Portugal

Antonio Luis Gomes Valente, University of Tras-os-Montes and Alto Douro, Portugal
Diego Gonzalez Aguilera, University of Salamanca - Avila, Spain

Genady Grabarnik,CUNY - New York, USA

Craig Grimes, Nanjing University of Technology, PR China

Stefanos Gritzalis, University of the Aegean, Greece

Richard Gunstone, Bournemouth University, UK

Jianlin Guo, Mitsubishi Electric Research Laboratories, USA

Mohammad Hammoudeh, Manchester Metropolitan University, UK

Petr Hanacek, Brno University of Technology, Czech Republic

Go Hasegawa, Osaka University, Japan

Henning Heuer, Fraunhofer Institut Zerstorungsfreie Priifverfahren (FhG-IZFP-D), Germany
Paloma R. Horche, Universidad Politécnica de Madrid, Spain

Vincent Huang, Ericsson Research, Sweden

Friedrich Hilsmann, Gottfried Wilhelm Leibniz Bibliothek - Hannover, Germany
Travis Humble, Oak Ridge National Laboratory, USA

Florentin Ipate, University of Pitesti, Romania

Imad Jawhar, United Arab Emirates University, UAE

Terje Jensen, Telenor Group Industrial Development, Norway

Liudi Jiang, University of Southampton, UK

Teemu Kanstrén, VTT Technical Research Centre of Finland, Finland

Kenneth B. Kent, University of New Brunswick, Canada

Fotis Kerasiotis, University of Patras, Greece

Andrei Khrennikov, Linnaeus University, Sweden

Alexander Klaus, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
Andrew Kusiak, The University of lowa, USA

Vladimir Laukhin, Institucié Catalana de Recerca i Estudis Avangats (ICREA) / Institut de Ciencia de Materials de
Barcelona (ICMAB-CSIC), Spain

Kevin Lee, Murdoch University, Australia

Andreas Lof, University of Waikato, New Zealand

Jerzy P. Lukaszewicz, Nicholas Copernicus University - Torun, Poland

Zoubir Mammeri, IRIT - Paul Sabatier University - Toulouse, France

Sathiamoorthy Manoharan, University of Auckland, New Zealand

Stefano Mariani, Politecnico di Milano, Italy

Paulo Martins Pedro, Chaminade University, USA / Unicamp, Brazil
Daisuke Mashima, Georgia Institute of Technology, USA

Don McNickle, University of Canterbury, New Zealand

Mahmoud Meribout, The Petroleum Institute - Abu Dhabi, UAE

Luca Mesin, Politecnico di Torino, Italy

Marco Mevius, HTWG Konstanz, Germany

Marek Miskowicz, AGH University of Science and Technology, Poland
Jean-Henry Morin, University of Geneva, Switzerland

Fabrice Mourlin, Paris 12th University, France

Adrian Muscat, University of Malta, Malta

Mahmuda Naznin, Bangladesh University of Engineering and Technology, Bangladesh
George Oikonomou, University of Bristol, UK

Arnaldo S. R. Oliveira, Universidade de Aveiro-DETI / Instituto de Telecomunicag¢des, Portugal
Aida Omerovic, SINTEF ICT, Norway

Victor Ovchinnikov, Aalto University, Finland

Telhat Ozdogan, Recep Tayyip Erdogan University, Turkey

Gurkan Ozhan, Middle East Technical University, Turkey

Constantin Paleologu, University Politehnica of Bucharest, Romania
Matteo G A Paris, Universita® degli Studi di Milano,Italy

Vittorio M.N. Passaro, Politecnico di Bari, Italy

Giuseppe Patane, CNR-IMATI, Italy

Marek Penhaker, VSB- Technical University of Ostrava, Czech Republic
Juho Perial3, VTT Technical Research Centre of Finland, Finland

Florian Pinel, T.J.Watson Research Center, IBM, USA

Ana-Catalina Plesa, German Aerospace Center, Germany

Miodrag Potkonjak, University of California - Los Angeles, USA

Alessandro Pozzebon, University of Siena, Italy

Vladimir Privman, Clarkson University, USA

Konandur Rajanna, Indian Institute of Science, India

Stefan Rass, Universitat Klagenfurt, Austria

Candid Reig, University of Valencia, Spain

Teresa Restivo, University of Porto, Portugal

Leon Reznik, Rochester Institute of Technology, USA

Gerasimos Rigatos, Harper-Adams University College, UK

Luis Roa Oppliger, Universidad de Concepcidn, Chile

Ivan Rodero, Rutgers University - Piscataway, USA

Lorenzo Rubio Arjona, Universitat Politécnica de Valencia, Spain
Claus-Peter Riickemann, Leibniz Universitat Hannover / Westfalische Wilhelms-Universitat Munster / North-
German Supercomputing Alliance, Germany

Subhash Saini, NASA, USA

Mikko Sallinen, University of Oulu, Finland

Christian Schanes, Vienna University of Technology, Austria

Rainer Schonbein, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB), Germany
Guodong Shao, National Institute of Standards and Technology (NIST), USA
Dongwan Shin, New Mexico Tech, USA

Larisa Shwartz, T.J. Watson Research Center, IBM, USA

Simone Silvestri, University of Rome "La Sapienza", Italy

Diglio A. Simoni, RTI International, USA

Radosveta Sokullu, Ege University, Turkey

Junho Song, Sunnybrook Health Science Centre - Toronto, Canada

Leonel Sousa, INESC-ID/IST, TU-Lisbon, Portugal

Arvind K. Srivastav, NanoSonix Inc., USA

Grigore Stamatescu, University Politehnica of Bucharest, Romania
Raluca-loana Stefan-van Staden, National Institute of Research for Electrochemistry and Condensed Matter,
Romania

Pavel Steffan, Brno University of Technology, Czech Republic

Monika Steinberg, University of Applied Sciences and Arts Hanover, Germany
Chelakara S. Subramanian, Florida Institute of Technology, USA

Sofiene Tahar, Concordia University, Canada

Jaw-Luen Tang, National Chung Cheng University, Taiwan

Muhammad Tariq, Waseda University, Japan

Roald Taymanov, D.l.Mendeleyev Institute for Metrology, St.Petersburg, Russia
Francesco Tiezzi, IMT Institute for Advanced Studies Lucca, Italy

Theo Tryfonas, University of Bristol, UK

Wilfried Uhring, University of Strasbourg // CNRS, France

Guillaume Valadon, French Network and Information and Security Agency, France
Eloisa Vargiu, Barcelona Digital - Barcelona, Spain

Miroslav Velev, Aries Design Automation, USA

Dario Vieira, EFREI, France

Stephen White, University of Huddersfield, UK

M. Howard Williams, Heriot-Watt University, UK

Shengnan Wu, American Airlines, USA

Xiaodong Xu, Beijing University of Posts & Telecommunications, China

Ravi M. Yadahalli, PES Institute of Technology and Management, India

Yanyan (Linda) Yang, University of Portsmouth, UK

Shigeru Yamashita, Ritsumeikan University, Japan

Patrick Meumeu Yomsi, INRIA Nancy-Grand Est, France

Alberto Yufera, Centro Nacional de Microelectronica (CNM-CSIC) - Sevilla, Spain
Sergey Y. Yurish, IFSA, Spain

David Zammit-Mangion, University of Malta, Malta

Guigen Zhang, Clemson University, USA

Weiping Zhang, Shanghai Jiao Tong University, P. R. China

J Zheng-Johansson, Institute of Fundamental Physic Research, Sweden

International Journal on Advances in Systems and Measurements
Volume 6, Numbers 1 & 2, 2013

CONTENTS

pages: 1-25

Characterizing and Fulfilling Traceability Needs in the PREDIQT Method for Model-based Prediction of
System Quality

Aida Omerovic, SINTEF ICT, Norway

Ketil Stglen, SINTEF ICT & University of Oslo, Department of Informatics, Norway

pages: 26 - 39

Augmented Reality Visualization of Numerical Simulations in Urban Environments
Sebastian Ritterbusch, Karlsruhe Institute of Technology (KIT), Germany

Staffan Ronnas, Karlsruhe Institute of Technology (KIT), Germany

Irina Waltschlaeger, Karlsruhe Institute of Technology (KIT), Germany

Philipp Gerstner, Karlsruhe Institute of Technology (KIT), Germany

Vincent Heuveline, Karlsruhe Institute of Technology (KIT), Germany

pages: 40 - 56

An Explorative Study of Module Coupling and Hidden Dependencies based on the Normalized Systems
Framework

Dirk van der Linden, University of Antwerp, Belgium

Peter De Bruyn, University of Antwerp, Belgium

Herwig Mannaert, University of Antwerp, Belgium

Jan Verelst, University of Antwerp, Belgium

pages: 57 -71

Magnitude of eHealth Technology Risks Largely Unknown

Hans Ossebaard, RIVM National Institute for Public Health and the Environment,, Netherlands
Lisette van Gemert-Pijnen, University of Twente, Netherlands

Adrie de Bruijn, RIVM National Institute for Public Health and the Environment,, Netherlands
Robert Geertsma, RIVM National Institute for Public Health and the Environment,, Netherlands

pages: 72 - 81

Optimized Testing Process in Vehicles Using an Augmented Data Logger
Karsten Hinlich, Steinbeis Interagierende Systeme GmbH, Germany

Daniel Ulmer, Steinbeis Interagierende Systeme GmbH, Germany

Steffen Wittel, Steinbeis Interagierende Systeme GmbH, Germany

Ulrich Brockl, University of Applied Sciences Karlsruhe, Germany

pages: 82 - 91

Modeling and Synthesis of mid- and long-term Future Nanotechnologies for Computer Arithmetic
Circuits

Bruno Kleinert, Chair of Computer Architecture, University of Erlangen-Nirnberg, Germany

Dietmar Fey, Chair of Computer Architecture, University of Erlangen-Niirnberg, Germany

pages: 92 - 111
Developing an ESL Design Flow and Integrating Design Space Exploration for Embedded Systems

Falko Guderian, TU-Dresden, Germany
Gerhard Fettweis, TU-Dresden, Germany

pages: 112 - 123

6LoWPAN Gateway System for Wireless Sensor Networks and Performance Analysis
Gopinath Rao Sinniah, MIMOS Berhad, Malaysia

Zeldi Suryady Kamalurradat, MIMOS Berhad, Malaysia

Usman Sarwar, MIMOS Berhad, Malaysia

Mazlan Abbas, MIMOS Berhad, Malaysia

Sureswaran Ramadass, Universiti Sains Malaysia, Malaysia

pages: 124 - 136

Silicon Photomultiplier: Technology Improvement and Performance
Roberto Pagano, CNR-IMM, ltaly

Sebania Libertino, CNR-IMM, ltaly

Domenico Corso, CNR-IMM, Italy

Salvatore Lombardo, CNR-IMM, Italy
Giuseppina Valvo, STMicroelectronics, Italy
Delfo Sanfilippo, STMicroelectronics, Italy
Giovanni Condorelli, STMicroelectronics, Italy
Massimo Mazzillo, STMicroelectronics, Italy
Angelo Piana, STMicroelectronics, Italy
Beatrice Carbone, STMicroelectronics, Italy
Giorgio Fallica, STMicroelectronics, Italy

pages: 137 - 148

Application of the Simulation Attack on Entanglement Swapping Based QKD and QSS Protocols
Stefan Schauer, AIT Austrian Institute of Technology GmbH, Austria

Martin Suda, AIT Austrian Institute of Technology GmbH, Austria

pages: 149 - 165

Maximizing Utilization in Private laaS Clouds with Heterogenous Load through Time Series Forecasting
Tomas Vondra, Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Czech Republic
Jan Sedivy, Dept. of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Czech Republic

pages: 166 - 177

RobustMAS: Measuring Robustness in Hybrid Central/Self-Organising Multi-Agent Systems
Yaser Chaaban, Institute of Systems Engineering, Leibniz University of Hanover, Germany

Christian Miller-Schloer, Institute of Systems Engineering, Leibniz University of Hanover, Germany
Jorg Hahner, Institute of Organic Computing, University of Augsburg, Germany

pages: 178 - 189

Optimization and Evaluation of Bandwidth-Efficient Visualization for Mobile Devices
Andreas Helfrich-Schkarbanenko, Karlsruhe Institute of Technology (KIT), Germany

Roman Reiner, Karlsruhe Institute of Technology (KIT), Germany

Sebastian Ritterbusch, Karlsruhe Institute of Technology (KIT), Germany

Vincent Heuveline, Karlsruhe Institute of Technology (KIT), Germany

pages: 190 - 199
LUT Saving in Embedded FPGAs for Cache Locking in Real-Time Systems

Antonio Marti Campoy, Universitat Politecnica de Valéncia, Spain
Francisco Rodriguez-Ballester, Universitat Politecnica de Valéncia, Spain
Rafael Ors Carot, Universitat Politécnica de Valéncia, Spain

pages: 200 - 213

Archaeological and Geoscientific Objects used with Integrated Systems and Scientific Supercomputing
Resources

Claus-Peter Riickemann, Westfalische Wilhelms-Universitdat Minster (WWU), Leibniz Universitat Hannover, North-
German Supercomputing Alliance (HLRN), Germany, Germany

pages: 214 - 223

Quantifying Network Heterogeneity by Using Mutual Information of the Remaining Degree
Distribution

Lu Chen, Osaka University, Japan

Shin'ichi Arakawa, Osaka University, Japan

Masayuki Murata, Osaka University, Japan

pages: 224 - 234

An FPGA Implementation of OFDM Transceiver for LTE Applications

Tiago Pereira, Instituto de Telecomunica¢des, Portugal

Manuel Violas, Instituto de Telecomunicag¢des, Universidade de Aveiro, Portugal

Jodo Lourenco, Instituto Telecomunicagbes, Portugal

Atilio Gameiro, Instituto de TelecomunicagGes; Universidade de Aveiro, Portugal

Ad3o Silva, Instituto de Telecomunicagdes; Universidade de Aveiro, Portugal

Carlos Ribeiro, Instituto de TelecomunicagGes; Escola Superior de Tecnologia e Gestdo, Instituto Politécnico de
Leiria, Portugal

pages: 235 - 244

Comparison of Single-Speed GSHP Controllers with a Calibrated Semi-Virtual Test Bench
Tristan Salque, CSTB, France

Dominique Marchio, Mines Paristech, France

Peter Riederer, CSTB, France

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

Characterizing and Fulfilling Traceability Needs in the PREDIQT Method
for Model-based Prediction of System Quality

Aida Omerovic* and Ketil Stglen* "
*SINTEF ICT, Pb. 124, 0314 Oslo, Norway
TUniversity of Oslo, Department of Informatics, Pb. 1080, 0316 Oslo, Norway
Email: {aida.omerovic,ketil.stolen} @sintef.-no

Abstract—Our earlier research indicated the feasibility of
the PREDIQT method for model-based prediction of impacts of
architectural design changes, on the different quality character-
istics of a system. The PREDIQT method develops and makes
use of a multi-layer model structure, called prediction models.
Usefulness of the prediction models requires a structured
documentation of both the relations between the prediction
models and the rationale and assumptions made during the
model development. This structured documentation is what we
refer to as trace-link information. In this paper, we first propose
a traceability scheme for PREDIQT. The traceability scheme
specifies the needs regarding the information that should be
traced and the capabilities of the traceability approach. An
example-driven solution that addresses the needs specified
through the scheme is then presented. Moreover, we propose
an implementation of the solution in the form of a prototype
traceability tool, which can be used to define, document,
search for and represent the trace-links needed. The tool-
supported solution is applied on prediction models from an
earlier PREDIQT-based analysis of a real-life system. Based
on a set of success criteria, we argue that our traceability
approach is useful and practically scalable in the PREDIQT
context.

Keywords-traceability; system quality prediction; modeling;
architectural design; change impact analysis; simulation.

I. INTRODUCTION

ICT systems are involved in environments which are con-
stantly evolving due to changes in technologies, standards,
users, business processes, requirements, or the ways systems
are used. Both the systems and their operational environ-
ments frequently change over time and are shared. The new
needs are often difficult to foresee, as their occurrence and
system life time are insufficiently known prior to system
development. Architectural adaptions are inevitable for ac-
commodating the systems to the new services, processes,
technologies, standards, or users. However, due to criticality
of the systems involved, planning, implementation, testing
and deployment of changes can not involve downtime or
similar degradation of quality of service. Instead, the systems
have to quickly and frequently adapt at runtime, while
maintaining the required quality of service.

Independent of whether the systems undergoing changes
are in the operation or in the development phase, important
architectural design decisions are made often, quickly and

with lack of sufficient information. When adapting the
system architecture, the design alternatives may be many
and the design decisions made may have unknown implica-
tions on the system and its quality characteristics (such as
availability, security, performance or scalability). A change
involving increased security may, for example, compromise
performance or usability of a system.

The challenge is therefore how to achieve the necessary
flexibility and dynamism required by software, while still
preserving the necessary overall quality. Thus, there is a need
for decision-making support which facilitates the analysis of
effects of architectural adaptions, on the overall quality of a
system as a whole.

In order to facilitate decision making in the context of
what-if analyses when attempting to understand the implica-
tions of architectural design changes on quality of a system,
models are a useful means for representing and analyzing the
system architecture. Instead of implementing the potential
architectural changes and testing their effects, model-based
prediction is an alternative. Model-based prediction is based
on abstract models which represent the relevant aspects of
the system. A prediction based on models may address a
desired number of architectural changes, without affecting
the target system. As such, it is a quicker and less costly al-
ternative to traditional implementation and testing performed
in the context of understanding the effects of changes on
system quality.

Important preconditions for model-based prediction are
correctness and proper usage of the prediction models. In
addition, the development and use of the prediction models
has to be properly documented. In practice, traceability
support requires process guidance, tool support, templates
and notations for enabling the user to eventually obtain
sufficiently certain predictions and document the underlying
conditions. Our recent work has addressed this issue by
proposing an approach to traceability handling in model-
based prediction of system quality [1]. This paper provides
refinements and several extensions of the approach, and
elaborates further on the current state of the art with respect
to traceability in the context of model-based prediction of
system quality.

In addressing the above outlined needs and challenges re-

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lated to managing architectural changes, we have developed
and tried out the PREDIQT method [2] [3] [4] aimed for
predicting impacts of architectural design changes on system
quality characteristics and their trade-offs. PREDIQT has
been developed to support the planning and analyzing the
architecture of the ICT systems in general, and to facilitate
the reasoning about alternatives for potential improvements,
as well as for the reasoning about existing and potential
weaknesses of architectural design, with respect to individual
quality characteristics and their trade-offs. The predictions
obtained from the models provide propagation paths and the
modified values of the estimates which express the degree of
quality characteristic fulfillment at the different abstraction
levels.

The process of the PREDIQT method guides the develop-
ment and use of the prediction models, but the correctness
of the prediction models and the way they are applied are
also highly dependent on the creative effort of the analyst
and his/her helpers. In order to provide additional help
and guidance to the analyst, we propose in this paper a
traceability approach for documenting and retrieving the
rationale and assumptions made during the model develop-
ment, as well as the dependencies between the elements of
the prediction models. This paper proposes a traceability
solution for PREDIQT to be used for predicting system
quality. To this end, we provide guidance, tool support,
templates and notations for correctly creating and using the
prediction models. The major challenge is to define accurate
and complete trace information while enabling usability and
effectiveness of the approach.

The approach is defined by a traceability scheme, which
is basically a feature diagram specifying capabilities of the
solution and a meta-model for the trace-link information. As
such, the traceability scheme specifies the needs regarding
the information that should be traced and the capabilities of
the traceability approach. The proposed traceability scheme
deals with quality indicators, model versioning, cost and
profit information, as well as the visualization of the impact
on such values of different design choices. An example-
driven solution that addresses the needs specified through
the scheme is then presented.

Moreover, a prototype traceability tool is implemented
in the form of a relational database with user interfaces
which can be employed to define, document, search for and
represent the trace-links needed. The tool-supported solution
is illustrated on prediction models from an earlier PREDIQT-
based analysis conducted on a real-life industrial system [5].
We argue that our approach is, given the success criteria for
traceability in PREDIQT, practically useful and better than
any other traceability approach we are aware of.

This paper is a revised and extended version of a full
technical report [6]. The latter is an extended version of
a paper [l] originally presented at and published in the
proceedings of the SIMUL’'11 conference. With respect to

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

the SIMUL’11 conference paper [1], this paper is extended
with:

1) An outline of the PREDIQT method.

2) Guidelines for application of the prediction models.
The guidelines are used for eliciting the traceability
scheme for our approach.

3) Further extensions and refinements of the traceability
approach in PREDIQT with special focus on specifi-
cation and handling of indicators during development
and use of prediction models; handling of quality
characteristic fulfillment acceptance levels; handling
of timing aspects; versioning of prediction models;
cost-benefit aspects in PREDIQT; and handling of
usage profile in relation to the prediction models.

4) A way of practically visualizing the design decision
alternatives has been proposed and exemplified.

5) Preliminary requirements for integration of the exist-
ing PREDIQT tool with the prototype traceability tool,
have been specified and exemplified.

The paper is organized as follows: Section II provides
background on traceability. An overview of the PREDIQT
method is provided in Section III. Guidelines for application
of both the prediction models and the trace-link information
are provided in Section IV. The challenge of traceability
handling in the context of the PREDIQT method is charac-
terized in Section V. The traceability scheme is presented
in Section VI. Our traceability handling approach is pre-
sented in Section VII. Section VIII illustrates the approach
on an example. Section IX argues for completeness and
practicability of the approach, by evaluating it with respect
to the success criteria. Section X substantiates why our
approach, given the success criteria outlined in Section V,
is preferred among the alternative traceability approaches.
The concluding remarks and future work are presented in
Section XI.

II. BACKGROUND ON TRACEABILITY

Traceability is the ability to determine which documenta-
tion entities of a software system are related to which other
documentation entities according to specific relationships
[7]. IEEE [8] also provides two definitions of traceability:

1) Traceability is the degree to which a relationship
can be established between two or more products of
the development process, especially products having
a predecessor-successor or master-subordinate rela-
tionship to one another; for example, the degree to
which the requirements and design of a given software
component match.

2) Traceability is the degree to which each element in
a software development product establishes its reason
for existing.

Traceability research and practice are most established in
fields such as requirements engineering and model-driven

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

engineering (MDE). Knethen and Paech [7] argue: “De-
pendency analysis approaches provide a fine-grained impact
analysis but can not be applied to determine the impact
of a required change on the overall software system. An
imprecise impact analysis results in an imprecise estimate of
costs and increases the effort that is necessary to implement
a required change because precise relationships have to be
identified during changing. This is cost intensive and error
prone because analyzing the software documents requires
detailed understanding of the software documents and the
relationships between them.” Aizenbud-Reshef et al. [9]
furthermore state: “The extent of traceability practice is
viewed as a measure of system quality and process maturity
and is mandated by many standards” and “With complete
traceability, more accurate costs and schedules of changes
can be determined, rather than depending on the programmer
to know all the areas that will be affected by these changes.”

IEEE [8] defines a trace as “A relationship between two
or more products of the development process.” According to
the OED [10], however, a trace is defined more generally as
a “(possibly) non-material indication or evidence showing
what has existed or happened”. As argued by Winkler and
von Pilgrim [11]: “If a developer works on an artifact,
he leaves traces. The software configuration management
system records who has worked on the artifact, when that
person has worked on it, and some systems also record
which parts of the artifacts have been changed. But beyond
this basic information, the changes themselves also reflect
the developer’s thoughts and ideas, the thoughts and ideas
of other stakeholders he may have talked to, information
contained in other artifacts, and the transformation process
that produced the artifact out of these inputs. These influ-
ences can also be considered as traces, even though they are
usually not recorded by software configuration management
systems.”

A traceability link is a relation that is used to interrelate
artifacts (e.g., by causality, content, etc.) [11]. In the context
of requirements traceability, Winkler and von Pilgrim [11]
argue that “a trace can in part be documented as a set of
meta-data of an artifact (such as creation and modification
dates, creator, modifier, and version history), and in part
as relationships documenting the influence of a set of
stakeholders and artifacts on an artifact. Particularly those
relationships are a vital concept of traceability, and they
are often referred to as traceability links. Traceability links
document the various dependencies, influences, causalities,
etc. that exist between the artifacts. A traceability link can
be unidirectional (such as depends-on) or bidirectional (such
as alternative-for). The direction of a link, however, only
serves as an indication of order in time or causality. It does
not constrain its (technical) navigability, so traceability links
can always be followed in both directions”.

In addition to the different definitions, there is no com-
monly agreed basic classification [11], that is, a classification

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

of traceability links. A taxonomy of the main concepts
within traceability is suggested by Knethen and Paech [7].

An overview of the current state of traceability research
and practice in requirements engineering and model-driven
development is provided by Winkler and von Pilgrim [11],
based on an extensive literature survey. Another survey by
Galvao and Goknil [12] discusses the state-of-the-art in
traceability approaches in MDE and assesses them with
respect to five evaluation criteria: representation, mapping,
scalability, change impact analysis and tool support. More-
over, Spanoudakis and Zisman [13] present a roadmap
of research and practices related to software traceability
and identify issues that are open for further research. The
roadmap is organized according to the main topics that have
been the focus of software traceability research.

Traces can exist between both model- and non-model
artifacts. The means and measures applied for obtaining
traceability are defined by so-called traceability schemes. A
traceability scheme is driven by the planned use of the traces.
The traceability scheme determines for which artifacts and
up to which level of detail traces can be recorded [11]. A
traceability scheme thus defines the constraints needed to
guide the recording of traces, and answers the core ques-
tions: what, who, where, how, when, and why. Additionally,
there is tacit knowledge (such as why), which is difficult to
capture and to document. A traceability scheme helps in this
process of recording traces and making them persistent.

As argued by Aizenbud-Reshef et al. [9], the first ap-
proach used to express and maintain traceability was cross-
referencing. This involves embedding phrases like “see
section x” throughout the project documentation. Thereafter,
different techniques have been used to represent traceability
relationships including standard approaches such as ma-
trices, databases, hypertext links, graph-based approaches,
formal methods, and dynamic schemes [9]. Representation,
recording and maintenance of traceability relations are clas-
sified by Spanoudakis and Zisman [13] into five approaches:
single centralized database, software repository, hypermedia,
mark-up, and event-based.

According to Wieringa [14], representations and visual-
izations of traces can be categorized into matrices, cross-
references, and graph-based representations. As elaborated
by Wieringa, the links, the content of the one artifact,
and other information associated with a cross reference,
is usually displayed at the same time. This is, however,
not the case with traceability matrices. So, compared to
traceability matrices, the user is (in the case of cross-
references) shown more local information at the cost of
being shown fewer (global) links. As models are the central
element in MDE, graph-based representations are the norm.
A graph can be transformed to a cross-reference. Regarding
the notation, there is, however, no common agreement or
standard, mostly because the variety and informality of
different artifacts is not suitable for a simple, yet precise

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

notation. Requirements traceability graphs are usually just
plain box-and-line diagrams [14].

Knethen and Paech [7] argue that the existing traceability
approaches do not give much process support. They specify
four steps of traceability process: 1) define entities and rela-
tionships, 2) capture traces, 3) extract and represent traces,
and 4) maintain traces. Similarly, Winkler and von Pilgrim
[11] state that traceability and its supporting activities are
currently not standardized. They classify the activities when
working with traces into: 1) planning for traceability, 2)
recording traces, 3) using traces, and 4) maintaining traces.
Traceability activities are generally not dependent on any
particular software process model.

Trace models are usually stored as separate models, and
links to the elements are (technically) unidirectional in
order to keep the connected models or artifacts independent.
Alternatively, models can contain the trace-links themselves
and links can be defined as bidirectional. While embedded
trace-links pollute the models, navigation is much easier
[11]. Thus, we distinguish between external and internal
storage, respectively. Anquetil at al. [15] argue: “Keeping
link information separated from the artifacts is clearly better;
however, it needs to identify uniquely each artifact, even
fined-grained artifacts. Much of the recent research has
focused on finding means to automate the creation and
maintenance of trace information. Text mining, information
retrieval and analysis of trace links techniques have been
successfully applied. An important challenge is to maintain
links consistency while artifacts are evolving. In this case,
the main difficulty comes from the manually created links,
but scalability of automatic solution is also an issue.”

As outlined by Aizenbud-Reshef et al. [9], automated cre-
ation of trace-links may be based on text mining, information
retrieval, analysis of existing relationships to obtain implied
relations, or analysis of change history to automatically
compute links.

Reference models are an abstraction of best practice and
comprise the most important kinds of traceability links.
There is nothing provably correct about reference models,
but they derive their relevance from the slice of practice they
cover. Nevertheless, by formalizing a reference model in an
appropriate framework, a number of elementary desirable
properties can be ensured. A general reference model for
requirements traceability is proposed by Ramesh and Jarke
[16], based on numerous empirical studies.

Various tools are used to set and maintain traces. Surveys
of the tools available are provided by Knethen and Paech [7],
Winkler and von Pilgrim [11], Spanoudakis and Zisman [13],
and Aizenbud-Reshef et al. [9]. Bohner and Arnold [17]
found that the granularity of documentation entities managed
by current traceability tools is typically somewhat coarse for
an accurate impact analysis.

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

III. AN OVERVIEW OF THE PREDIQT METHOD

PREDIQT is a tool-supported method for model-based
prediction of quality characteristics (performance, scala-
bility, security, etc.). PREDIQT facilitates specification of
quality characteristics and their indicators, aggregation of
the indicators into functions for overall quality characteristic
levels, as well as dependency analysis. The main objective
of a PREDIQT-based analysis is prediction of system quality
by identifying different quality aspects, evaluating each of
these, and composing the results into an overall quality
evaluation. This is useful, for example, for eliciting quality
requirements, evaluating the quality characteristics of a
system, run-time monitoring of quality relevant indicators,
as well as verification of the overall quality characteristic
fulfillment levels.

The PREDIQT method produces and applies a multi-
layer model structure, called prediction models, which rep-
resent system relevant quality concepts (through “Quality
Model”), architectural design (through “Design Model”),
and the dependencies between architectural design and
quality (through “Dependency Views”). The Design Model
diagrams are used to specify the architectural design of the
target system and the changes whose effects on quality are
to be predicted. The Quality Model diagrams are used to
formalize the quality notions and define their interpreta-
tions. The values and the dependencies modeled through
the Dependency Views (DVs) are based on the definitions
provided by the Quality Model. The DVs express the inter-
play between the system architectural design and the quality
characteristics. Once a change is specified on the Design
Model diagrams, the affected parts of the DVs are identified,
and the effects of the change on the quality values are
automatically propagated at the appropriate parts of the DV.
This section briefly outlines the PREDIQT method in terms
of the process and the artifacts.

A. Process and models

The process of the PREDIQT method consists of three
overall phases: Target modeling, Verification of prediction
models, and Application of prediction models. Each phase is
decomposed into sub-phases, as illustrated by Figure 1.

Based on the initial input, the stakeholders involved
deduce a high level characterization of the target system,
its scope and the objectives of the prediction analysis, by
formulating the system boundaries, system context (includ-
ing the usage profile), system lifetime and the extent (nature
and rate) of design changes expected.

As mentioned above, three interrelated sets of models
are developed during the process of the PREDIQT method:
Design Model which specifies system architecture, Quality
Model which specifies the system quality notions, and De-
pendency Views (DVs) which represent the interrelationship
between the system quality and the architectural design.
Quality Model diagrams are created in the form of trees,

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[Phase 1: Target modeling]

[Sub-phase 1.1: Characterization of the target and the objectives]

[Sub-phase 1.2: Development of Quality Models]

[Sub-phase 1.3: Mapping of Design Models]

[Sub-phase 1.4: Development of Dependency Views]

[Phase 2: Verification of prediction models]

[Sub-phase 2.1: Evaluation of prediction models]

[Sub-phase 2.2: Fitting of prediction models]

[Sub-phase 2.3: Approval of the final prediction models]

[Phase 3: Application of prediction models]

[Sub-phase 3.1: Specification of a change]

[Sub-phase 3.2: Application of the change on prediction models]

[Sub-phase 3.3: Quality prediction]

Figure 1. A simplified overview of the process of the PREDIQT method
Data protection
QCF=0.94
e / AYEN
,/ II \\ \\\
EI=0.30 ElI=0.25 EI=0.30 EI=0.15
//’ / AN NN
K ¥ L | ~
Encryption Authentication Authorization QCOFﬂ—]Srgo
QCF=1.00 QCF=0.95 QCF=0.90 —
Figure 2. Excerpt of an example DV with fictitious values

by defining the quality notions with respect to the target
system. The Quality Model diagrams represent a taxonomy
with interpretations and formal definitions of system quality
notions. The total quality of the system is decomposed
into characteristics, sub-characteristics and quality indica-
tors. The Design Model diagrams represent the architectural
design of the system.

For each quality characteristic defined in the Quality
Model, a quality characteristic specific DV is deduced from
the Design Model diagrams and the Quality Model diagrams
of the system under analysis. This is done by modeling the
dependencies of the architectural design with respect to the
quality characteristic that the DV is dedicated to, in the form
of multiple weighted and directed trees. A DV comprises two
notions of parameters:

1) EI: Estimated degree of Impact between two nodes,
and

2) QCF: estimated degree of Quality Characteristic Ful-
fillment.

Each arc pointing from the node being influenced is an-
notated by a quantitative value of EI, and each node is
annotated by a quantitative value of QCF.

Figure 2 shows an excerpt of an example DV with ficti-
tious values. In the case of the Encryption node of Figure 2,
the QCF value expresses the goodness of encryption with

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

respect to the quality characteristic in question, e.g., security.
A quality characteristic is defined by the underlying system
specific Quality Model, which may for example be based on
the ISO 9126 product quality standard [18]. A QCF value in
a DV expresses to what degree the node (representing system
part, concern or similar) is realized so that it, within its own
domain, fulfills the quality characteristic. The QCF value is
based on the formal definition of the quality characteristic
(for the system under analysis), provided by the Quality
Model. The EI value on an arc expresses the degree of
impact of a child node (which the arc is directed to) on
the parent node, or to what degree the parent node depends
on the child node, with respect to the quality characteristic
under consideration.

“Initial” or “prior” estimation of a DV involves providing
QCF values to all leaf nodes, and EI values to all arcs.
Input to the DV parameters may come in different forms
(e.g., from domain expert judgments, experience factories,
measurements, monitoring, logs, etc.), during the different
phases of the PREDIQT method. The DV parameters are
assigned by providing the estimates on the arcs and the
leaf nodes, and propagating them according to the general
DV propagation algorithm. Consider for example the Data
protection node in Figure 2 (denoting: DP: Data protection,
E: Encryption, AT: Authentication, AAT: Authorization, and
0O:Other):

QCFppy=QCF gy -Elpp-g) +QCFuar) - EIlpp_sar) +
QCFaary - Ellpp—aary + QCFoy - Ellpp-oy (1)

The DV-based approach constrains the QCF of each node
to range between 0 and 1, representing minimal and maximal
characteristic fulfillment (within the domain of what is repre-
sented by the node), respectively. This constraint is ensured
through the formal definition of the quality characteristic
rating (provided in the Quality Model). The sum of Els, each
between 0 (no impact) and 1 (maximum impact), assigned to
the arcs pointing to the immediate children must be 1 (for
model completeness purpose). Moreover, all nodes having
a common parent have to be orthogonal (independent).
The dependent nodes are placed at different levels when
structuring the tree, thus ensuring that the needed relations
are shown at the same time as the tree structure is preserved.

The general DV propagation algorithm, exemplified by
(1), is legitimate since each quality characteristic specific
DV is complete, the Els are normalized and the nodes having
a common parent are orthogonal due to the structure. A
DV is complete if each node which is decomposed, has
children nodes which are independent and which together
fully represent the relevant impacts on the parent node,
with respect to the quality characteristic that the DV is
dedicated to. Two main means can be applied in order to
facilitate that the children nodes fully represent the relevant
impacts. First, in case not all explicit nodes together express
the total impact, an additional node called “other” can

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be added to each relevant sub-tree, thus representing the
overall dependencies. Second, once the EI and QCF values
have been assigned within a subtree, a possible lack of
completeness will become more explicit. In such a case,
either the EI estimates have to be modified, or additional
nodes (for the missing dependencies) need to be added either
explicitly, or in the form of an “other” node. In case “other”
is used, it is particularly important to document the rationale
(and other trace-link information) related to it.

The rationale for the orthogonality is that the resulting
DV structure is tree-formed and easy for the domain experts
to relate to. This significantly simplifies the parametrization
and limits the number of estimates required, since the
number of interactions between the nodes is minimized.
Although the orthogonality requirement puts additional de-
mands on the DV structuring, it has shown to represent a
significant advantage during the estimation.

The “Verification of prediction models” is an iterative
phase that aims to validate the prediction models, with
respect to the structure and the individual parameters, before
they are applied. A measurement plan with the necessary
statistical power is developed, describing what should be
evaluated, when and how. Both system-as-is and change
effects should be covered by the measurement plan. Model
fitting is conducted in order to adjust the DV structure and
the parameters to the evaluation results. The objective of
the “Approval of the final prediction models” sub-phase is
to evaluate the prediction models as a whole and validate
that they are complete, correct and mutually consistent after
the fitting. If the deviation between the model and the new
measurements is above the acceptable threshold after the
fitting, the target modeling phase is re-initiated.

The “Application of the change on prediction models”
phase involves applying the specified architectural design
change on the prediction models. During this phase, a
specified change is applied to the Design Model diagrams
and the DVs, and its effects on the quality characteristics at
the various abstraction levels are simulated on the respective
DVs. When an architectural design change is applied on the
Design Model diagrams, it is according to the definitions
in the Quality Model, reflected to the relevant parts of
the DV. Thereafter, the DV provides propagation paths and
quantitative predictions of the new quality characteristic
values, by propagating the change throughout the rest of
each one of the modified DVs, based on the general DV
propagation algorithm.

We have earlier developed tool support [5] based on
Microsoft Excel for development of the DVs, as well as
automatic simulation and sensitivity analysis in the context
of the DVs. This tool was originally developed in order
to serve as an early version providing a “proof-of-concept”
and supporting the case studies on PREDIQT. Based on the
PREDIQT method specification, and the early tool support, a
new and enriched version of the PREDIQT tool has been de-

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

veloped, as presented in [19]. The former tool was developed
on proprietary software, since MS Excel provided a rather
simple and sufficient environment for quick prototyping. The
last version of the tool, is however developed in the form of
an Eclipse Modeling Framework (EMF) plugin. Both tools
have recently been applied in full scale realistic industrial
case studies. The existing PREDIQT tool support will in the
following be referred to as the “PREDIQT tool.”

B. Structure of the prediction models

Figure 3 provides an overview of the elements of the
prediction models, expressed as a UML [20] class diagram.
A Quality Model is a set of tree-like structures, which clearly
specify the system-relevant quality notions, by defining and
decomposing the meaning of the system-relevant quality
terminology. Each tree is dedicated to a target system-
relevant quality characteristic. Each quality characteristic
may be decomposed into quality sub-characteristics, which
in turn may be decomposed into a set of quality indica-
tors. As indicated by the relationship of type aggregation,
specific sub-characteristics and indicators can appear in
several Quality Model trees dedicated to the different quality
characteristics. Each element of a Quality Model is assigned
a quantitative normalized metric and an interpretation (qual-
itative meaning of the element), both specific for the target
system. A Design Model represents the relevant aspects of
the system architecture, such as for example process, data
flow, structure, and rules.

A DV is a weighted dependency tree dedicated to a
specific quality characteristic defined through the Quality
Model. As indicated by the attributes of the Class Node, the
nodes of a DV are assigned a name and a QCF. A QCF
(Quality Characteristic Fulfillment) is, as explained above,
the value of the degree of fulfillment of the quality char-
acteristic, with respect to what is represented by the node.
The degree of fulfillment is defined by the metric (of the
quality characteristic) provided in the Quality Model. Thus,
a complete prediction model has as many DVs as the quality
characteristics defined in the Quality Model. Additionally, as
indicated by the Semantic dependency relationship, seman-
tics of both the structure and the weights of a DV are given
by the definitions of the quality characteristics, as specified
in the Quality Model. A DV node may be based on a Design
Model element, as indicated by the Based on dependency
relationship. As indicated by the self-reference on the Node
class, one node may be decomposed into children nodes.
Directed arcs express dependency with respect to quality
characteristic by relating each parent node to its immediate
children nodes, thus forming a tree structure. Each arc in
a DV is assigned an El (Estimated Impact), which is a
normalized value of degree of dependence of a parent node,
on the immediate child node. Thus, there is a quantified
dependency relationship from each parent node, to its im-
mediate children. The values on the nodes and the arcs are

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

Semantic
Node
Dependency * 1| -name: String 1 Dependency 1 1 | :
. : -QCF: Float Vi nterpretation
-El:NormalizedFloat X K lew
-(PropagationFunction) 1
7 1.*
1 1 i *
‘d Decomposed
Based on into'
Sub-char -
*
1 *
Prediction 1 1
Design Model model F>—{ Quality model ‘ ‘ Quality Indicator

‘ Process ‘Dataflow‘ ‘Structure ‘ Rule ‘

Figure 3.

referred to as parameter estimates. We distinguish between
prior and inferred parameter estimates. The former ones are,
in the form of empirical input, provided on leaf nodes and
all arcs, while the latter ones are deduced using the above
presented DV propagation model for PREDIQT. For further
details on PREDIQT, see Omerovic et al. [2], Omerovic and
Stglen [21], Omerovic et al. [22], and Omerovic [4].

IV. GUIDELINES FOR APPLICATION OF PREDICTION
MODELS

In order to facilitate quality and correct use of prediction
models, this section provides guidelines for application of
the prediction models and the trace-link information, with
the analyst as the starting point. Thus, unless otherwise
specified, all the guidelines are directed towards the ana-
lyst. Overall guidelines for the “Application of prediction
models” — phase (i.e., Phase 3 of the PREDIQT process,
see Figure 1) are presented first, followed by detailed
guidelines for each one of its sub-phases: “Specification of a
change”, “Application of the change on prediction models”
and “Quality prediction”, respectively. The guidelines for
each phase and sub-phase follow a standard structure:

« objective — specifies the goals of the phase

« prerequisites — specifies the conditions for initiating the
phase

o how conducted — presents the detailed instructions for
performing the steps that have to be undergone

 input documentation — lists the documentation that is
assumed to be ready and available upon the initializa-
tion of the phase

o output documentation — lists the documentation that is
assumed to be available upon the completion of the
(sub)phase

o modeling guideline — lists the sequence of steps needed
to be undergone in the context of modifying or applying
the relevant prediction models.

An overview of the elements of the prediction models, expressed as a UML class diagram

The guidelines are based on the authors’ experiences
from industrial trials of PREDIQT [5] [3]. As such, the
guidelines are not exhaustive but serve as an aid towards
a more structured process of applying the prediction models
and accommodating the trace information during the model
development, based on the needs of the “Application of
prediction models”-phase.

It should be noted that the guidelines presented in this
section only cover Phase 3 of the PREDIQT process. This
is considered as the essential phase for obtaining the predic-
tions in a structured manner with as little individual influence
of the analyst as possible. It would of course be desirable
to provide corresponding guidelines for the first two phases
of the PREDIQT process as well. For our current purpose,
however, Phase 3 is essential and critical, while the guidance
for carrying out phases 1 and 2 currently relies on the
presentation of PREDIQT [4] and documentation of the case
studies [2] [3].

It should also be noted that in the guidelines presented
in this section, sub-phase 2 (“Application of the change
on prediction models™) is the most extensive one. In this
phase, the specified change is first applied on the Design
Model. Then, the dependencies within the Design Model
are identified. Thereafter, the change is, based on the spec-
ification and the modified Design Model, reflected on the
DVs. Once the DVs are modified, the modifications are
verified. The modifications of both the Design Model and
the DVs strongly depends on the semantics of the Quality
Model which is actively used (but not modified) throughout
the sub-phase. As such, the sub-phase involves modification
of the Design Model and the DVs, based on the change
specification and the Quality Model. Rather that splitting
this sub-phase into two separate ones, we believe that it
is beneficial to include all tasks related to application of a
change on the prediction models in one (although extensive,
yet) coherent sub-phase.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Guidelines for the “Application of prediction models” —
phase

Objective

During this phase, a specified change is applied to the
prediction models, and its effects on the quality character-
istics at the various abstraction levels are simulated on the
respective Dependency Views (DVs). The simulation reveals
which design parts and aspects are affected by the change
and the degree of impact (in terms of the quality notions
defined by the Quality Model).

Prerequisites

o The fitted prediction models are approved.

o The changes applied are assumed to be independent
relative to each other.

o The “Quality prediction” sub-phase presupposes that
the change specified during the “Specification of a
change” sub-phase can be fully applied on the predic-
tion models, during the “Application of the change on
prediction models” sub-phase.

How conducted
This phase consists of the three sub-phases:

1) Specification of a change
2) Application of the change on prediction models
3) Quality prediction

Input documentation

o Prediction models: Design Model diagrams, Quality
Model diagrams, and Dependency Views
o Trace-links

Output documentation

« Change specification
e Pre- and post-change Design Model diagrams
e DVs.

People that should participate

o Analysis leader (Required). Analysis leader is also
referred to as analyst.

o Analysis secretary (Optional)

o Representatives of the customer:

— Decision makers (Optional)
— Domain experts (Required)
— System architects or other potential users of
PREDIQT (Required)
Modeling guideline

1) Textually specify the architectural design change of
the system.

2) Modify the Design Model diagrams with respect to the
change proposed. Modify the structure and the values
of the prior parameters, on the affected parts of the
DVs.

3) Run the simulation and display the changes on the
Design Model diagrams and the DVs, relative to their
original (pre-change) structure and values.

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

B. Guidelines for the “Specification of a change” sub-phase

Objective

The change specification should clearly state all deploy-
ment relevant facts necessary for applying the change on
the prediction models. The specification should include the
current and the new state and characteristics of the design
elements/properties being changed, the rationale and the
assumptions made.

Prerequisites

The fitted prediction models are approved.

How conducted

Specify the change by describing type of change, the
rationale, who should perform it, when, how and in which
sequence of events. In the case that the change specification
addresses modifications of specific elements of the Design
Model diagrams or the DVs, the quality characteristics of the
elements before and after the change have to be specified,
based on the definitions provided by the Quality Model.
The change specification has to be at the abstraction level
corresponding to the abstraction level of a sufficient subset
of the Design Model diagrams or DVs.

Input documentation

o Prediction models

o Design Model

o Quality Model

« Dependency Views.

Output documentation

Textual specification of a change.

Modeling guideline

1) Textually specify an architectural design change of the

system represented by the approved prediction models.
2) Specify the rationale and the process related to the
change deployment.

C. Guidelines for the “Application of the change on predic-
tion models” sub-phase

Objective

This sub-phase involves applying the specified change on

the prediction models.

Prerequisites

o The change is specified.

« The specified change is, by the analyst and the domain
experts, agreed upon and a common understanding is

reached.

How conducted

Detailed instructions for performing the six steps specified

in “Modeling guideline,” are provided here.

1) This first step of relating the change to the Design
Model diagram(s) and their elements is a manual
effort. The analyst and the domain experts confirm
that a common understanding of the specification has
been reached. Then, they retrieve the diagrams and
the respective elements of the Design Model and

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

2)

3)

4)

5)

identify which elements are potentially affected by
the change, with respect to the system quality in
general. The identified elements are marked, and their
post-change status specified. The status may be of
three types: update, delete or add. The update may
involve change of a property related to design or a
quality characteristic. In the case of delete, the diagram
element is marked and its new status is visible. In the
case of add, a new diagram element is introduced.
The trace-links between diagrams and diagram ele-
ments are (during the “Target modeling” phase) doc-
umented in the form of a database, which they can
be retrieved from. Each one of the above identified
Design Model diagrams and diagram elements (except
the added ones) is searched in the existing trace-
link database (created during the model development).
The result displays those searched items which have
the role of the origin or the target element, and all
the elements that depend on them or that they are
dependent on, respectively. The result also displays
overall meta-data, e.g., the kinds of the trace-links
and their rationale. The domain experts and the an-
alyst identify those retrieved (linked) elements that
are affected by the specified change. Depending on
the nature of the change and the trace-link type and
rationale, each diagram or element which, according
to the search results is linked to the elements identified
in the previous step, may be irrelevant, deleted or
updated. The updated and the deleted elements are,
within the diagrams, assigned the new (post-change)
status and meta-data.

The trace-link database is searched for all the above
identified elements which have been updated or
deleted. The trace-links between those elements and
the DV model elements are then retrieved. Then, the
overall DV model elements that may be affected by
the change are manually identified. The rationale for
the DV structure and the node semantics regarding
all the retrieved and manually identified DV model
elements, are retrieved from the trace-link database.
It is considered whether the added design element
models require new DV nodes. The DV structure is
manually verified, based on the retrieved trace-link
information.

The domain experts and the analyst manually verify
the updated structure (completeness, orthogonality,
and correctness) of each DVs, with respect to the
1) quality characteristic definitions provided by the
Quality Model and ii) the modified Design Model.
The estimates of the prior parameters have to be
updated due to the modifications of the Design Model
and the DV structure. Due do the structural DV
modification in the previous step, previously internal
nodes may have become prior nodes, and the Els on

the arcs may now be invalid. New nodes and arcs may
have been introduced. All the earlier leaf nodes which
have become internal nodes, and all new internal nodes
are assumed to automatically be assigned the function
for the propagation model, by the PREDIQT tool. All
the new or modified arcs and leaf nodes have to be
marked so that the values of their parameters can be
evaluated. The overall unmodified arcs and the leaf
nodes whose values may have been affected by the
change, are manually identified. In the case of the
modified arcs and leaf nodes, trace-links are used to
retrieve the previously documented rationale for the
estimation of the prior parameter values and node
semantics. The parameter values on the new and the
modified arcs and leaf nodes are estimated based on
the Quality Model.

The leaf node QCFs of a sub-tree are estimated
before estimating the related Els. The rationale is to
fully understand the semantics of the nodes, through
reasoning about their QCFs first. In estimating a QCF,
two steps have to be undergone:

a) interpretation of the node in question — its con-
tents, scope, rationale and relationship with the
Design Model, and

b) identification of the relevant metrics from the
Quality Model of the quality characteristic that
the DV is addressing, as well as evaluation of
the metrics identified.

When estimating a QCF the following question is
posed (to the domain experts): “To what degree is
the quality characteristic fulfilled, given the contents
and the scope of the node?” The definition of the
rating should be recalled, along with the fact that
zero estimate value denotes no fulfillment, while one
denotes maximum fulfillment.

In estimating an EI, two steps have to be undergone:

a) interpretation of the two nodes in question, and

b) determination of the degree of impact of the child
node, on the parent node. The value is assigned
relative to the overall Els related to the same par-
ent node, and with a consistent unit of measure,
prior to being normalized. The normalized EIs
on the arcs from the same parent node have to
sum up to one, due to the requirement of model
completeness.

When estimating an EI the following question is posed
(to the domain experts): “To what degree does the
child node impact the parent node, or how dependent
is the parent node on child node, with respect to the
quality characteristic that the DV is dedicated to?”
The definition of the quality characteristic provided
by its Quality Model, should be recalled and the
estimate is provided relative to the impact of the

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overall children nodes of the parent node in question.
Alternatively, an impact value is assigned using the
same unit of measure on all arcs of the sub-tree, and
normalized thereafter.

Once one of the above specified questions is posed,
depending on the kind of the DV parameter, the
domain expert panel is asked to provide the estimate
with an interval so that the correct value is within
the interval with a probability given by the confidence
level [23].

6) Manually verify the updated prior parameter values,
so that the relative QCF values are consistent to each
other and the rest of the estimates, and so that Els on
the arcs from a common parent sum up to one.

If the specified change can be fully applied, it is within
the scope of the prediction models, which is a prerequisite
for proceeding to the next sub-phase. Otherwise, the modifi-
cations are canceled and the change deemed not predictable
by the models as such.

Input documentation

o Prediction models: Design Model, Quality Model, De-
pendency Views

o Specification of the change

o The trace-links.

Output documentation

o Design Model

« DVs modified with respect to the change.

Modeling guideline

1) Relate the specified change to manually identifiable
Design Model diagram(s) and their elements.

2) Use the trace-links to identify the affected parts (di-
agrams and diagram elements) of the Design Model.
Apply the change by modifying (updating, deleting
or adding) the identified affected parts of the Design
Model.

3) Use the trace-links to identify the affected parts (nodes
and dependency links) of each DV, by retrieving the
traces from the modified and the deleted parts of the
Design Model to the DVs, as well as the rationale for
the DV structure and the node semantics. Modify the
structure of the affected parts of the DVs.

4) Manually verify the updated structure (completeness,
orthogonality, and correctness) of the DVs, with re-
spect to the Quality Model and the modified Design
Model.

5) Use trace-links to identify the documented rationale
for the estimation of the prior parameter values. Man-
uvally identify the overall prior parameters that have
been affected by the change. Use Quality Model to
modify the values of the affected prior parameters (i.e.,
Els and leaf node QCFs).

6) Manually verify the updated prior parameter values
(that QCFs are consistent relative to each other and

that EIs on the arcs from a common parent sum up to
one).

D. Guidelines for the “Quality prediction” sub-phase

Objective

The propagation of the change throughout the rest of each
one of the modified DVs, is performed. The propagation
paths and the modified parameter values are obtained.

Prerequisites

The specified change is within the scope of and fully
applied on the prediction models.

How conducted

Use the PREDIQT tool support to propagate the change.
The tool explicitly displays the propagation paths and the
modified parameter values, as well as the degrees of pa-
rameter value change. Obtain the predictions, in terms of
the propagation paths and the parameter value modification.
The result must explicitly express the changes with respect
to the pre-change values. The propagation of the change
throughout each one of the modified DVs, is performed
based on the general DV propagation model, according to
which the QCF value of each parent node is recursively
calculated by first multiplying the QCF and EI value for
each closest child and then summing up these products.
Such a model is legitimate since each quality characteristic
DV is complete, the Els are normalized and the nodes
having a common parent are orthogonal (with respect to
the quality characteristic that the DV is dedicated to) due
to the structure. The root node QCF values on the quality
characteristic specific DVs represent the system-level rating
value of the quality characteristic that the DV is dedicated to.
If the predicted parameter values are beyond a pre-defined
uncertainty threshold, the modifications are canceled and the
change deemed not predictable by the input data and the
models as such.

Input documentation

DVs.

Output documentation

o The change is propagated throughout the DVs, based
on the DV propagation model.
o Propagation paths and parameter value changes (rela-
tive to the original ones) are displayed.
Modeling guideline
1) Run the simulation on the PREDIQT tool, in order to
obtain the change propagation paths and the modified
QCEF values of the affected non-leaf nodes of the DVs.
2) Display the changes performed on the Design Model
and the DVs (structure and the prior parameter values).

V. THE CHALLENGE

This section motivates and specifies the success criteria
for the traceability handling approach in PREDIQT.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

10

A. Balancing the needs

Trace-link information can be overly detailed and ex-
tensive while the solution needed in a PREDIQT context
has to be applicable in a practical real-life setting within
the limited resources allocated for a PREDIQT-based anal-
ysis. Therefore, the traceability approach should provide
sufficient breadth and accuracy for documenting, retrieving
and representing of the trace-links, while at the same time
being practically applicable in terms of comprehensibility
and scalability. The right balance between the completeness
and accuracy of the trace information on the one side,
and practical usability of the approach on the other side,
is what characterizes the main challenge in proposing the
appropriate solution for traceability handling in PREDIQT.
Therefore, the trace-link creation efforts have to be concen-
trated on the traces necessary during the application of the
prediction models.

It is, as argued by Winkler and von Pilgrim [11], an open
issue to match trace usage and traceability schemes, and
to provide guidance to limit and fit traceability schemes
in a such way that they match a projects required usage
scenarios for traces. One of the most urgent questions
is: what requirements a single scenario imposes on the
other activities (in particular planning and recording) in the
traceability process.

Moreover, it is argued by Aizenbud-Reshef et al. [9] that
the lack of guidance as to what link information should
be produced and the fact that those who use traceability
are commonly not those producing it, also diminishes the
motivation of those who create and maintain traceability in-
formation. In order to avoid this trap, we used the PREDIQT
guidelines (as documented in Section IV) for the analyst as a
starting point, for deriving the specific needs for traceability
support.

B. Success criteria

The specific needs for traceability support in PREDIQT
are summarized below:
1) There is need for the following kinds of trace-links:

o Links between the Design Model elements to
support identification of dependencies among the
elements of the Design Model.

e Links from the Design Model elements to DV
elements to support identification of DV nodes
which are based on specific elements of the De-
sign Model.

e Links from DV elements to Quality Model ele-
ments to support acquisition of traces from the
prior estimates of the DV to the relevant quality
indicators.

« Links to external information sources (documents,
cost information, profit information, usage profile,
indicator definitions, indicator values, measure-
ments, domain expert judgments) used during the

development of DV structure and estimation of

the parameters to support documenting the traces

from the DV to the more detailed information

sources available outside the prediction models.
o Links to rationale and assumptions for:

Design Model elements

the semantics of the DV elements
the structure of the DVs

— prior parameter estimates of the DVs

The objective of these links is to support docu-
menting the relevant aspects of the development of
the prediction models, particularly the understand-
ing and interpretations that the models are based
on. Part of rationale and assumptions are also
specifications of the acceptable values of quality
characteristic fulfillment (also called quality char-
acteristic fulfillment acceptance criteria/levels) as
well as validity of input and models w.r.t. time
(timing validity applies to Design Model and the
DVs).

2) The traceability approach should have facilities for
both searching with model types and model elements
as input parameters, as well as for reporting linked
elements and the link properties

3) The traceability approach should be flexible with re-
spect to granularity of trace information

4) The traceability approach should be practically appli-
cable on real-life applications of PREDIQT

These needs are in the sequel referred to as the success
criteria for the traceability approach in PREDIQT.

VI. TRACEABILITY SCHEME

We propose a traceability scheme in the form of a meta-
model for trace-link information and a feature diagram for
capabilities of the solution. The traceability scheme specifies
the needs regarding the information that should be traced
and the capabilities of the traceability approach. Thus, our
traceability scheme is based on the guidelines for application
of the prediction models and the success criteria for the
traceability approach specified in the two previous respective
sections.

The types of the trace-links and the types of the traceable
elements are directly extracted from Success Criterion 1 and
represented through a meta-model shown by Figure 4. The
Element abstract class represents a generalization of a trace-
able element. The Element abstract class is specialized into
the five kinds of traceable elements: Design Model Element,
DV Element, Quality Model Element, External Information
Source, and Rationale and Assumptions. Similarly, the Trace
Link abstract class represents a generalization of a trace-link
and may be assigned a rationale for the trace-link. The Trace
Link abstract class is specialized into the six kinds of trace-
links.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

11

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

I

<

Target
[P . _
44% Element ‘ Trace Link
~l
- * Rationale for Trace Link
Origin
Target
*
. - Design Model Element
Origin N
E De;'g:n’g;del ————————— to Design Model
" Element
Origin | *
Origin
Target | * |
- Dependency | Origin [Design Model Element
Origin| View Element * to Dependency View
* Origin | * Element
Target | *

Quality Model
Element

Dependency View
Element to Quality
Model Element

% External
— Information
rarget Source
(I

Structure or Parameter of
Dependency View Element
documented through External
Information Source

Design Model Element to
Rationale and Assumptions

Rationale and

Target

I

Assumptions

Target

Structure, Parameter or
Semantics of Dependency View
Element documented through
Rationale and Assumptions

Figure 4. A meta model for trace-link information, expressed as a UML

class diagram

Pairs of certain kinds of traceable elements form binary
relations in the form of unidirectional trace-links. Such
relations are represented by the UML-specific notations
called association classes (a class connected by a dotted
line to a link which connects two classes). For example,
trace-links of type Design Model Element to Design Model
Element may be formed from a Design Model Element to
a Dependency View Element. The link is annotated by the
origin (the traceable element that the trace-link goes from)
and the target (the traceable element that the trace-link goes
to) in order to indicate the direction. Since only distinct pairs
(single instances) of the traceable elements (of the kinds
involved in the respective trace-links defined in Figure 4) can
be involved in the associated specific kinds of trace-links,
uniqueness (property of UML association classes) is present
in the defined trace-links. Due to the binary relations (arity
of value 2) in the defined trace-links between the traceable
elements, only two elements can be involved in any trace-
link. Furthermore, multiplicity of all the traceable elements

involved in the trace-links defined is of type “many,” since
an element can participate in multiple associations (given
they are defined by the meta-model and unique).

The main capabilities needed are represented through a
feature diagram [11] shown by Figure 5. Storage of trace-
links may be internal or external, relative to the prediction
models. A traceable element may be of type prediction
model element (see Figure 3) or non-model element. Report-
ing and searching functionality has to be supported. Trace-
link info has to include link direction, link meta-data (e.g.,
date, creator, strength) and cardinality (note that all links are
binary, but a single element can be origin or target for more
than one trace-link). Typing at the origin and the target ends
of a trace-link, as well as documenting the rationale for the
trace-link, are optional.

VII. EXAMPLE-DRIVEN SOLUTION

This section presents the main aspects of our traceability
approach for PREDIQT. We focus particularly on traceabil-
ity of indicators by elaborating on the role of indicators in
the Quality Model and the DVs and proposing a template
for specification of indicators. Moreover, we elaborate on
how to specify quality characteristic fulfillment acceptance
criteria within the traceability approach. This is followed by
a proposal for how to handle validity of models w.r.t time
in the form of model versions. Furthermore, traceability of
cost and profit information is discussed. Our traceability
approach also includes handling of usage profile in the
prediction models. The usage profile handling is presented
before proposing how to visualize the impacts of the dif-
ferent the decision alternatives on quality characteristics,
cost and profit. Additionally, a prototype traceability tool
for trace-link management, implementing the needs specified
through the traceability scheme, is presented. Finally, we
propose the preliminary steps for integration of the prototype
traceability tool with the existing PREDIQT tool.

A. Traceability of indicators

As stated above in relation to Success Criterion 1, links to
external information sources include definitions and values
of indicators. In PREDIQT, indicators are used as a part of
the Quality Model in order to define the quality notions for
the system being considered. The Quality Model, however,
only defines the meaning of the terminology (i.e., quantita-
tive and qualitative aspects of the quality notions specific to
the target of analysis). Therefore, in addition to the Quality
Model, indicator definitions and values are also associated
with the DVs, through the traceability information. The
indicators defined in relation to the DVs may be the same or
additional w.r.t. the ones defined in the Quality Model. The
reason for this is the fact that the DVs are an instantiation
of the architectural dependency specific to the system in
question. Hence, indicators may be attached to both QCFs
and Els at any part of the DVs. Most common use of an

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

12

Traceable element

Tracing in PREDIQT

Trace-link info

Model element ‘Non—model element‘

‘ Link direction

Legend
.— mandatory

optional

? alternative

Cardinality 0..* HRationaIe for trace link

\.

External information source ‘ Rationale| | Assumptions

Figure 5.

indicator in the DV context is in relation to a leaf node
QCF, where the indicator serves as a partial evaluator of
the QCF value. The indicator value may be subject to
dynamic change. The relationship between the indicator and
the QCF may be linear or non-linear, and a mapping function
should be defined. There may also be exceptions concerning
the impact of the indicator value on the QCF which the
indicator is related to. Moreover, one indicator may be
related to several DV parameters. The dynamics of the
indicators, their measurability in terms of empirical input,
the loose relationship with the DV parameters, their possible
relationship with several DV parameters simultaneously, and
possible deviation of the mapping function from the general
DV propagation model, distinguish the indicators from the
regular DV parameters.

In order to make the indicator specification and evaluation
as precise and streamlined as possible, we propose a tem-
plate for specification of indicators, as well as a template
for documenting the indicator measurement results. Table 1
provides a template for the specification of an indicator.
The first column lists the names of the attributes relevant
for the specification, while the second column provides the
explanation and the guidelines regarding the input needed.
Not all the attributes will be as relevant in a practical
context. For example, the ISO 9126 product quality standard
[18] defines a set of quality characteristic metrics using
a similar but smaller set of attributes. The precision of
the specification will also depend on how automatized the
acquisition of the indicator values is, as well as how often
the indicator values have to be retrieved. For example, a
real-time monitoring environment automatically collecting
dynamic indicators in order to capture irregularities in mea-
surement patterns, will depend on a more precise definition
of an indicator than a static value being evaluated between
long intervals. Importance of the indicator also depends on
the impact of its value (and the related DV parameter) on the
rest of the model, acceptance values for the quality levels
propagated, as well as the effect of the uncertainty on the
rest of the model.

Table II provides a template for documenting the revision
history concerning an indicator specification (defined in
Table I). The relevant information regarding the revision of

Link meta-data | | Typing
O

Main capabilities of the traceability approach, expressed as a feature diagram

a specification is included here. The first column lists the
names of the attributes relevant for the revision history, while
the second column provides the explanation and guidelines
regarding the input needed.

Table III provides a template for documenting the mea-
surement history of an indicator (specified through the
template in Table I). Each measurement is documented, and
the value in the first attribute represents the instantiation of
the indicator according to its latest specification.

Both the specification and the instantiation of an indicator
has to be documented by a traceability approach. The
process of identifying the relevant indicators and specifying
them is a part of the development of the Quality Model
and the DVs. The measurement of the indicator values is
however only relevant in the context of the development,
validation and application of the DVs. Therefore, Table I
and Table II may be used in relation to both the Quality
Model and the DVs, while Table III will only be used in the
DV context.

B. Traceability of quality characteristic fulfillment accep-
tance levels

As mentioned in relation to Success Criterion 1, a part
of the trace-link information regarding the rationale and
assumptions are also specifications of the acceptable values
of quality characteristic fulfillment. This basically means
that for each quality characteristic defined in the Quality
Model and instantiated through a DV, the acceptance levels
for the QCF of the DV root node should be defined. As the
acceptance level may vary at the different levels of a DV,
it may also be defined w.r.t. other nodes than the root. The
intervals between the acceptance levels depend on the risk
attitude and the utility function of the decision maker, as well
as on the predefined goals of the organization/stakeholders.

The advantage of defining the acceptance levels at the
different nodes of a DV, is that early symptoms of irregular-
ities or weaknesses can be captured by the model (as a part
of, for example, run-time monitoring where indicator values
are mapped to the DV-parameters), instead of waiting until
a significant deviation has been propagated on the root node
and then detected in relation to a higher abstraction level. In
practice, this means that the acceptance scale can be even

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

13

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

Table T

TEMPLATE FOR SPECIFICATION OF AN INDICATOR

Specification attributes for the indicator |

Explanation of the specification attributes

Unique indicator id

Give each indicator a unique identifier.

Name of the indicator

State a concise, result-oriented name for the indicator. The name should reflect what the indicator
expresses.

Definition Specify the qualitative and the quantitative definition of the indicator. The definition should
include the qualitative and the quantitative definitions of the variables.
Created by Specify the name and the affiliation of the person that the indicator has been specified by.

Date created

Specify the date for the specification of the indicator.

Purpose of the indicator

Specify the purpose of the indicator, i.e., what it will be used for.

Assumptions

Specify any assumptions made for the indicator specification and its values.

Measurement guidelines

Specify how to obtain the indicator values and who is responsible for that.

Data source

Specify where the indicator values are stored, or where they are to be retrieved or measured
from.

Measurement frequency

Specify how often the indicator values should be retrieved.

Trigger for measurement

Identify the events, states or values that initiate a new measurement of this indicator.

Preconditions List any activities that must take place, or any conditions that must be true, before the indicator
can be measured. Number each precondition sequentially.
Postconditions Describe the state of the system at the conclusion of the indicator measurement. Number each

postcondition sequentially.

Expected change frequency

Specify how often the value of the indicator is expected to change, i.e., the dynamics of the
indicator.

Unit of measure

Specify the unit of measure of the indicator.

Interpretation of the value measured

Specify which indicator values are: preferred, realistic, extreme, within the normal range, and
on the border to the unacceptable.

Scale Provide the scale that should be used for the indicator measurement. (Scale types: nominal,
ordinal, interval, or ratio).
Uncertainty Specify degree of uncertainty and sources of uncertainty. Express uncertainty in the form of

interval, confidence level, variance or similar.

How related to the relevant diagram parameters
(function and instantiation coefficients)

Specify which diagrams and parameters of the diagrams the indicator is related to. Specify
the mapping function, any exceptions and what values the possible coefficients of the indicator
function should be instantiated with.

Notes and issues

Specify any additional notes or issues.

Table II

TEMPLATE FOR DOCUMENTING REVISION HISTORY CONCERNING AN INDICATOR SPECIFICATION

Revision attributes [

Explanation of the revision attributes

Specification last updated by

Provide the name of the person who was the last one to update the specification.

Specification last updated date

Provide the date when the specification was last updated.

Reason for changes

Provide the reason to the update.

Version

Provide a version number of the specification.

Table IIT

TEMPLATE FOR DOCUMENTING MEASUREMENT HISTORY CONCERNING AN INDICATOR

Measurement attributes [

Explanation of the measurement attributes

Measured value

Provide the indicator value from the latest measurement.

Measured by

Provide the name of the person/service that the measurement was performed by.

Date of measurement

Provide the date/time of the measurement.

Remarks

Provide and any additional info if appropriate.

more fine grained and more context specific, when mapped
to several abstraction levels of a DV.

Note that the length of the intervals between the different
acceptance levels may very significantly. Note also that the
interpretation of a certain value of a quality characteristic (as
defined through the Quality Model) is constant, while what
is the acceptable value may vary, depending on which DV
node a QCEF is related to. Therefore, acceptance level and
interpretation of a QCF value are two different notions. It is
up to the stakeholders (mainly the decision makers) how

fine or coarse grained the acceptance scale for a quality
characteristic fulfillment (at the selected parts of a DV)
should be. An example of a specification of the acceptance
levels for root node QCF (always ranging between 0 and 1)
of a DV representing quality characteristic availability is:

e 0.999<QCF - Very good

e 0.990<QCF<0.999 — Acceptable and compliant with
the SLA goals

e 0.90<QCF<0.990 — According to the sector standards,
but not sufficiently high for all services

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

14

e QCF<0.90 — Not acceptable

Consolidated traceability information regarding interval
specification, interval measurement and the acceptance lev-
els, allows for relating the interval values to the acceptance
levels of the QCFs. Therefore, the sensitivity and dynamics
(i.e., the frequency of change) of the indicator value, as
well as the granularity of the acceptance level of the related
QCEF, will be among the factors influencing how often the
indicator value should be measured in order to capture the
irregular patterns and generally achieve the observability of
the system and its aimed quality fulfillment level.

C. Traceability of model versions

As mentioned in relation to Success Criterion 1, a part
of the trace-link information regarding the rationale and
assumptions is also an explicit specification of validity of
the input and the models w.r.t. time. The objective is to
document when and for how long a model version of ele-
ments/parameters of a model are valid. The timing validity
in the PREDIQT context applies to the Design Model and
the DVs; the Quality Model is assumed to be static.

In order to address the timing aspect in the prediction
models, we introduce the model versioning. A model or
a trace-link information which has time-dependent validity
is annotated with the versions which are valid at specified
intervals of time. As such, versioning of both the Design
Model and the DVs as well as versioning of the traceability
info, is a tool for mapping the states of the system to the
time.

The degree of the variation of models over time provides
understanding of the needs for scalability as well as the
overhead related to maintenance of an architecture. The
reason is that an architecture which seems to be optimal at a
certain point of time, may not represent the generally optimal
solution, due to the changes expected in the long term.
Therefore, in order to accommodate the long-term needs for
scaling and adoptions, the relevant prediction models should
be specified in terms of their time-dependent versions.

To support versioning, a set of attributes should be added
to a trace-link or a model. Table IV presents the attributes
needed and provides a template for specification of timing
validity of models and trace-links. Not all the attributes
specified will be as relevant in a practical context, but
among the mandatory fields should be: “applies to trace-
link element”, “version number”, and at least one of the
following: “valid from”, “valid until”, “precondition for

validity”, “postcondition for validity.”

D. Traceability of cost and profit information

As stated above in relation to Success Criterion 1, links to
external information sources also include cost information.
Often, the decision making around the architecture design
alternatives has to take into account not only impact of
changes on quality characteristics, but also on cost and profit.

We argue that the traceability approach in the PREDIQT
context can accommodate such a multi-dimensional cost-
benefit analysis.

A prerequisite for including cost in the prediction models,
is a cost model. By cost we mean a monetary amount that
represents the value of resources that have to be used in
relation to a treatment or deployment of a measure. A cost
model should define and decompose the notion of cost for
the architecture in question. As such, the cost model will
have the same role in the context of cost, that the Quality
Model has in the context of quality. An example of a Cost
Model is shown in Figure 6. The rightmost nodes represent
possible indicators, which should be specified using Table I
and Table II. The decomposition of the cost notions is
based on the architecture design models, and particularly
the process models related to the deployment of a measure.

Once the cost notions are defined and decomposed, the
cost information may be added in the form of trace-link
information and attached to the relevant parts of the DVs.
A preferred way of instantiating the cost model, is however
by developing a dedicated DV for cost, according to the
same principles as the ones used for developing quality
characteristic specific DVs. Thus, cost will become a new
explicit and separate concern, treated equally as each qual-
ity characteristic. Consequently, the cost specific DVs will
provide predictions of impact of changes on monetary cost.

However, the profit may also be of monetary kind and
it will not necessarily only be related to improved quality
characteristics. Therefore, the profit should be treated in the
same manner as cost and the respective quality character-
istics, i.e., as a separate concern in the form of a Profit
Model and a dedicated DV. Finally, the benefit of a decision
alternative should be represented as a function of both the
cost and the profit according to a specified utility function.

E. Traceability of usage profile

As mentioned in relation to Success Criterion 1, usage
profile is a part of the trace-link information classified
under the external information sources. Some of the DV
parameters are in fact based on the usage profile. For
example, the expected licensing costs as well as scalability
needs, may be subject to to the usage profile. Moreover, the
uncertainty of the estimates will be based on to what degree
the usage profile is known and relevant for the parameters
under consideration. Most importantly, when considering
the alternative solutions for deployment of an architecture
design, the usage profile information will be crucial, in
order to meet the needs for accommodating the operational
environment to the expected usage. The characteristics of the
usage profile should be specified in terms of for example:

« number of clients

« number of servers

« number of data messages

« number of logons

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

15

Table IV
TEMPLATE FOR DOCUMENTING TIMING VALIDITY OF MODELS AND TRACE-LINKS

Validity relevant attributes

Explanation of attributes

Applies to trace-link element

Specify which trace-link element this version specification applies to.

Version number

Provide a unique version number.

Valid from

Specify exactly when the trace-link or the model element in question is valid from.

Valid until

Specify exactly when the trace-link or the model element in question is valid until.

Precondition for validity

List any events or states that must take place, or any conditions that must be true, before this
version can become valid. Number each precondition sequentially.

Postcondition for validity

Describe any events or states at the conclusion of the validity of this version. Number each
postcondition sequentially.

Preceding version

If appropriate, specify which version should be succeeded by this one.

Version which succeeds this one

If appropriate, specify the version that should become valid after this one.

Rationale for the timing limitation

Explain and substantiate why the validity of this trace-link element is limited w.r.t. time.

Assumptions for the validity

Specify the assumptions for this specification, if any.

I: Cost of internal/external competence

I: Cost of personnel for contracting
Cost of personnel I: Cost of personnel for testing and verification

I: Cost of personnel for requirements specification

I: Cost of user training

I: Cost of daily usage

Cost of operation

I: Cost of service provider

I: Cost of hardware purchase

Cost of hardware

I: Cost of hardware maintenance

I: Cost of licencing

Cost of software |/ |: Cost of software development

; I: Cost of software integration

Figure 6.

« number of users
o number of retrievals per user and per unit of time
o size of messages.

FE. Visualization of the decision alternatives

Once the complete prediction models have been devel-
oped with the trace-link information, the application of the
prediction models will result in predictions w.r.t three kinds
of concerns:

o cach quality characteristic as defined by the Quality
Model

o cost as defined by the Cost Model

« profit as defined by the Profit Model.

As a result, the impacts of a decision alternative w.r.t.
the current values of these three kinds of concerns may be
difficult to compare. In order to facilitate the comparison,
we propose a tabular visualization of the impacts of the
alternative design decisions on each quality characteristic,
as well as cost and profit. A simplified example of such a
representation is illustrated in Table V. Thus, we distinguish
between alternatives based on:

o value of each quality characteristic (i.e., the root node
QCEF of each quality characteristic specific DV)

An example of a cost model

« cost value (i.e., the root node value of the cost specific
DV)
o profit value (i.e., the root node value of the profit
specific DV).
In order to compare the alternatives with the current solution,
one should take into account the risk attitude and the utility
function of the decision maker. A simple way of doing
this, is by weighting the quality characteristics, cost and
profit with respect to each other. The constraints of the
utility function will be the quality characteristic fulfillment
acceptance levels, proposed in Section VII-B.

G. Prototype traceability tool

We have developed a prototype traceability tool in the
form of a database application with user interfaces, on the
top of Microsoft Access [24]. Similarly as for the first
version of the PREDIQT tool, the proprietary development
environment (Microsoft Access) was found suitable since
it offers a rather simple and sufficient toolbox for quick
prototyping of the proof-of-concept. A later version of the
traceability tool may however use another (open source
or similar) environment. The current prototype traceability
tool includes a structure of tables for organizing the trace

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

16

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

Table V

A POSSIBLE VISUALIZATION OF THE IMPACTS OF THE DIFFERENT ARCHITECTURE DESIGN ALTERNATIVES ON QUALITY, COST AND PROFIT

17

rchitecture design alternative vailability calability sability ost rofit
Current architecture 0.999 0.90 0.95 85 000 EUR 120 000 EUR
Alternative 1 0.92 0.95 0.80 55 000 EUR 85 000 EUR
Alternative 2 0.90 0.85 0.99 60 000 EUR 90 000 EUR
Alternative 3 0.85 0.99 0.90 95 000 EUR 130 000 EUR
TargetElements
% TracelinkMame —
% Elementhame
Hyperlink
Object
=] Attach
,. ! TraceLink
TraceableElement '_"ﬂa':h'F”EData L4 ¥ TracelinkiD
7 Attach.FileMame i
ElementID f— . fns TracelinkMame
Attach.FileType i oo
ElementMame TracelinkType
c . Comments *
Cantents Date
Creatar Creator
Date Dependency
T OriginElements]
o Destination I‘l?-'ll'lraceLinPII'-lame Rationale for trace link
e = ¥ El=mentl‘-lame e
Version H_peninl TracelinkStrength . IracelinkType
- YPErink [R
TraceableElementType Comment Ohject ¥ TracelinkTypelD
- 2 — 1 Hyperlink TracelinkType
% ElementTypelD 4 o Aftach
ElementType Qljedt L - >rope
i = Attach TR Date
i Attach.FileData A Creator
Aseismition Attach.FileMame AltachiFifeType Comment
i Attach.FileType Comments
Comment
Figure 7. Entity-relationship diagram of the trace-link database of the prototype traceability tool

information, queries for retrieval of the trace info, a menu
for managing work flow, forms for populating trace-link
information, and facilities for reporting trace-links. A screen
shot of the entity-relationship (ER) diagram of the trace-
link database is shown by Figure 7. The ER diagram
is normalized, which means that the data are organized
with minimal needs for repeating the entries in the tables.
Consistency checks are performed on the referenced fields.
The data structure itself (represented by the ER diagram)
does not cover all the constraints imposed by the meta-
model (shown by Figure 4). However, constraints on queries
and forms as well as macros can be added in order to fully
implement the logic, such as for example which element
types can be related to which trace-link types.

The five traceable element types defined by Figure 4
and their properties (name of creator, date, assumption
and comment), are listed in Table TraceableElementType.
Similarly, the six trace-link types defined by Figure 4 and
their properties (scope, date, creator and comment), are listed
in Table TraceLinkType. Table TraceableElement specifies
the concrete instances of the traceable elements, and assigns
properties (such as the pre-defined element type, hyperlink,
creator, date, etc.) to each one of them. Since primary

key attribute in Table TraceableElementType is foreign key
in Table TraceableElement, multiplicity between the two
respective tables is one-to-many.

Most of the properties are optional, and deduced based on:
i) the core questions to be answered by traceability scheme
[11] and ii) the needs for using guidelines for application
of prediction models, specified in Section IV. The three
Tables TargetElements, OriginElements and TraceLink to-
gether specify the concrete instances of trace-links. Each
link is binary, and directed from a concrete pre-defined
traceable element — the origin element specified in Table
OriginElements, to a concrete pre-defined traceable element
— the target element specified in Table TargetElements. The
trace-link itself (between the origin and the target element)
and its properties (such as pre-defined trace-link type)
are specified in Table TraceLink. Attribute TraceLinkName
(associated with a unique TraceLinkld value) connects the
three tables TraceLink, OriginElements and TargetElements
when representing a single trace-link instance, thus forming
a cross-product when relating the three tables. The MS
Access environment performs reference checks on the cross
products, as well as on the values of the foreign key
attributes. Target elements and origin elements participating

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E start x

ITraceabie e]ementwpe] [Trace link]

[Trace link type ‘ [Origin element]

I Traceable element] [Target element]

[Trace link report l

E Cancel I

Figure 8.
tool

A screen shot of the start menu of the prototype traceability

in a trace-link, are instances of traceable elements defined
in Table TraceableElement. They are connected through the
Attribute Elementld. Note that in the Tables OriginElements
and TargetElements, the Attribute Elementld has the role
of a foreign key and is displayed as ElementName. In
Tables OriginElements and TargetElements, the Element-
Name is through the Elementld retrieved from the Table
TraceableElement and therefore exactly the same as the one
in the table it originates from (i.e., TraceableElement). Thus,
multiplicity between Table TraceableElement and Table Tar-
getElements, as well as between Table TraceableElement
and Table OriginElements, is one-to-many. Similarly, since
primary key attribute in Table TraceLinkType is foreign key
in Table TraceLink, multiplicity between the two respective
tables is one-to-many.

A screen shot of the start menu is shown by Figure 8.
The sequence of the buttons represents a typical sequence
of actions of an end-user (the analyst), in the context
of defining, documenting and using the trace-links. The
basic definition of the types of the traceable elements and
the trace-links are provided first. Then, concrete traceable
elements are documented, before defining specific instances
of the trace-links and their associated specific origin and
target elements, involved in the binary trace-link relations.
Finally, reports can be obtained, based on search parameters
such as for example model types, model elements, or trace-
link types.

H. Integrating the prototype traceability tool with the exist-
ing PREDIQT tool

In order to fully benefit from the traceability approach,
the prototype traceability tool should be integrated with the
existing PREDIQT tool. In addition, the traceability tool
should be extended with the indicator templates and the
above proposed visualization of the impacts. The traceability
tool should moreover guide the user in the PREDIQT
process and verify that the necessary prerequisites for each

phase are fulfilled. The result should be seamless handling of
the trace-link information in the traceability tool during the
simultaneous development and use of DVs in the PREDIQT
tool. Moreover, exchange of the trace-link information be-
tween the traceability tool and the PREDIQT tool, as well
as a consolidated quality-cost-profit visualization of the
decision alternatives in an integrated tool, is needed.

A preliminary result is exemplified in Figure 9, which
shows a screen shot of the existing PREDIQT tool. The
trace-link information is shown on demand. In this partic-
ular illustrative example with fictitious values, the user is
evaluating the benefit of increasing the QCF of the root
node by 0.006 (i.e., from 0.919 to 0.925). To this end, he is
comparing cost of two possible alternatives: increase QCF
of “Message Routing” by 0.04 (i.e., from 0.93 to 0.97), or
increase of ‘“Performance of the related services” by 0.025
(i.e., from 0.80 to 0.825). Both alternatives have the same
impact on the root node QCF, but the cost of the measures
(or treatments) related to achievement of the two alternatives,
is different. Note that the cost information is a part of the
trace-link information and not explicitly displayed on the DV
shown in Figure 9. The integration of the traceability tool
with the existing PREDIQT tool should therefore involve
exchange of standardized messages regarding the trace-
link information, functionality for running queries from the
existing PREDIQT tool, and possibility of retrieving the
prediction model elements (stored in the PREDIQT tool)
from the traceability tool.

VIII. SUMMARY OF EXPERIENCES FROM APPLYING A
PART OF THE SOLUTION ON PREDICTION MODELS FROM
AN INDUSTRIAL CASE STUDY

This section reports on the results from applying our tool-
supported traceability approach on prediction models, which
were originally developed and applied during a PREDIQT-
based analysis [5] on a real-life industrial system. The anal-
ysis targeted a system for managing validation of electronic
certificates and signatures worldwide. The system analyzed
was a so-called “Validation Authority” (VA) for evaluation
of electronic identifiers (certificates and signatures) world-
wide. In that case study, the prediction models were applied
for simulation of impacts of 14 specified architecture design
changes on the VA quality. Each specified architecture
design change was first applied on the affected parts of
the Design Model, followed by the conceptual model and
finally the DVs. Some of the changes (e.g., change 1) ad-
dressed specific architecture design aspects, others referred
to the system in general, while the overall changes (e.g.,
changes 6 through 14) addressed parameter specifications
of the DVs. The specification suggested each change being
independently applied on the approved prediction models.

The trace-link information was documented in the proto-
type traceability tool, in relation to the model development.
The trace-links were applied during change application,

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

18

s_and_measurements/

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/system

19

i

Ho o »

¥

o1y 4
w suompsuuoy &)

£6°0=42b paads jiomjan=aweu

2PONd 4

{1}

ani =y SpuRAg 1 350
1602 3puRAg P
1602 b
BuioBing
Buinos 3Bessapy = awey
cToorvd + Bunuoouy dueieaddy
anjep fydoig 210
SpoNd +
57 sanadoig =
»
(232 ‘ajeuopel ‘uoiyey Dop ‘ssacoid ‘sjppouw) uopewlioyul Aljigeadesy 12RO
uonyesypads 1d)y
S

6°0=42b uonezuoyiny=aweu 86°0=J2b uonesnuayny=aweu

Z0 90 o

uopyeaypads 3500

§6°0=42b Buluoisinoig=aweu

66°0=J2b Buinpayds ejeq=aweu ,

856°0=42b Juswabeuew ssaxdy=aweu | /g'0=ob Bunynoi abessapy=aweu,

sT0 10 0 sT0 56'0=)2b Bujjpuey Jou13=aweu
@
= g'0=4b sadinias pajejal ayy Jo asuewioyIag=aweu oo

o szo 16'0=42b 331A135 pno|> 3y} Jo BdUBWIIOMEd = dWEY
] v
&

= 14 weibepibpaidpdussp, ()| wesbep bpadaspusayaipugoy [| weibep ibipaiduofsEppsseb snewony [j | weibeip ibipaidasprisagg (| wesbeip ibipaidopinang ([

- ust |- 4 | ilafagoafi|bifscaragav|I@Ew] Weoes); o -3 -F S H
dEH mopuify weiBerg ypI g
™ uonesiddy 3bipa1

= o , - neayddy bipaid (@

An illustrative example (with fictitious values) of displaying the trace-links in the PREDIQT tool

Figure 9.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Trace-link Report

Trace-link Type Origin Ele t Target Ele t Trace-link Mame
Design Model Element to
Design Model Element
Signature Signature Signature
Verification Verification Verification Comp-

Comp-Interface Comp-Interface Interface

Signature Signature Signature
Verification Verification Verification
Compaonents Compenents Interface-Port
Signature Signature VA Root Mode
Verification Verification Semantics
Interface-Port Interface-Port

Figure 10. A screen shot of an extract of a trace-link report from the
prototype traceability tool

according to the guidelines for application of prediction
models, specified in Section IV. We present the experiences
obtained, while the process of documentation of the trace-
links is beyond the scope of this paper.

The prediction models involved are the ones related to
“Split signature verification component into two redundant
components, with load balancing”, corresponding to Change
1 in Omerovic et al. [5]. Three Design Model diagrams
were affected, and one, two and one model element on
each, respectively. We have tried out the prototype trace-
ability tool on the Design Model diagrams involved, as
well as Availability (which was one of the three quality
characteristics analyzed) related Quality Model diagrams
and DV. Documentation of the trace-links involved within
the Availability quality characteristic (as defined by the
Quality Model) scope, took approximately three hours. Most
of the time was spent on actually typing the names of the
traceable elements and the trace-links.

18 instances of traceable elements were registered in the
database during the trial: seven Quality Model elements,
four DV elements, four Design Model elements and three
elements of type “Rationale and Assumptions”. 12 trace-
links were recorded: three trace-links of type “Design Model
Element to Design Model Element”, three trace-links of type
“Design Model Element to DV Element”, one trace-link of
type “Design Model Element to Rationale and Assump-
tions”, three trace-links of type “DV Element to Quality
Model Element”, and two trace-links of type “Structure,
Parameter or Semantics of DV Element Documented through
Rationale and Assumptions”, were documented.

An extract of a screen shot of a trace-link report (ob-
tained from the prototype traceability tool) is shown by
Figure 10. The report included: three out of three needed
(i.e., actually existing, regardless if they are recorded in
the trace-link database) “Design Model Element to Design
Model Element” links, three out of four needed “Design
Model Element to DV Element” links, one out of one needed
“Design Model Element to Rationale and Assumptions”
link, three out of six needed “DV Element to Quality

Model Element” links and one out of one needed “Structure,
Parameter or Semantics of DV Element Documented through
Rationale and Assumptions” link.

Best effort was made to document the appropriate trace-
links without taking into consideration any knowledge of
exactly which of them would be used when applying the
change. The use of the trace-links along with the application
of change on the prediction models took totally 20 minutes
and resulted in the same predictions (change propagation
paths and values of QCF estimates on the Availability DV),
as in the original case study [5]. Without the guidelines
and the trace-link report, the change application would have
taken approximately double that time for the same user.

All documented trace-links were relevant and used during
the application of the change, and about 73% of the relevant
trace-links could be retrieved from the prototype traceability
tool. Considering however the importance and the role of
the retrievable trace-links, the percentage should increase
considerably.

Although hyperlinks are included as meta-data in the
user interface for element registration, an improved solu-
tion should include interfaces for automatic import of the
element names from the prediction models, as well as user
interfaces for easy (graphical) trace-link generations between
the existing elements. This would also aid verification of the
element names.

IX. WHY OUR SOLUTION IS A GOOD ONE

This section argues that the approach presented above
fulfills the success criteria specified in Section V.

A. Success Criterion 1

The traceability scheme and the prototype traceability
tool capture the kinds of trace-links and traceable elements,
specified in the Success Criterion 1. The types of trace-
links and traceable elements as well as their properties, are
specified in dedicated tables in the database of the prototype
traceability tool. This allows constraining the types of the
trace-links and the types of the traceable elements to only
the ones defined, or extending their number or definitions,
if needed. The trace-links in the prototype traceability tool
are binary and unidirectional, as required by the traceabil-
ity scheme. Macros and constraints can be added in the
tool, to implement any additional logic regarding trace-
links, traceable elements, or their respective type definitions
and relations. The data properties (e.g., date, hyperlink, or
creator) required by the user interface, allow full traceability
of the data registered in the database of the prototype
traceability tool.

B. Success Criterion 2

Searching based on user input, selectable values from a
list of pre-defined parameters, or comparison of one or more
database fields, are relatively simple and fully supported

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

20

based on queries in MS Access. Customized reports can
be produced with results of any query and show any infor-
mation registered in the database. The report, an extract of
which is presented in Section VIII, is based on a query of
all documented trace-links and the related elements.

C. Success Criterion 3

The text-based fields for documenting the concrete in-
stances of the traceable elements and the trace-links, allow
level of detail selectable by the user. Only a subset of fields
is mandatory for providing the necessary trace-link data. The
optional fields in the tables can be used for providing addi-
tional information such as for example rationale, comments,
links to external information sources, attachments, strength
or dependency. There are no restrictions as to what can be
considered as a traceable element, as long at it belongs to one
of the element types defined by Figure 4. Similarly, there are
no restrictions as to what can be considered as a trace-link,
as long at it belongs to one of the trace-link types defined
by Figure 4. The amount of information provided regarding
the naming and the meta-data, are selectable by the user.

D. Success Criterion 4

As argued, the models and the change specification
originate from a real-life industrial case study in which
PREDIQT was entirely applied on a comprehensive sys-
tem for managing validation of electronic certificates and
signatures worldwide (a so-called “Validation Authority”).
Several essential aspects characterize the application of the
approach presented in Section VIII:

o the realism of the prediction models involved in the
example
« the size and complexity of the target system addressed
by the prediction models
o the representativeness of the change applied to the
prediction models
o the simplicity of the prototype traceability tool with
respect to both the user interfaces and the notions
involved
« the time spent on documenting and using the trace-links
Overall, these aspects indicate the applicability of our so-
lution on real-life applications of PREDIQT, with limited
resources and by an average user (in the role of the analyst).
The predictions (change propagation paths and values
of QCF estimates) we obtained during the application of
our solution on the example were the same as the ones
from the original case study [5] (performed in year 2008),
which the models stem from. Although the same analyst
has been involved in both, the results (i.e., the fact that the
same predictions were obtained in both trials in spite of a
rather long time span between them) suggest that other users
should, by following PREDIQT guidelines and applying
the prototype traceability tool, obtain similar results. The
process of application of the models has been documented

in a structured form, so that the outcome of the use of
the prediction models is as little as possible dependent on
the analyst performing the actions. Hence, provided the
fact that the guidelines are followed, the outcome should
be comparable if re-applying the overall changes from the
original case study.

The time spent is to some degree individual and depends
on the understanding of the target system, the models and
the PREDIQT method. It is unknown if the predictions
would have been the same (as in the original case study)
for another user. We do however consider the models and
the change applied during the application of the solution, to
be representative due to their origins from a major real-life
system. Still, practical applicability of our solution will be
subject to future empirical evaluations.

X. WHY OTHER APPROACHES ARE NOT BETTER IN THIS
CONTEXT

This section evaluates the feasibility of other traceability
approaches in the PREDIQT context. Based on our review
of the approach-specific publications and the results of the
evaluation by Galvao and Goknil [12] of a subset of the
below mentioned approaches, we argue why the alternative
traceability approaches do not perform sufficiently on one
or more of the success criteria specified in Section V.
The evaluation by Galvao and Goknil is conducted with
respect to five criteria: 1) structures used for representing
the traceability information; 2) mapping of model elements
at different abstraction levels; 3) scalability for large projects
in terms of process, visualization of trace information, and
application to a large amount of model elements; 4) change
impact analysis on the entire system and across the software
development life cycle; and 5) tool support for visualization
and management of traces, as well as for reasoning on the
trace-link information.

Almeida et al. [25] propose an approach aimed at simpli-
fying the management of relationships between requirements
and various design artifacts. A framework which serves as
a basis for tracing requirements, assessing the quality of
model transformation specifications, meta-models, models
and realizations, is proposed. They use traceability cross-
tables for representing relationships between application
requirements and models. Cross-tables are also applied for
considering different model granularities and identification
of conforming transformation specifications. The approach
does not provide sufficient support for intra-model mapping,
thus failing on our Success Criterion 1. Moreover, possibility
of representing the various types of trace-links and traceable
elements is unclear, although different visualizations on a
cross-table are suggested. Tool support is not available,
which limits applicability of the approach in a practical
setting. Searching and reporting facilities are not available.
Thus, it fails on our Success Criteria 1, 2, and 4.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

21

Event-based Traceability (EBT) is another requirements-
driven traceability approach aimed at automating trace-
link generation and maintenance. Cleland-Huang, Chang
and Christensen [26] present a study which uses EBT for
managing evolutionary change. They link requirements and
other traceable elements, such as design models, through
publish-subscribe relationships. As outlined by Galvao and
Goknil [12], “Instead of establishing direct and tight coupled
links between requirements and dependent entities, links are
established through an event service. First, all artefacts are
registered to the event server by their subscriber manager.
The requirements manager uses its event recognition algo-
rithm to handle the updates in the requirements document
and to publish these changes as event to the event server.
The event server manages some links between the require-
ment and its dependent artefacts by using some information
retrieval algorithms.” The notification of events carries struc-
tural and semantic information concerning a change context.
Scalability in a practical setting is the main issue, due to
performance limitation of the EBT server [12]. Moreover,
the approach does not provide sufficient support for intra-
model mapping. Thus, it fails on our Success Criteria 1 and
4.

Cleland-Huang et al. [27] propose the Goal Centric
Traceability (GCT) approach for managing the impact of
change upon the non-functional requirements of a software
system. A Softgoal Interdependency Graph (SIG) is used to
model non-functional requirements and their dependencies.
Additionally, a traceability matrix is constructed to relate
SIG elements to classes. The main weakness of the approach
is the limited tool support, which requires manual work. This
limits both scalability in a practical setting and searching
support (thus failing on our Success Criteria 4 and 2,
respectively). It is unclear to what degree the granularity
of the approach would meet the needs of PREDIQT.

Cleland-Huang and Schmelzer [28] propose another
requirements-driven traceability approach that builds on
EBT. The approach involves a different process for dynami-
cally tracing non-functional requirements to design patterns.
Although more fine grained than EBT, there is no evidence
that the method can be applied with success in a practical
real-life setting (required through our Success Criterion 4).
Searching and reporting facilities (as required through our
Success Criterion 2) are not provided.

Many traceability approaches address trace maintenance.
Cleland-Huang, Chang, and Ge [29] identify the various
change events that occur during requirements evolution and
describe an algorithm to support their automated recognition
through the monitoring of more primitive actions made by a
user upon a requirements set. Mader and Gotel [30] propose
an approach to recognize changes to structural UML models
that impact existing traceability relations and, based on that
knowledge, provide a mix of automated and semi-automated
strategies to update the relations. Both approaches focus on

trace maintenance, which is as argued in Section V, not
among the traceability needs in PREDIQT.

Ramesh and Jarke [16] propose another requirements-
driven traceability approach where reference models are
used to represent different levels of traceability information
and links. The granularity of the representation of traces
depends on the expectations of the stakeholders [12]. The
reference models can be implemented in distinct ways
when managing the traceability information. As reported
by Galvao and Goknil [12], “The reference models may
be scalable due to their possible use for traceability activ-
ities in different complexity levels. Therefore, it is unclear
whether this approach lacks scalability with respect to tool
support for large-scale projects or not. The efficiency of the
tools which have implemented these meta-models was not
evaluated and the tools are not the focus of the approach.”
In PREDIQT context, the reference models are too broad,
their focus is on requirements traceability, and tool support
is not sufficient with respect to searching and reporting (our
Success Criterion 2).

We could however have tried to use parts of the reference
models by Ramesh and Jarke [16] and provide tool support
based on them. This is done by Mohan and Ramesh [31]
in the context of product and service families. The authors
discuss a knowledge management system, which is based
on the traceability framework by Ramesh and Jarke [16].
The system captures the various design decisions associated
with service family development. The system also traces
commonality and variability in customer requirements to
their corresponding design artifacts. The tool support has
graphical interfaces for documenting decisions. The trace
and design decision capture is illustrated using sample
scenarios from a case study. We have however not been able
to obtain the tool, in order to try it out in our context.

A modeling approach by Egyed [32] represents trace-
ability information in a graph structure called a footprint
graph. Generated traces can relate model elements with other
models, test scenarios or classes [12]. Galvao and Goknil
[12] report on promising scalability of the approach. It is
however unclear to what degree the tool support fulfills our
success criterion regarding searching and reporting, since
semantic information on trace-links and traceable elements
is limited.

Aizenbud-Reshef et al. [33] outline an operational se-
mantics of traceability relationships that capture and rep-
resent traceability information by using a set of semantic
properties, composed of events, conditions and actions [12].
Galvao and Goknil [12] state: the approach does not provide
sufficient support for intra-model mapping; a practical appli-
cation of the approach is not presented; tool support is not
provided; however, it may be scalable since it is associated
with the UML. Hence, it fails on our Success Criteria 1 and
2.

Limon and Garbajosa [34] analyze several traceability

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

22

schemes and propose an initial approach to Traceability
Scheme (TS) specification. The TS is composed of a trace-
ability link dataset, a traceability link type set, a minimal
set of traceability links, and a metrics set for the minimal
set of traceability links [12]. Galvao and Goknil [12] argue
that “The TS is not scalable in its current form. Therefore,
the authors outline a strategy that may contribute to its
scalability: to include in the traceability schema a set of
metrics that can be applied for monitoring and verifying
the correctness of traces and their management.” Hence, it
fails with respect to scalability in a practical setting, that
is, our criterion 4. Moreover, there is no tool support for
the employment of the approach, which fails on our success
criterion regarding searching and reporting.

Some approaches [35] [36] [37] that use model trans-
formations can be considered as a mechanism to generate
trace-links. Tool support with transformation functionalities
is in focus, while empirical evidence of applicability and par-
ticularly comprehensibility of the approaches in a practical
setting, is missing. The publications we have retrieved do not
report sufficiently on whether these approaches would offer
the searching facilities, the granularity of trace information,
and the scalability needed for use in PREDIQT context (that
is, in a practical setting by an end-user (analyst) who is not
an expert in the tools provided).

XI. CONCLUSION AND FUTURE WORK

Our earlier research indicates the feasibility of the
PREDIQT method for model-based prediction of impacts
of architectural design changes on system quality. The
PREDIQT method produces and applies a multi-layer model
structure, called prediction models, which represent system
design, system quality and the interrelationship between the
two.

Based on the success criteria for a traceability approach
in the PREDIQT context, we put forward a traceability
scheme. Based on this, a solution supported by a prototype
traceability tool is developed. The prototype tool can be
used to define, document, search for and represent the trace-
links needed. We have argued that our solution offers a
useful and practically applicable support for traceability
handling in the PREDIQT context. The model application
guidelines provided in Section IV complement the prototype
traceability tool and aim to jointly provide the facilities
needed for a schematic application of prediction models.

Performing an analysis of factors such as cost, risk,
and benefit of the trace-links themselves and following the
paradigm of value-based software engineering, would be
relevant in order to stress the effort on the important trace-
links. As argued by Winkler and von Pilgrim [11], if the
value-based paradigm is applied to traceability, cost, benefit,
and risk will have to be determined separately for each trace
according to if, when, and to what level of detail it will be
needed later. This leads to more important artifacts having

higher-quality traceability. There is a trade-off between the
semantically accurate techniques on the one hand and cost-
efficient but less detailed approaches on the other hand.
Finding an optimal compromise is still a research challenge.
Our solution proposes a feasible approach, while finding the
optimal one is subject to further research.

PREDIQT has only architectural design as the indepen-
dent variable — the Quality Model itself is, once developed,
assumed to remain unchanged. This is of course a simpli-
fication, since quality characteristic definitions may vary in
practice. It would be interesting to support variation of the
Quality Model as well, in PREDIQT.

Development of an experience factory, that is, a repository
of the non-confidential and generalizable experiences and
models from earlier analyses, is another direction for future
work. An experience factory from similar domains and
contexts would allow reuse of parts of the prediction models
and potentially increase model quality as well as reduce the
resources needed for a PREDIQT-based analysis.

Further empirical evaluation of our solution is also nec-
essary to test its feasibility on different analysts as well
as its practical applicability in the various domains which
PREDIQT is applied on. Future work should also include
integration of the PREDIQT tool with the traceability tool.
Particularly important is development of standard interfaces
and procedures for updating the traceable elements from the
prediction models into our prototype traceability tool.

As model application phase of PREDIQT dictates which
trace-link information is needed and how it should be used,
the current PREDIQT guidelines focus on the application
of the prediction models. However, since the group of
recorders and the group of users of traces may be distinct,
structured guidelines for recording the traces during the
model development should also be developed as a part of
the future work.

ACKNOWLEDGMENT

This work has been conducted as a part of the DIGIT
(180052/S10) project funded by the Research Council of
Norway, as well as a part of the NESSoS network of
excellence funded by the European Commission within the
7th Framework Programme.

REFERENCES

[1] A. Omerovic and K. Stglen, “Traceability Handling in Model-
based Prediction of System Quality,” in Proceedings of Third
International Conference on Advances in System Simulation,
SIMUL 2011. TARIA, 2011, pp. 71-80.

[2] A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth,
A. Refsdal, K. Stglen, and J. @lnes, “A Feasibility Study
in Model Based Prediction of Impact of Changes on System
Quality,” in International Symposium on Engineering Secure
Software and Systems, vol. LNCS 5965. Springer, 2010, pp.
231-240.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

23

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

(16]

(17]

A. Omerovic, B. Solhaug, and K. Stglen, “Evaluation of
Experiences from Applying the PREDIQT Method in an In-
dustrial Case Study,” in Fifth IEEE International Conference
on Secure Software Integration and Reliability Improvement.
IEEE, 2011, pp. 137-146.

A. Omerovic, PREDIQT: A Method for Model-based Predic-
tion of Impacts of Architectural Design Changes on System
Quality. PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2012.

A. Omerovic, A. Andresen, H. Grindheim, P. Myrseth,
A. Refsdal, K. Stglen, and J. @lnes, “A Feasibility Study
in Model Based Prediction of Impact of Changes on System
Quality,” SINTEF, Tech. Rep. A13339, 2010.

A. Omerovic and K. Stglen, “Traceability Handling in Model-
based Prediction of System Quality,” SINTEF, Tech. Rep.
A19348, 2011.

A. Knethen and B. Paech, “A Survey on Tracing Approaches
in Practice and Research,” Frauenhofer IESE, Tech. Rep.
095.01/E, 2002.

“Standard Glossary of Software Engineering Terminology:
IEEE Std.610. 12-1990,” 1990.

N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-
Gafni, “Model Traceability,” IBM Syst. J., vol. 45, no. 3, pp.
515-526, 2006.

J. Simpson and E. Weiner, Oxford English Dictionary.
Clarendon Press, 1989, vol. 18, 2nd edn.

S. Winkler and J. von Pilgrim, “A survey of Traceability in
Requirements Engineering and Model-driven Development,”
Software and Systems Modeling, vol. 9, no. 4, pp. 529-565,
2010.

L. Galvao and A. Goknil, “Survey of Traceability Approaches
in Model-Driven Engineering,” in Proceedings of the 11th
IEEE International Enterprise Distributed Object Computing
Conference, 2007.

G. Spanoudakis and A. Zisman, “Software Traceability: A
Roadmap,” in Handbook of Software Engineering and Knowl-
edge Engineering. World Scientific Publishing, 2004, pp.
395-428.

R. J. Wieringa, “An Introduction to Requirements Traceabil-
ity,” Faculty of Mathematics and Computer Science, Vrije
Universiteit, Tech. Rep. IR-389, 1995.

N. Anquetil, U. Kulesza, R. Mitschke, A. Moreira, J.-C.
Royer, A. Rummler, and A. Sousa, “A Model-driven Trace-
ability Framework for Software Product Lines,” Software and
Systems Modeling, 2009.

B. Ramesh and M. Jarke, “Toward Reference Models for
Requirements Traceability,” IEEE Transactions on Software
Engineering, vol. 27, no. 1, pp. 58-93, 2001.

S. Bohner and R. Arnold, Software Change Impact Analysis.
IEEE Computer Society Press, 1996.

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

“International Organisation for Standardisation: ISO/IEC
9126 - Software Engineering — Product Quality,” 2004.

I. Refsdal, Comparison of GMF and Graphiti Based on
Experiences from the Development of the PREDIQT Tool.
University of Oslo, 2011.

J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling
Language Reference Manual. Pearson Higher Education,
2004.

A. Omerovic and K. Stglen, “A Practical Approach to
Uncertainty Handling and Estimate Acquisition in Model-
based Prediction of System Quality,” International Journal
on Advances in Systems and Measurements, vol. 4, no. 1-2,
pp- 55-70, 2011.

A. Omerovic and K. Solhaug, B. Stglen, “Assessing Practical
Usefulness and Performance of the PREDIQT Method: An
Industrial Case Study,” Information and Software Technology,
vol. 54, pp. 1377-1395, 2012.

A. Omerovic and K. Stglen, “Interval-Based Uncertainty
Handling in Model-Based Prediction of System Quality,” in
Proceedings of Second International Conference on Advances
in System Simulation, SIMUL 2010, August 2010, pp. 99-108.

“Access Help and How-to,” accessed: May 19,
2011. [Online]. Available: http://office.microsoft.com/en-us/
access-help/

J. P. Almeida, P. v. Eck, and M.-E. lacob, “Requirements
Traceability and Transformation Conformance in Model-
Driven Development,” in Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing Con-
ference, 2006, pp. 355-366.

J. Cleland-Huang, C. K. Chang, and M. Christensen, “Event-
Based Traceability for Managing Evolutionary Change,”
IEEE Trans. Softw. Eng., vol. 29, pp. 796-810, 2003.

J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhan-
skaya, and S. Christina, “Goal-centric Traceability for Manag-
ing Non-functional Requirements,” in Proceedings of the 27th
International Conference on Software Engineering. ACM,
2005, pp. 362-371.

J. Cleland-Huang and D. Schmelzer, “Dynamically Tracing
Non-Functional Requirements through Design Pattern Invari-
ants,” in Proceedings of the 2nd International Workshop on
Traceability in Emerging Forms of Software Engineering.
ACM, 2003.

J. Cleland-Huang, C. K. Chang, and Y. Ge, “Supporting
Event Based Traceability through High-Level Recognition
of Change Events,” in 26th Annual International Computer
Software and Applications Conference. IEEE Computer
Society, 2002, pp. 595-600.

P. Méder, O. Gotel, and I. Philippow, “Enabling Automated
Traceability Maintenance through the Upkeep of Traceability
Relations,” in Proceedings of the 5th European Conference on
Model Driven Architecture - Foundations and Applications.
Springer-Verlag, 2009, pp. 174-189.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

24

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

(31]

(32]

(33]

(34]

(35]

[36]

(37]

K. Mohan and B. Ramesh, “Managing Variability with Trace-
ability in Product and Service Families.” IEEE Computer
Society, 2002, pp. 1309-1317.

A. Egyed, “A Scenario-Driven Approach to Trace Depen-
dency Analysis,” IEEE Transactions on Software Engineer-
ing, vol. 29, no. 2, pp. 116-132, 2003.

N. Aizenbud-Reshef, R. F. Paige, J. Rubin, Y. Shaham-Gafni,
and D. S. Kolovos, “Operational Semantics for Traceability,”
in Proceedings of the ECMDA Traceability Workshop, at
European Conference on Model Driven Architecture, 2005,
pp. 7-14.

A. E. Limon and J. Garbajosa, “The Need for a Unifying
Traceability Scheme,” in 2nd ECMDA-Traceability Workshop,
2005, pp. 47-55.

F. Jouault, “Loosely Coupled Traceability for ATL,” in In
Proceedings of the European Conference on Model Driven
Architecture (ECMDA) workshop on traceability, 2005, pp.
29-37.

D. S. Kolovos, R. F. Paige, and F. Polack, “Merging Models
with the Epsilon Merging Language (EML),” in MoDELS’ 06,
2006, pp. 215-229.

J. Falleri, M. Huchard, and C. Nebut, “Towards a Traceability
Framework for Model Transformations in Kermeta,” in Pro-
ceedings of the ECMDA Traceability Workshop, at European
Conference on Model Driven Architecture, 2006, pp. 31-40.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

25

Augmented Reality Visualization
of Numerical Simulations in Urban Environments

Sebastian Ritterbusch, Staffan Ronnas, Irina Waltschliger, Philipp Gerstner, and Vincent Heuveline
Engineering Mathematics and Computing Lab (EMCL)
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
{sebastian.ritterbusch, staffan.ronnas, vincent.heuveline}@kit.edu, {irina.waltschlaeger, philipp.gerstner} @ student.kit.edu

Abstract—Visualizations of large simulations are not only
computationally intensive but also difficult for the viewer to
interpret, due to the huge amount of data to be processed. In
this work, we present a novel Augmented Reality visualization
method, which enables simulations based on current city model
data to be presented with localized real-world images. Test
scenarios of urban wind flow and fine dust simulations illustrate
the benefits of mobile Augmented Reality visualizations, both
in terms of selection of data relevant to the user and facilitation
of comprehensible access to simulation results.

Keywords-Scientific Visualization, Augmented Reality, Nu-
merical Simulation, Urban Airflow, Geographical Information
Systems.

I. INTRODUCTION

Numerical simulation and interactive 3D visualization
has today become an essential tool in many applications,
including industrial design, studies of the environment and
meteorology, and medical engineering. The increasing per-
formance of computers has played an important role for
the applicability of numerical simulation but has also led
to a rapid growth in the amount of data to be processed. At
present, the use of simulation software and the interpretation
of visualization results usually require dedicated expertise.
The large amount of data available leads to two problems for
the end-user, which are discussed in this paper extending [1].
On the one hand, handling and selection of the appropriate
data requires a suitable user interface. On the other hand,
the amount of perceptible information is limited, and thus
visualizations of large data sets need very intuitive methods
to be understandable.

The use of Augmented Reality (AR) is aiming at the
extension of human senses for delivering contextual infor-
mation in an optimized way [2], [3]. For the visual sense,
a difference of traditional imaging of virtual information to
augmented imaging is the direct correspondence of virtual
objects to reality. By exploitation of this additional and
seamless information channel, the quality of information
representation is strongly enhanced. This generally improves
the analysis and comprehension of virtual data, but also
opens new aspects for validation. This is especially true for

AR visualizations of numerical simulations in living environ-
ments, where a manual comparison of results in the form of
a visualization in a virtual world with reality may be tedious,
and even misleading for an uninformed viewer. For instance,
we make use of higher-order elements or artificial boundary
conditions to better represent reality [4], [5], but for which
highly specialized visualization methods would be needed to
represent the data in its full fidelity [6]. When representing
the results in the context of reality, the evaluation of the
chosen model is simplified, and the results are represented
more appropriately in the actual surroundings instead of an
arbitrarily complex model thereof.

Numerical simulations in many domains can benefit from
AR visualizations. Besides analysis of urban airflow and
a forecast of fine dust distribution as presented in this
paper, examples include noise propagation [7], urban climate
simulation [8], and human crowd simulation [9]. The general
feasibility of simulations in living environments and AR
visualization was strongly promoted by the introduction and
increasing role of Geographical Information Systems (GIS)
for urban planning [10]. Their improved accuracy joined
with the increasing performance of computing systems are
making accurate large scale urban simulations feasible. We
present the results of the joint work with the city council
of Karlsruhe for simulations in an urban environment as an
illustrative example setting, with focus on the advantages of
mobile AR visualization of large numerical simulations. The
proposed visualization method, whose development started
with the Science to Go project, serves as a technology for
solving problems of large scale data visualizations. Addi-
tionally, it also opens the path to making results of numerical
simulations accessible to decision makers and to the citizen
at large, both from the technical and the comprehension
perspective. The general availability of smartphones and
tablets equipped with GPS, cameras and graphical capa-
bilities fulfills the technical requirements on the client side
for implementing the presented visualization method. This
allows for an intuitive exploration of large scale simulations.
The ongoing standardization process of GIS for city mod-
eling in the CityGML consortium [11] enables standardized
simulation and visualization services for world-wide use

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

26

based on the presented method in the future.

This work is an extension of [1] with a more in-depth
description and discussion of the method, the application to
a new scenario and simulations, as well as a description of
further research into solutions for accurate visual alignment
of AR visualizations using active markers.

In this paper, we first present previous papers and projects,
which relate to the proposed concept. This is followed by a
description of the visualization method, with details on the
needed steps of pre-processing, simulation, AR visualiza-
tion, interaction, and the client-server framework. The text
ends with the conclusion and acknowledgments of partners
and funding for the project.

II. RELATED WORK

The Touring machine [12] was one of the first mobile
solutions for AR illustrating the potential of enhancing real
life images in real-time for exploration of the urban environ-
ment. The approach was to display information overlays on
the camera image, which is still popular in AR applications
of today [13], [14]. This concept is well suited to presenting
textual or illustrative information, such as designation of
points of interest, or augmented objects on top of printed
markers. But this does not directly apply to immersive AR
visualization of simulation results in the living environment
around the viewer as presented in this paper.

The availability of dedicated graphical processing units on
mobile devices has led to AR visualizations of pre-defined
3D objects [15], which have been found beneficial in labo-
ratory setups [16]. This is the basis for visualization of 3D
structures representing the results of simulations. The use of
AR visualization for environmental data is presented in the
HYDROSYS framework [17], which provides a method to
combine measurements and simulation data with geographic
information. Similar to the work presented in this paper, that
framework emphasizes the need for simulation information
on-site. The conceptional need for combining simulation
results with data from geographic information systems is
also a driving force for the CityGML project [10], which
has applications to natural disaster management.

AR visualization of urban air flow phenomena in an
indoor virtual reality laboratory setting based on physical
mock-up building blocks is presented in [18]. The general
aim of that work is similar to the one presented here, but it is
focused on the interaction with objects in the visualization,
and does not treat the aspect of remote visualization on
mobile devices.

A related domain is that of map generation through
interpolation of geographically localized, sparse data. A
sophisticated algorithm for this type of problem is proposed
in [19], which could conceivably also be used as a source
of data for the visualization method presented in this work.
In the applications presented here, the focus is on the use
of data obtained through numerical simulation.

1. Karlsruhe 3D City Model 4. Augmented Reality Visualization

. HiFlow* Numerical Simulation

2. Architecture Pre-Processing

Figure 1. Augmented Reality simulation and visualization workflow.

The simulations that are presented in this work concern
wind flow and particle distribution in urban environments.
This setting has previously been investigated in several
works, including [20] and [21]. In contrast to those papers,
we employ a simplified model, which does not include the
effects of wind turbulence. This reduces the computational
costs, while still delivering results that serve to illustrate
the potential of the AR visualization method. It is also
advantageous in cases where the outcome of numerical
simulations has to be related to the real surroundings, such
as for the placement of mini wind turbines in urban spaces,
which does not only depend on the optimal wind conditions
as discussed in [22] and [23], but also their fit into the city
scape.

III. VISUALIZATION METHOD

The problem of creating AR visualizations of scientific
data is demanding in several aspects, and its solution must
necessarily combine a range of techniques from different
fields, including geometric modeling, numerical simulation,
computer graphics and network programming, as illustrated
in Figure 1. In this section, we describe the method that
we have developed to achieve this goal. First, we outline
the problems that were identified in the early phases of
development. Next, we describe two scenarios, which are
used to illustrate the use of the method. In the remainder
of the section, we provide details on various aspects of the
techniques that were used, including the construction and
discretization of a virtual geometry, modeling and numerical
simulation, AR visualization, interface for user interaction,
and a framework for distribution of the compute load.

A. Identification of Problems

To obtain a clear understanding of the steps required to
create AR visualizations of scientific data, we have identified
and analyzed the main problems associated with this task.
As with any AR implementation, the first challenge is to
construct a virtual geometry. In this work, we have focused

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

27

on use cases in an exterior urban setting, but the proposed
concept could also be applied in large open areas as well as
inside buildings.

The next challenge is to create datasets that are suitable to
visualize in the AR rendering. In this work, we are interested
in displaying solutions of numerical simulations of physical
phenomena, such as wind flow, noise, temperature or particle
concentrations. The process to compute these solutions is
largely manual: one has to determine a suitable mathematical
model, formulate a precise and well-posed problem, choose
an appropriate numerical method, and perform discretiza-
tions of the equations as well as the geometry. Furthermore,
one must acquire the necessary input data such as material
properties, boundary values and initial conditions. Ideally,
all these steps would be automated, but at the present state
of research, at least the steps up to and including the
discretization require some human intervention.

Once a dataset has been computed for the virtual geom-
etry, one has to combine it with the real-world geometry,
based on the position and orientation of the user. The major
difficulties in this context are the alignment of the virtual
and real geometries, and the combination of the computed
dataset and the current camera view.

AR visualization is by nature interactive, and should
permit the user to control the displayed data in various
ways, not only by moving the camera. Furthermore, it is not
always evident how visualizations of scientific data, and its
associated uncertainties, should be interpreted. An important
challenge is how to present data in such a way that it can
be correctly understood by non-experts.

The final problem that we identified is the need for sub-
stantial compute power, both for the numerical simulation
and for visualization of the results. Although the capabilities
of handheld devices is steadily increasing, the processor
within a single mobile phone is not able to solve three-
dimensional fluid flow problems with reasonable accuracy
within acceptable time limits. Hence, a distributed architec-
ture is needed, which allows remote access to numerical
simulations on powerful hardware.

The method proposed in this work is an attempt to
address all these problems. We discuss the extent to which
we consider our solution successful, as well as the open
problems that remain, in Sections IV and V.

B. Scenarios

In order to demonstrate the capabilities of our visualiza-
tion method, we define two test scenarios, each consisting of
a specific numerical simulation in a specified place. Figure 2
shows the location of these sites on a map of the city of
Karlsruhe. These scenarios are primarily meant to illustrate
how AR visualizations of scientific data are useful, and to
provide datasets upon which the various data processing
and visualization techniques can be tested. The accurate
simulation of the physical processes that we have chosen is

N
:*"1;1 Ly | *-

2, U =

Figure 2. Map of Karlsruhe with places corresponding to scenarios.

generally a difficult and time-consuming problem, which is
not the main focus of this work. For this reason, the models
have been simplified, and the input parameters has been
chosen in such a way as to make it possible to obtain the data
in a short amount of time, at the expense of accuracy and
physical realism of the results. The computations performed
and the simplifications that were made, are described in
detail later in this section.

The first scenario that we consider is wind simulation
around the building that hosts the Department of Mathe-
matics of the Karlsruhe Institute of Technology (KIT). It
is located at the Kronenplatz square in Karlsruhe. We use
synthetic data to determine a plausible wind velocity flow on
the boundary of the domain, and solve the incompressible
Navier-Stokes equations to obtain the solution in the entire
domain.

The second scenario concerns the spread of fine dust
particles in the vicinity of the Physics building on the
campus of KIT. In a first step, we again compute a velocity
field around the buildings as in the first scenario; and then
solve a model for the transport of microscopic particles
suspended in the air based on this velocity field.

C. Virtual Geometry

A numerical simulation can be viewed as the combination
of a mathematical description of the physical phenomenon to
be simulated, a numerical method to solve the problem, and
a computational domain describing the space in which the
simulation is performed. While the first two aspects are dis-
cussed in literature, and actively researched in computational
sciences, the third aspect traditionally receives less attention
for living environments. Understandably, this is due to the
fact, that the effort of performing measurements of buildings
is too large compared to the value of individual numerical
simulations. Furthermore, the alignment with real world
coordinates as needed for AR applications is an additional
requirement. A solution to this problem is to derive the
computational domain from other data sources, performing
additional steps to convert the geometrical description to a

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

28

(C) Stadt Karlsruhe, Liegenschaftsamt,

Figure 3. Photo-realistic building in the Karlsruhe 3D city model.

suitable computational domain. This approach is followed
and explained in this text, based on a GIS urban model.

The project “3D-Stadtmodell Karlsruhe” [24] was started
in 2002 as an improved database of geographic information
to meet the demands of the local administration. It consists
of several data sets of varying purpose, coverage, accuracy
and detail, starting with a terrain model without buildings,
and including large brick models for the cityscape, up to
a photo-realistic model, as seen in Figure 3. All data sets
are expressed in a global Cartesian coordinate system, such
as GauB3-Kriiger or Universal Transverse Mercator (UTM)
coordinates, for alignment with the real world. The city
model is currently progressing towards an integration into
a CityGML [10] based representation.

Since none of the models were created for use by nu-
merical simulation software, extensive pre-processing steps
were necessary. In general, two or three models have to be
combined to create a suitable computational domain, as seen
in Figure 4. Special care was necessary to deal with model
enhancements that had been made mainly for visual effects.
For instance, there were closed window panes in garages
facing the outside world on both sides with zero width,
which are very significant for wind flow simulations around
buildings. Although such irregularities could be avoided by
imposing strict conditions on the city models, in general
we cannot expect available city models to conform to these
conditions, since they were originally created for visual
planning. To avoid problems arising from these kinds of
artifacts, an emphasis was put on the use of robust and
efficient region growing methods that are well known from
medical applications such as the realistic computational fluid
dynamics simulations of the nose and lungs (see, e.g., [25],
[26]).

The chosen approach approximates the geometry by dis-
cretization into voxels of pre-defined size. On the one
hand, this avoids problems around very small details, that
would require a high level of detail in the computational
domain. This would lead to an increase of the computational
effort a lot and a decrease the numerical stability, without

Figure 5.
conditions for wind flow model.

Schematic description of computational domain and boundary

necessarily yielding large gains in accuracy. On the other
hand, the actual discrepancy between a given model and its
approximation is easily controllable by the size of voxels,
offering the choice between accuracy and computing time
in advance.

Another challenge for enabling widespread use of numer-
ical simulations in urban environments is the scarcity of
highly accurate city models. This condition can be weakened
to the availability of high resolution models in the main
areas of interest, since widely available low accuracy models
are sufficient for the necessary peripheral simulation in
the surrounding area. In spite of the varying detail of the
models, the very accurate geographic alignment offers the
opportunity for an automated data source selection and pre-
processing workflow.

D. Wind Flow Simulation

In both scenarios, we want to compute the flow of the
wind around isolated buildings in the city. For this, we
employ a simulation that solves a standard model based
on the instationary version of the incompressible Navier-
Stokes equations (see, e.g., [27]) in a sufficiently large
computational domain €2 surrounding the area of interest.
We apply suitable artificial boundary conditions for the
assumed wind flow conditions, thereby neglecting the impact

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http.//www.iariajournals.org/systems_and_measurements/

29

of surrounding buildings outside the domain. Since air can
be considered incompressible for speeds much lower than
the speed of sound, these equations provide an accurate
description of the behavior of the air flow.

The model is formulated as an initial boundary value
problem for a set of partial differential equations, which
describe the time evolution of the velocity @ (Z,t) and the
pressure p (Z,t), both of which are functions of position
Z € Q and time ¢ in an interval [0, T'). The problem is stated
in (1), where the first equation is derived from the principle
of conservation of momentum, and the second from that
of conservation of mass. The derivation of these equations
make use of the fact that air can be considered to be a
Newtonian fluid.

O+ (G- V) = _pivaerAa, in Q x (0,T),
V-i=0, in Qx(0,7),

4 =a", in 'ty x (0,7),

(=Ip+vVii) - it =0, in Tou x (0,7),
=0, inT x (0,7),

@ (%,0) = i (%), in £2

Here, the parameters pr and v correspond to the density
and kinematic viscosity of air, which are both assumed to
be constant. Since we solve the equations on a truncated
domain, the solution has to be prescribed on the boundary.
Figure 5 shows a schematic overview of the boundary condi-
tions. At the walls of buildings as well as on the ground, the
velocity is set to zero, which corresponds to so-called no-slip
boundary conditions. This part of the boundary is denoted
I" in (1). On one side of the domain, I';,, we prescribe a
fixed velocity ™. Since this velocity is not known exactly
for a given situation, we need to make an assumption about
it. A common model for the general behavior of the lowest
layer of the atmosphere (also called the Prandtl layer) is to
assume that the speed grows logarithmically with the height
z above ground [28], [29]. This corresponds to the following

expression:
am(z) = v (m (Z>> Fin,)
K 20

where U is an estimated average wind speed, x ~ 0.4 is the
von-Karman constant, and 2y is a measure of the roughness,
and corresponds to the height above the ground where the
velocity becomes zero. The vector 77, is the outward unit
normal on I'j,. In the lack of wind profile measurements, also
a simplified model with a linear profile can be considered:

where U in an estimated average wind speed at height 2;.
In the simulations, the second approach was adopted, and

Table I

VALUES OF THE PARAMETERS USED IN THE WIND FLOW SIMULATIONS.

Parameter Assumed value
Kinematic viscosity v 0.001 m2/s

Density pr 1.2041 kg/m3
Max. inflow speed U 10 m/s

Height 21 150 m

the parameters were chosen to be arbitrary, but reasonable
values, which are shown in Table 1. In future work, one could
imagine to base the boundary values on current solutions of
the lowest layers in weather forecasting models, such as the
global model GME [30] or the regional model COSMO [31].

Here, we have chosen the approach of using fixed values
of the velocity on the sides (Dirichlet boundary conditions),
for example to set the known wind profile [32]. This offers
the chance of using an exterior flow condition on the top
plane [33], which can be used to significantly reduce the re-
quired size of the computational domain. Another approach
for choosing suitable conditions would be to consider a
city with regularly aligned blocks and using a lid driven
simulation with cyclic boundary conditions on the sides with
sufficient height, as in [34].

On the remaining part of the boundary, denoted by I'gy,
a relation between pressure and velocity is imposed, which
corresponds to an outflow. This so-called do-nothing condi-
tion appears naturally in the weak formulation that is used
for the finite element discretization, and is easy to work
with since it does not require any special treatment in the
discretization.

The kinematic viscosity v in (1) describes roughly the
thickness of the fluid. It plays an important role via the
Reynolds number, a dimensionless quantity that character-
izes the behavior of the flow with respect to turbulence. It
is defined as Re = v~ !|ii|L, where L is the characteristic
length scale of the problem. When Re is large, the flow
has a turbulent character, which requires highly sophisticated
methods for its solution. With realistic values of v ~ 10~°
m? /s for the type of geometries and flow speeds that we are
considering, Re would certainly lie in this regime. Investi-
gations such as those described in [20] and [21] show that
this type of turbulence computation is within the possibility
of present simulation technology. However, to avoid the
additional expense of performing such computations for this
scenario, we have chosen to use a larger value of v. The
value for this and the other parameters that were used in the
simulations are listed in Table I.

We discretize this mathematical model using a finite ele-
ment method based on a standard weak formulation of (1).
We follow the discretization approach used in [35], with
Q2/Q1 finite elements, which yields second order accuracy
for the velocity field, and first order for the pressure. The
solution of the nonlinear system of equations uses the

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

30

Newton method with a GMRES linear solver to compute the
corrections. The GMRES method uses preconditioning by
multilevel incomplete LU factorization through the ILU++
software package described in [36]. The implementation of
the simulation is based on the finite element library HiFlow?
[37].

E. Fine Dust Simulation

For the second scenario, we simulate the spread of fine
dust particles in the air. This type of computation has several
important applications, which include predicting the effect of
pollution (heavy metals, smog, smoke), as well as estimating
the transport of naturally occurring dust and pollen, both
of which can be useful for instance in city planning. At
low altitudes in urban areas, the occurrence of buildings
strongly limits the transport of particles, and the question of
deposition of particles becomes important. In the following,
we describe a mathematical model for particle transport,
which is derived from the work presented in [38].

We assume a set of non-interacting, spherical particles P;,
i=1,..., N, with radii 7* and masses m’. In the following,
a superscript ¢ denotes that a quantity is related to particle
P;. Tts position Z*(t) will evolve according to its velocity

4*(t) via the ordinary differential equation (ODE):
dz ;
() = @ (t). 4
(0 = i) @
The velocity of a particle P; is the sum of the velocity @ p
of the air at z%, and a velocity % that arises due to the total
external force F(t) acting on the particle:

@' (t) = dp(T (1) + @p(t). (5)

Figure 6 shows the two contributions to the particle velocity
together with the forces that are accounted for in the model.
The air velocity field @ is obtained from a computation of
the wind flow, as described in III-D. In general, this wind
field varies in time, but for simplification, we have assumed
that it is stationary in our model. One can think of this as
an average over time of the possible wind fields; although
in the computations, we have simply used the instantaneous
solution at an arbitrary point in time.

The second part of the velocity @ (t) is computed ac-
cording to Newton’s second law, which can be expressed as
follows:

-
mi 382 () = Fip). 6)
dt

The force acting on a particle is assumed to consist of
three effects:

Fi(t)y=F!

grav

+ Fpreg + Fing: (7)
Here, Fgm = —m/'gé, is the gravitational force, with g ~
9.81m-s—2 the gravity of earth, and &, the upward vertical

direction vector. F‘;fres = — 4% (+7)3Vpp is the force that the

Figure 6.
model.

Schematic image of forces acting on a particle in the fine dust

air pressure pr exerts on the spherical particle. Finally, ﬁ(}rag
corresponds to the friction force, which acts on the particle

as it moves in the fluid. It is given by
Fig = ~0.5¢'(Re") pp A'|iTp |7, ®)

where ¢! is the drag coefficient associated with, pp the
density of the fluid, and A* = 7(r%)? the cross-sectional
area of the particle perpendicular to the direction of motion.

The drag coefficient is determined in terms of the particle
Reynolds number, which is defined as Re! = M where
nup is the kinematic viscosity of the fluid. An empiric law
for the drag coefficient, which is known [39] to be valid for
low values of Re' is

. 24
=4 Ry
(Re?)0-646)

For the computation of Re?, the kinematic viscosity and
density of the fluids were chosen as vp = 1.71 - 107°m? /s
and pr = 1.20kg/m>, which corresponds to air at stan-
dard outside temperatures. We have further assumed for
simplicity that all the particles have the same radius r’ =
1.9 - 107°m and mass m! = 1.15 - 107'°kg: a more
sophisticated method would be to assign this at random from
a given distribution.

Altogether, the evolution of the particles is described by
the 2N ODE (4) and (6), supplemented by initial conditions
for 2% and @' at t = 0. These conditions are typically chosen
at random based on a distribution that corresponds to the
specific situation at hand. For the velocity, another possible
choice is to first determine the initial positions, and then to
start the particles with the same velocity as the underlying
fluid: @*(0) = @i (2%(0)).

Many different methods exist for solving systems of ODE.
In accordance with the wish to keep our procedure as simple
as possible, we have chosen to use quite basic methods.
The total time-interval [0,7") is split into time steps of
size At, and the solution is computed at the discrete times
t, = nAt. For solving (4), the implicit Euler method is
applied, which yields the following iterative method, for
n=0,1,...,T/At.

if 0.0 < Rep < 1.0, .
if 1.0 < Rep < 400. ©)

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

31

B (tngr) = T (tn) + At ("rf(tn-ﬁ-l) + Up (fi(tn-i-l))) .
(10)

To avoid having to solve a nonlinear problem in this case,
we assume that the fluid velocity varies slowly in space,
and make the approximation @, (7' (tn11)) & @ (Z(t,)),
which yields the modified iteration step:

T (tns1) = B (tn) + At (Tp(tnyr) + @ (F(t0))) . (1)

This can be computed explicitly, once u’(t,1) has been
determined from the discretization of (6). Again, the implicit
Euler method is used, giving the basic iteration:

78 i At (=
Tp(tn 1) = Wp(tn) + 7 (Fiug (@ (tn1)+

ﬁ;res ’Q?Vi(tn+1)) + ﬁgrav) . (12)

Similarly to above, it is assumed that the gradient of the
fluid pressure varies slowly in space, so that the approxi-
mation ﬁpres(fi(tnﬂ)) ~ ﬁpres(ﬁ(tn)) can be made. The
gravitational force is constant in both time and space. To
treat the drag force in an accurate way, we keep the form
as it is, and use a fixed point iteration to solve the resulting
non-linear equation.

As was the case for the wind flow simulation, the model
that we have used here has been simplified to make the
computations easier, and to be able to arrive at a result
with a limited effort. In particular, a more complete model
would also take into account the effects of turbulence, and
the resulting random variations in the particle force.

F. Augmented Reality Visualization

The problem of combining virtual objects with an image
of reality is discussed in two steps. First of all, the general
composition of virtual data with a photographic image is
introduced, followed by approaches for the actual alignment
of the virtual world with reality in the next subsection.

The visualization method is based on the accurate align-
ment of the viewer’s position and the orientation of his
camera view with the three-dimensional city model and the
numerical simulation. In the setup considered here, only the
graphics representing the flow field are to be embedded in
the real-life image as seen in Figure 1, and therefore, the
virtual city model and the computational mesh should not
be visible. However, the simulation results that are covered
by buildings in the city model must also be removed from the
image. The approach we followed is to paint the background
and city models completely in black. Therefore, the occluded
simulation results are masked by the city model, which
itself remains invisible, leading to a masked visualization as
displayed in Figure 7. All black areas will then be treated as
being transparent. Such a color-key method can be improved

Figure 7. Masked numerical simulation visualization.

by rendering using an alpha-channel, but this generally
requires more adaptions in the visualization software, and
was not deemed necessary for these examples.

The masked visualization can then be composed onto the
camera view leading to the augmented numerical simulation
visualization in Figure 16, which was extended with the
computational domain for illustration. The resulting image is
very informative and gives insight into the simulation results.
Since the displayed part of the simulation coincides with the
viewer’s position, the data selection is most intuitive and
the full simulation can be explored by simply wandering
around in the computational domain. A corresponding AR
visualization for an isolated multi-component building in the
Physics scenario is shown in Figure 17.

G. Interaction and User Interface

The AR visualization needs accurate positioning and
orientation information. This is strongly linked to the user
interface, in which the position in space and the view orien-
tation defines the information the viewer wants to analyze.
We will discuss the use of sensors of hand-held devices as
a man-machine interface, its use for AR positioning and
orientation, and an extension for accurate positioning and
orientation using active markers.

The interaction and the user interface is crucial for usabil-
ity and comprehension. The proposed model is to present
the mobile device as a window to the AR and the results
of the numerical simulation. This leads to challenges as
outlined in [13] that can be addressed using sophisticated
mathematical methods such as filtering, simulation, and pa-
rameter identification. Only the increasing computing power
available in modern mobile devices such as smartphones and
tablets enable the use of such costly algorithms in real-time
the are necessary for responsive haptic user interfaces.

The camera view in space is defined by six parameters,
the three-dimensional position and the three viewing angles.
Therefore, at least six dimensions of sensor data are needed
to control the user interface. Besides GPS, mobile devices of
the latest generation contain spatial accelerometers as well as

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

32

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

Mobile
sensors

Intuitive
user interface

6D

3D
Position

Mathematical
methods

Sensor fusion
Parameter identification

Gyroscopes

3D

Orientation

=
i GPS] [Touchscreey

Figure 8. Mathematical methods enable intuitive user interfaces.

spatial magnetometers as a minimum. Taken together, they
provide the necessary six degrees of freedom in the sensor
data, enabling a new approach to an intuitive interface,
which can be improved by any other additional sensors such
as gyroscopes or camera based marker detection. Figure 8
illustrates that this step covers the real-time fusion of various
sensor readings to gain the position and orientation informa-
tion that is the basis for the AR visualization.

As evaluated in [40], the effective orientational accuracy
of current mobile devices is about two to three degrees
in heading, pitch and roll, and an absolute GPS position
is accurate to at most 10 m. A typical horizontal field of
view of a smartphone camera is 55 degrees, which means
that the orientational error results in about 5 % on-screen
distance error. The visual error induced by the positioning
error depends on the viewing distance to the building. For
50 m distance, the angular error can add up to 16 degrees,
for 100 m distance up to 8 degrees, yielding 15— 30 %
on-screen distance errors. Therefore, user interaction is nec-
essary to align the AR visualization with reality. Although
the positioning errors seem to be dominant, they are less
problematic once an alignment was successful, as relative
GPS measurements are far more accurate.

An alternative approach is to take advantage of markers
for augmented reality such as introduced by [41]. While
this approach is well suited for small objects, it does not
scale up to buildings. Therefore, it was proposed in [42] to
introduce active markers for AR visualizations of buildings
and simulations. Such markers are not only suited for
ground-based AR visualizations, but also for visualizations
from radio controlled multicopter aircrafts.

In Figure 9, we show the test setup from an unmanned
areal vehicle (UAV) and the accurate detection of the active
markers from the movie stream. This resulted in the AR
visualization of a building model in Figure 10.

Interaction with a numerical simulation consists not only
of moving around and changing the view; it is highly
desirable to also offer access to visualization parameters,
such as what quantities are displayed, the method used, and

LED Marker

Figure 10. Augmented reality building visualization.

potentially to enable changing some simulation parameters.
From the view of the user interface, the touchscreen inter-
faces of modern mobile devices offer endless possibilities
for manipulation of visualization and simulation parameters.
Another crucial issue is the interactivity that is offered to the
user: the presented visualization needs to be updated fre-
quently, but is limited by the available network bandwidth.

H. Client-Server Framework

In general, large scale numerical simulations and scientific
visualization are resource-intensive, and require dedicated
high-performance hardware. Although mobile devices are
becoming increasingly powerful, there is still a large gap
in performance between these devices and the clusters of
thousands of servers that are typically used in scientific
computing.

In order to enable interactive AR visualizations on mo-
bile devices, we propose a client-server approach where
the display and data selection is performed with a user
interface on a mobile device, but the actual simulation
results and visualization remains on a high-performance
server infrastructure. As illustrated in Figure 11, the clients
are connected to the visualization service on the servers
by wireless or cellular networks, which are limited by the
available bandwidth. In a direct image transport, a refresh

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

33

Results

Simulation \ / Visualization
Storage
Feedback
Figure 11. Interaction model.
1. Request 2. Request (modified)
Impostor Set Impostor Set
e _—
Q Cloud Pre-render
< Server _ Server
Client 5. Return 4. Return
Impostor Impostor Set 3. Render
Set Impostor Set
Figure 12. Schematic overview of the client-server framework.

rate of several frames per second is feasible on UMTS
networks. But the interactivity is bound to latencies ranging
from 100 ms to several seconds.

In computer gaming, there are similar requirements for
interactivity as in scientific visualization. In [43], a platform
is introduced which aims at providing 3D games even
on handheld devices. They either transmit the OpenGL or
DirectX commands directly to the client, or use a low-
latency version of the H.264 encoder to transmit the vi-
sual information to the client. While the system aims at
WLAN networks, the concept seems applicable to Long
Term Evolution (LTE) mobile networks, that can provide
peak bandwidths exceeding 100 Mbps in the downlink
direction [44].

In AR applications, orientation and position changes are
most common, and theoretically, the optimal approach would
in this case be to transmit the full 3D model to the mobile
client, to enable realtime interaction. But for large datasets,
the mobile devices generally cannot meet the memory de-
mands and GPU performance needed.

Therefore, the approach that we have adopted in the
European Project MobileViz is to compute visually indis-
tinguishable but reduced 3D models, which enable high
refresh rates and low interaction latencies even when they
are rendered on a mobile device. The reduced models consist
of a set of impostors in the form of simple images, which
are generated on the server for the current viewpoint, and
then transmitted to the client, where they can be rendered
at low cost. The details of this method are described in [45]
and [46].

Figure 12 shows schematically how this type of rendering
is embedded in our client-server framework. The server

component of this framework is split into two parts. The pre-
rendering service accepts incoming requests for visualiza-
tions of particular datasets, and generates the corresponding
impostor images, possibly by using hardware dedicated to
scientific visualization. The cloud server provides a web ser-
vice, which accepts multiple concurrent incoming requests,
and determines which impostors should be generated to
fulfill these requests. The requests are then forwarded to
the pre-rendering service. In order to keep the load on the
pre-rendering server small, the cloud service caches already
computed results, and determines the optimal parameters for
the impostor rendering. To reduce the amount of computa-
tion, it can choose to return a slightly different view than
what was requested, in order to make use of already existing
data.

In order to give the user of the mobile device the pos-
sibility to interact with the visualization, and by extension
also the numerical simulation, the cloud server will also
interact with those components, to forward user requests
to them via a specialized interface. Whereas a prototype
implementation of the impostor-based rendering is already
in place, the development of the aspects dealing with the
interactivity is still on-going.

The architecture presented here can be understood in
the context of Mobile Cloud Computing, where part of an
application running on a mobile device is offloaded to a
server infrastructure. This model of computing is undergoing
rapid growth and offers several advantages, as described in
for instance [47] and [48]. In the current work, we have
partitioned the application statically between the mobile
client and the cloud server. The interaction with the reduced
visualization in the form of the impostors takes place on the
client, and the actual compute-intensive rendering, on the
server.

An alternative approach would be to employ a dynamic
partitioning of the execution between server and client
as suggested in [47], [48]. The decision of what part is
executed where would then be determined by the capacity
of the device and the quality of the network connection. A
limitation to this approach is that the amount of data being
visualized is often very large, and might therefore have to
be kept on the cloud server.

IV. RESULTS

In this section, we discuss the results of our tests with the
presented methods.

A. Virtual Geometry

Based on 3D city models, our voxelization method is able
to derive a computational domains for simulation in a robust
way. We joined several data sets of various levels of detail
to achieve the most accurate data basis, which was then
mapped into voxels of given size. By this, the method can
adapt the resulting model to the demanded accuracy, and at

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

34

the same time filters out small artefacts or errors that would
otherwise influence the simulation. The results are presented
for two building complexes in Figures 4 and 5.

If a 3D city model is available, the presented method is
automated, and delivers computational domains in a robust
way. This could be improved by using a more general
representation model than a voxel-based approach, but the
aspects of robustness, resulting level of detail, and additional
computational costs would need to be weighed against the
potential benefits. A straight-forward compromise with small
additional computational costs in this step, could be to use
a hierarchy of voxels, such that the level of detail remains
fixed, but larger areas can be covered by larger voxels, as
long the numerical method and simulation software permits
such selectively coarsened representations of the compu-
tational domain. This type of approach could significantly
speed up the simulation.

Naturally, the method based on data from a GIS urban
model will require additional consideration, as important
aspects for simulation were not taken into account in the
generation of the models. An example is given by thin glass
panes, where both sides face the outside. This needed special
treatment to prevent an air passage through this flat object
where in reality, the air is blocked. Also additional infor-
mation about the surface materials should be extracted from
databases, to provide hints for which mathematical model
should be employed on very smooth surfaces compared to
rough planes.

Already in its simple form, however, our method was ca-
pable of providing usable computing domains for simulation,
while leaving the world coordinate reference system intact,
for later virtual reality visualization.

B. Wind Flow Simulation

We used our implementation of the simplified wind flow
model described in Section III-D to generate data for the
Kronenplatz and Physics scenarios. The same setup was used
to treat both the case of the single isolated building in the
former scenario, and the group of buildings in the latter.
Visualizations with streamlines created using Paraview [49]
are shown for the two scenarios in Figures 13 and 14.

For both scenarios, the results obtained are plausible,
given the simplifying assumptions made for the model.
The way the velocity fields are affected by the presence
of buildings is qualitatively correct, which is sufficient to
illustrate the functioning and utility of the AR visualization
method.

In order to be appropriate for a real use case, the sim-
ulation would of course have to deliver data that reflects
reality in a more accurate way. The corresponding model
would have to use values of the material parameters deduced
from measurements, and be modified to deal with the
turbulence effects that would arise. Furthermore, the data
for the boundary conditions would have to be chosen in

Figure 13. Visualization of computed wind flow field for the Kronenplatz
scenario.

(HiFlow®

Figure 14.
buildings.

Visualization of computed wind flow field for the Physics

a meaningful way. This could be done in several ways:
through user input, local measurements, or, as mentioned
in Section III-D, interpolation of meteorological data that is
available at larger scales.

Naturally, so long as one can only obtain sparse and
imprecise information about the current state of the wind, the
accuracy of the simulation results will be limited. Therefore,
it is important to be clear about the suitability of the
simulation results in the context of specific use cases. We
would expect that this type of simulation, together with
the AR visualization method that we propose, find use for
instance when assessing decisions in urban planning, or
when evaluating risks associated with airborne pollution.
In these cases, one can base the computations on sets of
measurements taken over a long time, or averages thereof.
Of course, the simulation cannot be expected to exceed the
accuracy of the data describing the meteorological situation
and the computational domain. Communicating the restric-
tions in accuracy to the user of the visualization remains an
important open problem.

C. Particle Simulation

For the second scenario with the Physics building, we
also implemented a numerical simulation for the spread of

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

35

Figure 15.

Visualization of fine dust particles distributed around the
Physics buildings.

fine dust based on the mathematical model described in
Section III-E. This simulation used the computed velocity
field of the wind described in the previous section. We con-
sidered a setup with particles originating from a hypothetical
chimney high up in the air, as well as along a hypothetical
street passing by parallel to the buildings. The result of
the simulation is shown in Figure 15, which displays the
positions of the particles throughout the simulated time
interval, in order to capture the entire simulation in one
picture.

As was the case for the wind simulation, the results are
of sufficient quality to illustrate the potential of particle
simulations in conjunction with AR visualization, but cannot
be considered an accurate representation of how particles
would really behave in the atmosphere. The errors in the
simulation are due both to the inaccuracies in the model for
the wind flow and the simplifications that were made in the
particle model. Additionally, the initial particle distribution
is synthetically generated in this case, whereas a realistically
relevant simulation would require measurements of this data.

We consider this type of simulation coupled with AR
visualization to be applicable to for instance urban planning,
evaluations the impact of pollution on the environment, and
disaster planning.

D. AR Visualization of Wind Field and Particles

We combined the simulation data from the wind flow and
particle computations for the Physics scenario into one im-
age using the masking technique described in Section III-F.
Figure 18 shows one such image, where the underlying
photo was taken using a standard camera. This example
illustrates how numerical results from several computations
can be combined into one image, providing several pieces of
information at once. The viewer gets an idea both about how
the wind flows around the building, and how small particles
might behave in this flow.

This image was created manually by aligning the com-
putational geometry with the corresponding objects in the

/N

AN
Y\
(VAVAYAY
7/

=~

N

==

et

4

Figure 17. Augmented Reality visualization of air flow around isolated
building from the Physics scenario.

photo. The alignment is critical for the visualization, and
not an easy task due to potential inaccuracies of the position
and orientation information in the computational geometry,
as well as additional camera parameters, such as field of
view or distortions.

On a mobile device on-site, this information is available,
at least approximately, and one can hope to obtain a rea-

Figure 18.
tributed fine dust particles around the Physics buildings, created using the
masking technique.

Augmented Reality visualization of velocity field and dis-

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

36

sonably good fit between the simulated data and the camera
image. Where high accuracy is required, one can compensate
for errors in the position and orientation using a marker-
based approach, as it was presented before.

The feasibility of such a solution was presented in Fig-
ures 9 and 10 for use with UAVs, which hints to a very
promising application field of the presented visualization
method in combination with flying cameras. This way, the
simulation can be analyzed using the AR visualization also
from above.

V. CONCLUSION

In this paper, we have presented a novel visualization
method for large-scale scientific computing, illustrated by
the examples of simulating urban air flow and fine dust
distribution. The use of mobile devices opens the path to
intuitive access to, and interaction with, numerical simula-
tions that are highly comprehensible due the embedding in
to the real-life camera view as AR visualizations. This is
an answer to how sophisticated simulations can be made
usable for non-scientists, as it is replacing the artificial and
complex virtual representation of reality with a direct view
of reality itself. However, this is not a complete solution,
since the actual representation of simulation results needs to
be understood correctly. This AR presentation aids greatly
through the direct correspondence with reality, but there are
other areas that require further investigation to find suitable
imaging methods. For instance all numerical simulations are
approximations with associated errors, both introduced by
the computation itself, and by the limited accuracy of the
measurements. Such uncertainties should be made obvious
also to an uninformed viewer. Suitable visualization concepts
for this is an open area of research.

An advantage of the method is the simplicity of selecting
the data of interest and view orientation by just walking
through the immersive simulation in reality and pointing
the mobile device. Of course, this is limiting us to views
from places, that the viewer can walk to. The general
availability of UAV, combined with their ease of operation,
is overcoming this issue to some extent.

We depend on the availability of a 3D city model of suf-
ficient accuracy, in order to derive a computational domain
in a robust way. All additional information that is included
in the model, such as surface properties, can aid to improve
the simulation quality. The introduction and adoption of a
general standard such as the CityGML standard is of great
help, but also offers the chance to integrate simulations into
GIS databases. The work presented here, could improve the
way in which such information is evaluated through AR
visualizations.

The technical problem of exact alignment of real-world
images with the virtual objects cannot yet be solved solely
based on sensor measurements of mobile devices, but active

markers can help solving this issue. This is a topic of on-
going research and development.

Another technical problem is to derive accurate informa-
tion on the current conditions around the computing domain,
such as the current weather conditions. Such information
is available in databases from weather forecast agencies,
but the resolution provided is on the order of kilometers,
compared to the level of detail suitable for this visualization
method that can go down the order of meters. We can
expect the availability of higher resolution weather models in
future, but suitable mathematical modeling for interpolation
of surrounding weather conditions is a topic current research.

The proposed remote visualization method detailed in [45]
and [46] is perfectly suited for displaying large stationary
numerical simulations on mobile devices using the presented
AR visualization method, due to its support for AR ap-
plications and its economic resource usage. By exploiting
the increasing graphical performance of mobile devices, the
scarce network bandwidth is utilized very efficiently. It is
desirable to extend this method to instationary simulations
as well, but the increased amount of data to be transmitted
is limited by the traditionally small bandwidth available to
mobile devices. There are promising approaches for periodic
cases, but until there are new concepts for remote visu-
alizations, increased bandwidth through new transmission
standards look promising to solve this issue.

The development of the client-server framework for re-
mote visualization enables the access to, and interaction
with, large scientific datasets on mobile devices. Although
still not completed, the design and prototype implementation
of this framework is an important step towards realizing the
goal of providing distributed visualization and simulation
services over the Internet.

The presented AR visualization method is very general in
its scope in the sense that it is usable for many application
areas. It is expected to facilitate the use of numerical
simulations by scientists as well as citizens and decision-
makers. Furthermore, we are convinced that it can increase
the impact and improve the communication of scientific
results in interdisciplinary collaborations and to the general
public.

VI. ACKNOWLEDGMENTS

The Karlsruhe Geometry project is a collaboration of the
Liegenschaftsamt of the city council of Karlsruhe with the
Engineering Mathematics and Computing Lab (EMCL) and
was supported by the KIT Competence Area for Information,
Communication and Organization. The authors thank the
Fraunhofer IOSB Karlsruhe and Building Lifecycle Manage-
ment (BLM) at the KIT for execution of the UAV flights.
The development of intuitive user interfaces for scientific
applications on mobile devices was part of the Science to
Go project, which received funding from the Apple Research
& Technology Support (ARTS) programme. The authors

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

37

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

appreciate the support of the Federal Ministry of Education

and

Research and Eurostars within the Project E! 5643

MobileViz. The Eurostars Project is funded by the European
Union.

(1]

(2]

(3]

[4

—

[5

—

(6]

[7

—

(8]

(9]

(10]

(1]

[12]

REFERENCES

V. Heuveline, S. Ritterbusch, and S. Ronnas, “Augmented
reality for urban simulation visualization,” in Proceedings of
The First International Conference on Advanced Communica-
tions and Computation INFOCOMP 2011. Barcelona, Spain:
IARIA, 2011, pp. 115-119.

U. Neumann and A. Majoros, “Cognitive, performance, and
systems issues for augmented reality applications in manu-
facturing and maintenance,” in Virtual Reality Annual Inter-
national Symposium, 1998. Proceedings., IEEE 1998. IEEE,
1998, pp. 4-11.

R. T. Azuma et al., “A survey of augmented reality,”
Presence-Teleoperators and Virtual Environments, vol. 6,
no. 4, pp. 355-385, 1997.

K. Gerdes, “A summary of infinite element formulations for
exterior helmholtz problems,” Computer methods in applied
mechanics and engineering, vol. 164, no. 1, pp. 95-105, 1998.

J. P. Wolf and C. Song, Finite-element modelling of un-
bounded media. Wiley Chichester, England, 1996.

W. J. Schroeder, F. Bertel, M. Malaterre, D. Thompson, P. P.
Pebay, R. O’Bara, and S. Tendulkar, “Methods and framework
for visualizing higher-order finite elements,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 12, no. 4,
pp- 446-460, 2006.

J. Kang, “Numerical modelling of the sound fields in urban
streets with diffusely reflecting boundaries,” Journal of sound
and vibration, vol. 258, no. 5, pp. 793-813, 2002.

A. J. Arnfield, “Two decades of urban climate research: a
review of turbulence, exchanges of energy and water, and
the urban heat island,” International Journal of Climatology,
vol. 23, no. 1, pp. 1-26, 2003.

S. R. Musse and D. Thalmann, “Hierarchical model for real
time simulation of virtual human crowds,” IEEE Transactions
on Visualization and Computer Graphics, vol. 7, no. 2, pp.
152-164, 2001.

T. Kolbe, G. Groger, and L. Plimer, “CityGML: Interoperable
access to 3d city models,” in Geo-information for Disaster
Management, P. Oosterom, S. Zlatanova, and E. Fendel, Eds.
Springer Berlin Heidelberg, 2005, pp. 883-899.

T. H. Kolbe, “Representing and exchanging 3d city models
with CityGML,” in Proceedings of the 3rd International
Workshop on 3D Geo-Information, Lecture Notes in Geoinfor-
mation & Cartography, J. Lee and S. Zlatanova, Eds. Seoul,
Korea: Springer Verlag, 2009, p. 20.

S. Feiner, B. MacIntyre, T. Hollerer, and A. Webster, “A
Touring machine: prototyping 3d mobile augmented reality
systems for exploring the urban environment,” in Wearable
Computers, 1997. Digest of Papers., First International Sym-
posium on, oct 1997, pp. 74 -81.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]

[24]

J. B. Gotow, K. Zienkiewicz, J. White, and D. C. Schmidt,
“Addressing challenges with augmented reality applications
on smartphones,” in MOBILWARE, 2010, pp. 129-143.

D. Schmalstieg, T. Langlotz, and M. Billinghurst, “Aug-
mented reality 2.0,” in Virtual Realities, G. Brunnett, S. Co-
quillart, and G. Welch, Eds. Springer Vienna, 2011, pp.
13-37.

D. Wagner, T. Pintaric, F. Ledermann, and D. Schmalstieg,
“Towards massively multi-user augmented reality on hand-
held devices,” in In Third International Conference on Per-
vasive Computing, 2005.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and
B. Maclntyre, “Recent advances in augmented reality,” IEEE
Computer Graphics and Applications, vol. 21, no. 6, pp. 34—
47, 2001.

A. Nurminen, E. Kruijff, and E. E. Veas, “Hydrosys - a mixed
reality platform for on-site visualization of environmental
data,” in W2GIS, 2010, pp. 159-175.

H. Graf, P. Santos, and A. Stork, “Augmented reality frame-
work supporting conceptual urban planning and enhancing
the awareness for environmental impact,” in Proceedings of
the 2010 Spring Simulation Multiconference. ACM, 2010,
pp- 181:1-181:8.

M. Hammoudeh, R. Newman, C. Dennett, and S. Mount,
“Interpolation techniques for building a continuous map
from discrete wireless sensor network data,” Wireless
Communications and Mobile Computing, 2011. [Online].
Available: http://dx.doi.org/10.1002/wcm.1139

S. R. Hanna, M. J. Brown, F. E. Camelli, S. T.
Chan, W. J. Coirier, S. Kim, O. R. Hansen, A. H.
Huber, and R. M. Reynolds, “Detailed simulations of
atmospheric flow and dispersion in downtown Manhattan:
An application of five computational fluid dynamics models,”
Bulletin of the American Meteorological Society, vol. 87,
no. 12, pp. 1713-1726, Dec 2006. [Online]. Available:
http://dx.doi.org/10.1175/BAMS-87-12-1713

P. Gousseau, B. Blocken, T. Stathopoulos, and G. van Heijst,
“CFD simulation of near-field pollutant dispersion on a high-
resolution grid: A case study by les and rans for a building
group in downtown montreal,” Atmospheric Environment,
vol. 45, no. 2, pp. 428 — 438, 2011.

J. S.-D. Muro, E. J. Macias, J. B. Barrero, and M. P. de la
Parte, “Two-dimensional model of wind flow on buildings to
optimize the implementation of mini wind turbines in urban
spaces,” in International Conference on Renewable Energies
and Power Quality, 2010.

F. Balduzzi, A. Bianchini, and L. Ferrari, “Microeolic turbines
in the built environment: Influence of the installation site on
the potential energy yield,” Renewable Energy, vol. 45, pp.
163 — 174, 2012.

T. Hauenstein, “Das 3D-Stadtmodell Karl-
sruhe,” in INTERGEO, 2009. [Online]. Available:
http://www.intergeo.de/archiv/2009/Hauenstein.pdf 29.7.2011

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

38

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

M. J. Krause, “Fluid flow simulation and optimisation with
lattice boltzmann methods on high performance computers:
Application to the human respiratory system,” Ph.D. disser-
tation, Karlsruhe Institute of Technology (KIT), 2010.

K. Inthavong, J. Wen, J. Tu, and Z. Tian, “From CT scans to
CFD modelling - fluid and heat transfer in a realistic human
nasal cavity,” Engineering Applications of Computational
Fluid Mechanics, vol. 3, no. 3, pp. 321-335, 2009.

J. H. Spurk and N. Aksel, Fluid Mechanics, 2nd ed. Springer-
Verlag Berlin Heidelberg, 2008.

H. Kraus, Die Atmosphdiire der Erde: Eine Einfiihrung in die
Meteorologie. Springer Berlin Heidelberg, 2004.

D. Etling, Theoretische Meteorologie: Eine Einfiihrung.
Springer Berlin Heidelberg, 2008.

D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buch-
hold, T. Hanisch, G. Paul, W. Wergen, and J. Baumgard-
ner, “The operational global icosahedral-hexagonal gridpoint
model GME: Description and high-resolution tests,” Monthly
Weather Review, vol. 130, no. 2, pp. 319-338, 2002.

“Core documentation of the COSMO-model,”
http://www.cosmo-model.org/content/model/documentation/
core/default.htm (Accessed 2013-06-09).

I. Waltschldger, “Randbedingungen zur Windsimulation im
Stadtgebiet,” Master’s thesis, Karlsruhe Institute of Technol-
ogy (KIT), 2011.

V. Heuveline and P. Wittwer, “Adaptive boundary conditions
for exterior stationary flows in three dimensions,” Journal of
Mathematical Fluid Mechanics, vol. 12, no. 4, pp. 554-575,
20009.

P. He, T. Katayama, T. Hayashi, J. Tsutsumi, J. Tanimoto,
and I. Hosooka, “Numerical simulation of air flow in an
urban area with regularly aligned blocks,” Journal of Wind
Engineering and Industrial Aerodynamics, vol. 67-68, pp. 281
- 291, 1997.

V. John, G. Matthies, and J. Rang, “A comparison of time-
discretization/linearization approaches for the incompressible
Navier-Stokes equations,” Computer Methods in Applied Me-
chanics and Engineering, vol. 195, no. 44/47, pp. 5995 —
6010, 2006.

J. Mayer, “A multilevel Crout ILU preconditioner with
pivoting and row permutation,” Numerical Linear Algebra
with Applications, vol. 14, no. 10, pp. 771-789, 2007.
[Online]. Available: http://dx.doi.org/10.1002/nla.554

H. Anzt, W. Augustin, M. Baumann, T. Gengenbach,
T. Hahn, A. Helfrich-Schkarbanenko, V. Heuveline, E. Kete-
laer, D. Lukarski, A. Nestler, S. Ritterbusch, S. Ronnas,
M. Schick, M. Schmidtobreick, C. Subramanian, J.-P. Weiss,
F. Wilhelm, and M. Wlotzka, “HiFlow3: A hardware-aware
parallel finite element package,” in Tools for High Perfor-
mance Computing 2011, H. Brunst, M. S. Miiller, W. E.
Nagel, and M. M. Resch, Eds. Springer Berlin Heidelberg,
2012, pp. 139-151.

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

T. Gengenbach, “Numerical simulation of particle deposition
in the human lung,” Ph.D. dissertation, Karlsruhe Institute of
Technology, 2012.

J. K. Comer, C. Kleinstreuer, and C. S. Kim, “Flow structures
and particle deposition patterns in double-bifurcation airway
models. Part 2. Aerosol transport and deposition,” Journal of
Fluid Mechanics, vol. 435, pp. 55-80, 4 2001.

M. K. Kirchhoefer, J. H. Chandler, and R. Wackrow, “Cultural
heritage recording utilising low-cost close-range photogram-
metry,” in Proceedings of CIPA 23rd International Sympo-
sium, 2011.

H. Kato and M. Billinghurst, “Marker tracking and hmd
calibration for a video-based augmented reality conferencing
system,” 2nd IEEE and ACM International Workshop on
Augmented Reality, pp. 85-94, 1999.

V. Koch, S. Ritterbusch, A. Kopmann, M. Mueller, T. Habel,
and P. von Both, “Flying augmented reality,” in Proceedings
of the 29th eCAADe conference, Ljubljana, Slovenia, 2011.

A. Jurgelionis, P. Fechteler, P. Eisert, F. Bellotti, H. David,
J. P. Laulajainen, R. Carmichael, V. Poulopoulos, A. Laikari,
P. Peraelae, A. D. Gloria, and C. Bouras, “Platform for
distributed 3d gaming,” International Journal of Computer
Games Technology, vol. 2009, p. 15, 2009.

E. Dahlman, H. Ekstrom, A. Furuskar, Y. Jading, J. B.
Karlsson, M. Lundevall, and S. Parkvall, “The 3G long-
term evolution - radio interface concepts and performance
evaluation,” in IEEE 63rd Vehicular Technology Conference,
vol. 1, 2006, pp. 137-141.

A. Helfrich-Schkarbanenko, V. Heuveline, R. Reiner, and
S. Ritterbusch, “Bandwidth-efficient parallel visualization for
mobile devices,” in The Second International Conference on
Advanced Communications and Computation. 1ARIA, 2012,
pp- 106-112.

V. Heuveline, M. Baumann, S. Ritterbusch, and R. Reiner,
“Method and system for scene visualization,” Feb. 27 2013,
WO Patent 2,013,026,719.

D. Kovachev and R. Klamma, “Beyond the client-server
architectures: A survey of mobile cloud techniques,” in /st
IEEE International Conference on Communications in China
Workshops (ICCC), 2012, pp. 20-25.

K. Kumar, J. Liu, Y.-H. Lu, and B. Bhargava, “A survey of
computation offloading for mobile systems,” Mobile Networks
and Applications, vol. 18, no. 1, pp. 129-140, 2013.

“ParaView - Open Source Scientific Visualization,”
http://www.paraview.org/ (Accessed 2013-06-09).

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

39

An Explorative Study of Module Coupling and Hidden Dependencies
based on the Normalized Systems Framework

Dirk van der Linden, Peter De Bruyn, Herwig Mannaert, and Jan Verelst
University of Antwerp
Antwerp, Belgium
dirk.vanderlinden, peter.debruyn, herwig.mannaert, jan.verelst@uantwerpen.be

Abstract—Achieving the property of evolvability is consid-
ered a major challenge of the current generation of large,
compact, powerful, and complex systems. An important fa-
cilitator to attain evolvability is the concept of modularity: the
decomposition of a system into a set of collaborating subsys-
tems. As such, the implementation details of the functionality
in a module is hidden, and reduces complexity from the point
of view of the user. However, some information should not
be hidden if they hinder the (re)use of the module when
the environment changes. More concretely, all collaborating
modules must be available for each other. The way how
a collaborating module is accessible is also called module
coupling. In this paper, we examined a list of classifications
of types of module couplings. In addition, we made a study
on the implications of the used address space for both data
and functional constructs, and the implications of how data is
passed between modules in a local or remote address space.
Several possibilities are evaluated based on the Normalized
Systems Theory. Guidelines are derived to improve reusability.

Keywords-Reusability, Evolvability, Modularity, Coupling, Ad-
dress space.

I. INTRODUCTION

Modern technologies provide us the capabilities to build
large, compact, powerful, and complex systems. Without
any doubt, one of the major key points is the concept
of modularity. Systems are built as structured aggregations
of lower-level subsystems, each of which have precisely
defined interfaces and characteristics. In hardware for in-
stance, a USB memory stick can be considered a module.
The user of the memory stick only needs to know its
interface, not its internal details, in order to connect it to
a computer. In software, balancing between the desire for
information hiding and the risk of introducing undesired
hidden dependencies is often not straightforward. However,
these undesired hidden dependencies should be made ex-
plicit [1]. Experience contributes in learning how to deal
with this issue. In other words, best practices are rather
derived from heuristic knowledge than based on a clear,
unambiguous theory.

Normalized Systems Theory has recently been proposed
[2] to contribute in translating this heuristic knowledge into
explicit design rules for modularity. In this paper, we want
to evaluate which information hiding is desired and which
is not with regard to the theorems of Normalized Systems.
The Normalized Systems theorems are fundamental, but it

is not always straightforward to check implementations in
different application domains against these theorems. This
paper aims at deriving more concrete guidelines for software
development in a PLC environment on a conceptual level.

Doug Mcllroy already called for families of routines to
be constructed on rational principles so that families fit to-
gether as building blocks. In short, [the user] should be able
safely to regard components as black boxes [3]. Decades
after the publication of this vision, we have black boxes, but
it is still difficult to guarantee that users can use them safely.
However, we believe that a lot of necessary knowledge to
achieve important parts of this goal are available and we
should primarily document all the necessary unambiguous
rules to make this (partly tacit) knowledge explicit.

In this paper, we examined a list of classifications of types
of module couplings, and evaluated in which terms these
types are contributing towards potentially compliance with
the Normalized Systems theory. These couplings are studied
in an abstract environment [1]. Further, we extended this
study by placing the constructs in an address space, and eval-
uated the consequences. This evaluation is based on some
case studies in an IEC 61131-3 programming environment
by way of small pieces of code [4]. We investigated on how
different data constructs relate to a local or a remote memory
address space, and which consequences these relations have
to functional modules. Next, we placed the focus on the
functional constructs and paradigms, which also reside in a
local address space and might have a coupling to a remote
address space. We investigated the potential to use them
complying the Normalized Systems principles. Finally, we
present an set of derived, more concrete principles.

The paper is structured as follows. In Section II, the
Normalized Systems theory will be discussed. In Section III,
we discuss categories of coupling, seen in an abstract way. In
Section IV, we give an overview of how data can be passed
between functional modules in a local data memory address
space, or coupled with constructs in a remote address spaces.
In Section V, we focus on constructs for functionality, and
how they can be coupled (locally or remotely). A summary
of the evaluations and guidelines is given in Section VI.
Finally, Section VII concludes the paper.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

40

II. NORMALIZED SYSTEMS

The current generation of systems faces many challenges,
but arguable the most important one is evolvability [5]. The
evolvability issue of a system is the result of the existence of
Lehman’s Law of Increasing Complexity which states: “As
an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is
done to maintain or reduce it” ([6] p. 1068). Starting from
the concept of systems theoretic stability, the Normalized
Systems theory is developed to contribute towards building
systems, which are immune against Lehman’s Law.

A. Stability

The postulate of Normalized Systems states that a system
needs to be stable with respect to a defined set of anticipated
changes. In systems theory, one of the most fundamental
properties of a system is its stability: a bounded input
function results in bounded output values, even for T — co
(with T representing time).

Consequently, the impact of a change should only depend
on the nature of the change itself. Systems, built following
this rule can be called stable systems. In the opposite case,
changes causing impacts that are dependent on the size
of the system, are called combinatorial effects. To attain
stability, these combinatorial effects should be removed from
the system. Systems that exhibit stability are defined as
Normalized Systems. Stability can be seen as the requirement
of a linear relation between the cumulative changes and the
growing size of the system over time. Combinatorial effects
or instabilities cause this relation to become exponential
(Figure 1). The design theorems of Normalized Systems
Theory contribute to the long term goal of keeping this
relation linear for an unlimited period of time, and an
unlimited amount of anticipated changes to the system.

B. Design Theorems of Normalized Systems

In this section, we give an overview of the design the-
orems or principles of Normalized Systems theory, i.e., to
design systems that are stable with respect to a defined set
of anticipated changes:

o A new version of a data entity;

« An additional data entity;

e A new version of an action entity;

« An additional action entity.

Please note that these changes are associated with soft-
ware primitives in their most elementary form. Hence, real-
life changes or changes with regard to ‘high-level require-
ments’ should be converted to these elementary anticipated
changes [7]. We were able to convert all real-life changes
in several case studies to one or more of these abstract
anticipated changes [8][9]. However, the systematic trans-
formation of real-life requirements to the elementary antic-
ipated changes is outside the scope of this paper. In order
to obtain systems theoretic stability in the design during the

Cumulative change impact

Unbounded

Bounded

Time (amount of added requirements)

Figure 1. Cumulative impact over time

implementation of software primitives, Normalized Systems
theory prescribes the following four theorems:

1) Separation of concerns:

An action entity can only contain a single task in Nor-
malized Systems.

This theorem focuses on how tasks are structured within
processing functions. Each set of functionality, which is
expected to evolve or change independently, is defined as
a change driver. Change drivers are introducing anticipated
changes into the system over time. The identification of
a task should be based on these change drivers. A single
change driver corresponds to a single concern in the appli-
cation.

2) Data version transparency:

Data entities that are received as input or produced as
output by action entities, need to exhibit version trans-
parency in Normalized Systems.

This theorem focuses on how data structures are passed
to processing functions. Data structures or data entities need
to be able to have multiple versions, without affecting the
processing functions that use them. In other words, data
entities having the property of data version transparency,
can evolve without requiring a change of the interface of
the action entities, which are consuming or producing them.

3) Action version transparency:

Action entities that are called by other action entities,
need to exhibit version transparency in Normalized Systems.

This theorem focuses on how processing functions are
called by other processing functions. Action entities need to
be able to have multiple versions without affecting any of
the other action entities that call them. In other words, action
entities having the property of action version transparency,
can evolve without requiring a change of one or more action
entities, which are connected to them.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

41

4) Separation of states: The calling of an action entity
by another action entity needs to exhibit state keeping in
Normalized Systems.

This theorem focuses on how calls between processing
functions are handled. Coupling between modules, that is
due to errors or exceptions, should be removed from the
system to attain stability. This kind of coupling can be
removed by exhibiting state keeping. The (error) state should
be kept in a separate data entity.

III. EVALUATION OF TYPES OF COUPLING

Coupling is a measure for the dependencies between
modules. Good design is associated with low coupling and
high reusability. However, merely lowering the coupling
is not sufficient to guarantee reusability. Classifications of
types of coupling were proposed in the context of structured
design and computer science [10][11]. The key question of
this paper is whether a hidden dependency and, therefore,
coupling is affecting the reusability of a module? In general,
the Normalized Systems theorems identify places in the
software architecture where high (technical) coupling is
threatening evolvability [12]. More specifically, we will
focus in this section on several kinds of coupling and
evaluate which of them is lowering or improving reusability.
The sequence of the subsections is chosen from the most
tight type coupling to the most loose type of coupling.

A. Content coupling

Content coupling occurs when module A refers directly
to the content of module B. More specifically, this means
that module A changes instructions or data of module B.
When module A branches to instructions of module B, this
is also considered as content coupling.

It is trivial that direct references between (internal data
or program memory of) modules prevent them from being
reused separately. In terms of Normalized Systems, content
coupling is a violation of the first theorem, separation of
concerns. Achieving version transparency is practical not
possible. The same can be said about separation of states.

This intent to avoid content coupling is not new, other
rules than those of the Normalized Systems already made
this clear. For instance, Dijkstra suggested decades ago
to abolish the goto statement from all ‘higher level’ pro-
gramming languages [13]. The goto statement could in-
deed be used for making a direct reference to a line of
code in another module. Together with restricting access to
the memory space of other modules, Dijkstra’s suggestion
contributed to exile content coupling out of most modern
programming languages. Note that in the IEC 61131-3
standard, the Instruction List (IL) language still contains the
JMP (jump) instruction. For this and other reasons, IL is
considered a low level language, and similar to assembly.

B. Common coupling

Common coupling occurs when modules communicate
using global variables. A global variable is accessible by
all modules in the system, because they have a memory
address in the ‘global’ address space of the system. If a
developer wants to reuse a module, analyzing the code of
the module to determine which global variables are used
is needed. In other words, a white box view is required.
Consequently, black box use is not possible. In terms of
Normalized Systems, common coupling is a violation of the
first theorem, separation of concerns.

We add however, that not the existence but the way of
use of global variables violates the separation of concerns
theorem. A global variable is in fact just a variable in the
scope of the main program. When these global variables
are treated like a kind of local variables in the scope of
the main program, they do not cause combinatorial effects.
However, when these variables are passed to the submodular
level without using the interface of (sub)modules, which are
called by the main program, they can cause combinatorial
effects. Since the use of global variables in case of common
coupling is not visible through the (sub)module’s interface,
this way to use these global variables is considered to be
a hidden dependency. And since common coupling is a
violation of separation of concerns, this is an undesired
hidden dependency with respect to the safe use of black
boxes.

As a research case, we used global variables in a proof
of principle with IEC 61131-3 code, which complies with
Normalized Systems [9]. The existence of global variables
was needed for other reasons than mutual communication
between modules (i.e., connections with process hardware).
In this project, the global variables were passed via an in-
terface from one module to the other. In some cases, having
a self-explaining interface between collaborating modules is
enough to comply with the separation of concerns principle.
In other cases, dedicated modules called connection entities
are needed to guarantee this separation. In this paper, we
investigated in which cases there is a need for a connection
entity or not (see following subsections).

C. External coupling

External coupling occurs when two or more modules
communicate by using an external (third party?) database,
communication protocol, device or hardware interface. The
external entity, system or subsystem is accessible by all
(internal) modules. Consequently, the support (e.g., fault
handling) for the external access has to be included for all
modules.

Support for this particular external access is a concern.
Every module also includes at least one core functionality,
which is also a concern. Having more than one concern
in a single module is a violation of the separation of
concerns principle. Indeed, when the external entity receives

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

42

an update, every module, which is calling the external entity,
needs an update too. This is an example of a combinatorial
effect.

To avoid this kind of combinatorial effect, one should
dedicate a special module - a connection entity - to make
the link with the external technology. More precisely, one
connection entity for every version or alternative external
technology. Version tags can be used to select the appropriate
connection entity. Each internal module should call the
connection entity to map parameters with the external entity.

Such a connection entity is considered to be a supporting
task. Separating the core task from supporting task does not
have to decrease cohesion. On the contrary they can nicely
fit together on the next modular level. In other words, the
core task module can be ‘hosted’ together with one or more
supporting task module in a higher-lever module.

D. Control coupling

Control coupling occurs when module A influences the
execution of module B by passing data (parameters). Com-
monly, such parameters are called ‘flags’. Whether a module
with such a flag can be used as a black box depends
on the fact whether the interface is explaining sufficiently
the meaning of this flag for use. If a white box view is
necessary to determine how to use the flag, black box
use is not possible. The evaluation of control coupling in
terms of reusability is twofold. On the one hand, adding
a flag can introduce a slightly different functionality and
improve the reuse potential. For example, if a control module
of a motor is supposed to control pumping until a level
switch is reached, a flag can provide the flexibility to use
both a positive level switch signal and an inverted one
(i.e., positive versus negative logic). On the other hand,
extending this approach to highly generic functions, would
lead in its ultimate form to a single function dolt, that
would implement all conceivable functionality, and select
the appropriate functionality based on arguments. Obviously,
the latter would not hit the spot of reusability.

One of the key questions during the evaluation of control
coupling is: how many functionalities should be hosted in
one module? In terms of Normalized Systems, the principle
‘separation of concerns’ should not be violated. The concept
of change drivers brings clarity here. A module should
contain only one core task, eventually surrounded by sup-
porting tasks. Control coupling can help to realize theorem
2 (data version transparency) and theorem 3 (action version
transparency) by way of version selection. The calling action
is able to select a version of the called action based on
control coupling. We conclude that control coupling should
be used for version selection only.

Control coupling, as a way of connecting two or more
modules, says something about the functional impact of
the coupling, not about how the coupling is realized. Con-
sequently, control coupling does not influence the choice

whether a connection entity is necessary or not.

E. Data coupling

Data coupling occurs when two modules pass data using
simple data types (no data structures), and every parameter
is used in both modules.

Realizing theorem 3 (action version transparency) is not
straightforward with data coupling, since the introduction
of a new parameter affects the interface of the module.
This newer version of the interface could not be suitable
for previous action versions, and could consequently not be
called a version transparent update. Not all programming
languages support flexibility in terms of the amount of
individual parameters. Changing the datatype, or removing
a parameter is even worse.

Note that the disadvantage of data coupling, affecting the
module’s interface in case of a change, does not apply on
reusing modules, which are not evolving. This can be the
case when working with system functions, e.g., aggregated
in a system function library. However, problems can occur
when the library is updated. We will give more details about
this issue in the next section.

When working with separated, simple data types as a
set of parameters, every change requires a change of the
interface of the module. Since we do not consider ‘changing
the interface’ as one of our anticipated changes, this should
be avoided. Huang et al. emphasized that it is important
to separate the version management of components with
their interfaces [14]. As such, the interface can be seen as
a concern, and should consequently be separated to comply
with the separation of concerns principle.

In other words, in case the development environment does
not support a flexible interface for its modules, data coupling
can cause combinatorial effects. In case mandatory argu-
ments are removed in a new version, a flexible development
cannot guarantee the absence of combinatorial effects.

FE. Stamp coupling

Stamp coupling occurs when module A calls module B
by passing a data structure as a parameter when module B
does not require all the fields in the data structure.

It could be argued that using a data structure limits the
reuse to other systems where this data structure exists,
whereas only sending the required variables separately (like
with data coupling) does not impose this constraint. How-
ever, we emphasize that the key point of this paper does
not concern reuse in general. Rather, it focuses on safe
reuse specifically. Stamp coupling is an acceptable form of
coupling. With regard to the first theorem, separation of
concerns, one should keep the parameter set (data entity),
the functionality of the module (action entity) and the
interface separated. Keeping the interface unaffected, while
the data entity and action entity are changing, can be realized
with stamp coupling. Note that stamp coupling should be

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

43

combined with the rule that fields of a data structure can be
added, but not modified or deleted. This rule is necessary to
enable version transparency.

Note that if the data structure in a stamp coupling scenario
increases, it becomes convenient to pass the structure by
reference (see Section IV-D). As such, memory use and
copying processes can be limited. However, referring to the
data structure requires the stamp coupling to be applied
between modules which reside in the same address space
(see Section V-D).

G. Message coupling

Message coupling occurs when communication between
two or more modules is done via message passing. With
message passing, a copy of a data entity is sent to a so-called
communication endpoint. An underlying network does the
transport of (the copy of) the data entity. This underlying
network can offer incoming data, which can be read via
the communication endpoint. Message passing systems have
been called ‘shared nothing’ systems because the message
passing abstraction hides underlying state changes that may
be used in the implementation of the transport.

The property ‘sharing nothing” makes message coupling
a very good incarnation of the separation of concerns
principle. Please note that asynchronous message passing
is highly preferable above synchronous message passing,
which violates the separation of states principle. The system
works with copies of the data, and the states of the transport
are separated from the application which is producing or
consuming the data. This concept complies with the separa-
tion of states principle.

In comparison with stamp coupling, stamp coupling can
be realized by passing a pointer, which refers to the data
structure. To implement this, both modules should share
the memory address space, where the pointer is referring
to. Since the concept of message coupling does not share
anything, also no address space, every data passing works
with copies. For this reason, message coupling is considered
the most loosely coupled of all categories.

Message coupling implies additional functionality with
regard to the modules which need to exchange data. To com-
ply with the separation of concerns principle, this additional
functionality should be separated from the core functionality
of the collaborating modules. Consequently, while the data
structure in a stamp coupling scenario — in a common
address space — can be used directly by the collaborating
modules, at least two connection entities are required when
these modules reside in a different address space (see Section
V-D)).

H. Summary of the theoretic evaluation of couplings

The existing categorization of coupling is based and or-
dered on how tight or how loose the discussed coupling type
is. We agree that in general loose coupling is better than tight

coupling, but there are more important consequences based
on the different types of coupling. It is not too surprising
that, following our evaluation, we discourage the use of the
two most tight types of coupling, i.e., content coupling and
common coupling. However, other conclusions are not based
on how tight a type of coupling is. For example, control
coupling is a special one, because it is the only discussed
type which says something about the functionality of the
connected modules. All other types says something about
how these modules are coupled. Data coupling and stamp
coupling are alternatives for each other, while other types
can be used complementary. We highly recommend stamp
coupling in stead of data coupling, because data coupling
can cause combinatorial effects.

Stamp coupling can be combined with control coupling,
message coupling or partly external coupling (depending
on the application). Control coupling should be used for
version selection only. Stamp coupling can be used as it
is in cases where the collaborating modules reside in the
same system. In case these collaborating modules reside in
different systems, stamp coupling has to be combined with
message coupling. In case the collaboration includes external
entities, from which we cannot control the evolution, con-
nection entities are necessary, which is a prerequisite to use
external coupling without potentially causing combinatorial
effects.

IV. DATA MEMORY ADDRESS SPACE AND ITS BORDERS

The discussion about message coupling illustrates that a
reference to a variable in a particular address space can
be seen as an occurrence of a hidden dependency. In this
section, we investigate this more in depth, and discuss
several software constructs which have a relation with one
or more memory address spaces.

In its most elementary form, programs are nothing but a
sequence of instructions, which perform operations on one
or more variables. These variables correspond to registers
in the data memory of the controller, and the instructions
correspond to registers in the program memory. The instruc-
tions are executed in sequential order, but instructions for
selections and jumping to other instructions are available.
In this elementary kind of programs, there is no explicit
modularity at all, any instruction can read any variable
in the program, and jumping from any instruction to any
other instruction is possible. For this purpose, we had
in the early ages of software development an instruction,
which has become well-known: the goto-statement. Dijkstra
called for the removal of the goto-statement in higher level
languages [13], and this call is mainly addressed. However,
the JMP (jump) instruction is still available in the lower level
language Instruction List (IL) of the IEC 61131-3 standard
for PLC (Programmable Logic Controller) programming [4].
Also, in surprisingly recent literature, goto elimination is still
a research objective [15].

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

44

v
o>

| statement | | statement I

statement | ¥ ¥

Figure 2.

[statement |

Concatenation, Selection, and Iteration

Alternatively, Dijkstra elaborated on the concepts con-
catenation, selection and iteration (Figure 2) to bring more
structure in a program [16]. However, these concepts do not
force modularity. In terms of Normalized Systems theory
reasoning, the separation of concerns principle is not ad-
dressed. Because of the lack of clearly identifiable modules,
the other theorems cannot be evaluated as well.

In this section, we discuss an amount of software con-
structs and how they relate to the address space, and whether
the desired coupling has to cross the borders of this address
space. We evaluate some concepts or paradigms based on the
Normalized Systems theorems. We start our discussion with
the very first attempt to build modular software systems: the
‘closed subroutines’ of Wilkes et al. (1959). Next, we discuss
the concept of data variables, and how their scope can differ
corresponding their definition. Further, we discuss variables
which can be exchanged between modules. These kind of
variables are typically called parameters or arguments. Two
main ways how they can be passed is ‘by value’ or ‘by
reference’, which will be discussed. Finally, the concepts of
static and external variables will be discussed.

A. Subroutines

Wilkes et al. introduced the concept of subroutines,
which they termed a closed subroutine [17]. The concept
of subroutines is the first form of modularity. A subroutine,
also termed subprogram, is a part of source code within a
larger program that performs a specific task. As the name
subprogram suggests, a subroutine can be seen as a piece of
functionality, which behaves as one step in a larger program
or another subprogram. A subroutine can be called several
times and/or from several places during one execution of the
program (including from other subroutines), and then return
to the next instruction after the call once the subroutine’s
task is done (Figure 3).

Dijkstra reviewed the concept of subroutines in [16].
Following this review, the concept of subroutines served as
the basis for a library of standard routines, which can be
seen as a nice device for the reduction of program length.
However, the whole program as such remained conceived
as acting in a single homogeneous store, in an unstructured
state space; the whole computation remained conceived a
single sequential process performed by a single processor
([16], p. 46). In other words, the subroutine shares its data

MAIN
call 3 > SBR3
- call9 > SBR3
RETURN
RETURN
call6 > SBR6
MEND
RETURN
Figure 3. Subroutines

memory address space with the main program and other
subroutines (if these exist). The return address of a closed
subroutine can not be seen as a parameter. Rather, it looks
like a well-placed jump.

In terms of Normalized Systems, progress is made towards
the separation of concerns principle, but it is not fully
addressed yet. Indeed, the details of the functionality in a
subroutine is separated from the main program (which can
be seen as a desired hiding of information for the reader
of the main program), but the data of the subroutine is not.
In fact, the lack of a local data memory address space in a
‘closed subroutine’ implies a violation of the separation of
concerns principle. On the side of functionality the concerns
‘main program’ and ‘closed subroutine’ are separated, but
on the side of data these concerns are not separated. Because
of the lack of separation of data memory address space, the
separation of states principle cannot be met. The separation
of states principle implies the buffering of every call to
another module. As such, when the called module does not
respond like expected, the calling module can handle the
unexpected result based on the buffered state. In other words,
every module needs its own local memory to store its state.

B. Variables

A variable is a storage location and an associated symbolic
name, which contains a value. Note that this concept is
very explicit exemplified in contemporary Simatic S7 PLCs,
where the programmer can choose for usage of absolute
addresses and symbolic addresses [18]. In this specific en-
vironment, the programmer has to manage the data memory
address space. For computer scientists, this might look old-
fashioned, but for contemporary PLC programmers this
is an important subject. Moreover, data memory address
space cross references are tools which are commonly used
to heuristically prevent combinatorial effects caused by
common coupling. More general, the variable name is the
usual way to reference the stored value, and a compiler

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

45

is doing the data memory allocation and management by
replacing variables’ symbolic names with the actual data
memory addresses at the moment of compilation. The use
of abstract variables in a source code, which are replaced
by real memory during compilation is undoubtedly an im-
provement for reusability of the source code. However, when
the memory is still shared throughout the whole system,
these variables are called global variables, and require a
name space management to prevent name conflicts. In other
words, the problem of potential address conflicts is moved
to potential name conflicts. In terms of Normalized Systems,
when modules need global variables to exchange data, this
is not really an improvement in relation to the concept of
closed subroutines of Wilkes et al. ([17]).

A group of research computer scientists abandoned the
term ‘closed subroutine’ and called modules ‘procedures’
in the ALGOL 60 initiative [19]. The main novelty was
the concept of local variables. In terms of memory address
space, the concept ‘scope’ was introduced, i.e., the idea
that not all variables of a procedure are homogeneously
accessible all through the program: local variables of a
procedure are inaccessible from outside the procedure body,
because outside they are irrelevant. What local variables of
a procedure need to do in their private task is its private
concern; it is no concern of the calling program [16]. In
terms of Normalized Systems, local variables contribute in
addressing the separation of concerns principle. A point
of potential common coupling is still the fact that global
variables —which are declared outside the module— are still
accessible from the inside of the module. When these global
variables are used in the module, without documenting this
for the user, we have a violation of the separation of concerns
principle. The use of undocumented and thus invisible or
hidden global variables in a module makes it impossible to
evaluate compliance with the Normalized Systems theorems.
In other words, code analyses or white box inspection is
needed to decide whether the module can be (re)used in a
specific memory environment. Providing a list of the used
global variables in the module documentation would be an
improvement, but passing the global variables to the module
as parameters or arguments is even better. The reason why
this is better, is because of a better separation of the local
and global address space.

C. Parameters and arguments

Having a local data memory address space contributes in
separating concerns, but since the aim of software programs
is generally performing operations on data entities, we
should be able to exchange data between these separated
memory address spaces. The question is: how should this
be done? In principle, there are two possible approaches: or
we exchange data by way of global variables, or we use
a modular interface, which consists of input- and output
parameters or arguments.

@)
O Input
Oo

arguments

Parameters

Output

% |:| Darguments
00

Figure 4. Function machine with parameters and arguments [20]

The terms parameter and argument are sometimes easily
used interchangeably. Nevertheless, there is a difference.
We use the function machine metaphor to discuss how
functionality can depend on parameters (Figure 4) [20]. The
influence of parameters should be seen as a configuration
of the functionality, while the arguments are, following this
metaphor, the material flow. This can also be exemplified
with a proportional-integral-derivative (PID) controller. A
PID controller calculates an ‘error’ value as the difference
between a measured process variable and a desired setpoint.
The controller attempts to minimize the error by adjusting
the process control inputs. The proportional, the integral
and derivative values, denoted P, I, and D, are parameters,
while the measured process value and the setpoint are the
arguments.

From a software technical point of view, it is not important
to treat parameters and arguments different when these
values are exchanged between modules. However, from
an application point of view, they should be aggregated
differently. Like discussed in Section II, the functionality
and data should be encapsulated as action entities and
data entities, respectively. Since it is imaginable that the
configuration of functionality (parameters) changes inde-
pendently of a potential change of, e.g., the data type of
the arguments, these data constructs should be separated
following the separation of concerns principle. Also, the
action entities, which manipulate configuration data entities,
should be separated from action entities, which manipulate
process data entities. Besides, the user access rights might
be different, e.g., adjusting the configuration should be done
by maintenance engineers, while process data might be
manipulated by system operators. For simplicity reasons,
in what follows, we use the term ‘data passing’ for both
cases, in the assumption that the manipulation of arguments
and parameters is separated in different modules. These
separated submodules should collaborate based on stamp
coupling. In its simplest form, the data structures which can
be used for stamp coupling are called structs, records, tuples,
or compound data. Conceptually, such data structures have a
name and several data fields. In the next section, data objects

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

46

will be discussed.

To come back on our discussion about module dependen-
cies, data passing can be based on a shared data memory
address space between the calling and the called module
(i.e., via global variables), or on the module’s interface (i.e.,
via in/out variables). When we put ourselves into the position
of a software engineer, who want to reuse a module, both the
module and the definition of the global variables should be
copied before the module can be reused. More specifically,
to not create unused global variables in the target system (or
to minimize potential name conflicts), the software engineer
should only copy the global variable definitions, which are
used in the module. It is imaginable that this is not in
all situations straightforward, unless we provide a list or
declaration of all used global variables as a documentation
of the module. When the software engineer, into the process
of module evolution, considers to change the module, any
change on one or more of the used global variables, requires
a corresponding change in the global variable definitions of
the system. In case the global variables are also used in
other modules, the need to perform a corresponding change
in each of these modules is an occurrence of a combinatorial
effect. In terms of Normalized Systems, passing data by way
of global variables (common coupling) is a violation of the
separation of concerns principle. Adding a global variable
could be deemed to comply with the version transparency
theorems, but this could be not so convenient if more
engineers are working on the same project, and the chance
on naming conflicts increases compared to the potential
addition of a local variable.

To prevent these disadvantages, passing data by way
of in/out variables, i.e., the module’s interface, is more
convenient and increases maintainability. The module as a
construct is a way to separate the address space of the
module with the address space of the ‘outside’, and the
module’s interface performs the function of a managed
gateway for data passing. The reusability of the module
is improved when strictly using local variables or in/out
variables. However, other dependencies are still a point of
interest, which will be discussed in the next section.

D. Pass by value or by reference?

Data passing by value means that an input variable is
copied to an internal register of the module, and return by
value means that a produced value is stored in an internal
register, and copied to an output variable at the end of
the processed functionality. In contrast, passing and return
by reference means that the in/out variable is stored in a
memory space outside the module, while only a reference
or address to this memory space is used in the module. The
infout variable is never copied because the link with the
memory outside the module remains available during the
processing of the functionality.

It is not too surprising that, following our evaluation, data
passing by value is isolating and separating the inside of the
module better from the outside than if the same set of in/out
variables would be passed by reference. In other words, in
the case of pass by reference, the memory address space,
which is surrounding the module, is a dependency of the
module. To eliminate combinatorial effects, any dependency
needs some attention. However, in this case, the depen-
dency of memory address space is not necessarily causing
combinatorial effects. In case the coupled modules reside
in the same memory address space, passing parameters by
reference does not cause combinatorial effects. In other
words, one must make sure that the coupling is not crossing
the borders of the memory address space of the considered
system, which is ‘hosting’ the coupled modules. In case
the coupling is crossing the borders of the memory address
space, it has to be combined with message coupling, which
implies data passing by value.

In an IEC 61131-3 environment, the length of arrays and
strings are explicitly defined. This is safer in comparison
with systems where this length is flexible at runtime. Note
that a ‘by reference’ in/out variable is a pointer to the start
memory address of a variable. When there is flexibility about
the end address of this memory variable —e.g., an array with
no explicit defined length— the pointer+index might refer
to an address outside the scope of the intended variable.
There is a risk that this situation becomes similar to content
coupling. However, a lot of software systems tackle this
problem by means of exception handling.

When we evaluate the choice between ‘pass by value’
or ‘pass by reference’ based on the Normalized System
theorems, ‘pass by value’ contributes better towards the
separation of concerns principle, by copying in-variables
from the ‘outside’ to internal registers, and copying internal
registers to out-variables after processing the functionality.
In/out variables which are passed by reference always main-
tain a reference in the external address space, which can
be seen as a dependency. Since this type of dependency
can be automatically managed for every individual variable
by the compiler —by way of memory (re)mapping during
compilation— we do not call this dependency a violation of
the separation of concerns principle from the point of view
of the application software engineer. However, the approach
has its limitations.

Kuhl and Fay emphasized that a static reconfiguration,
which requires a complete shutdown of a system, is more
costly than a dynamic reconfiguration, which can be per-
formed without a complete shutdown [21]. Since we do not
have control about how a compiler is doing the memory
(re)mapping of (the reference address of) in/out variables
which are passed by reference, we should assume that a
dynamic configuration is limited by the data memory address
space. More specifically, when a change is introduced in
a module which processes in/out variables by reference, a

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

47

Normalized System (NS)

Lehman
System

D

\

/1 Lehman\f\
\\ System)/

Lehman \
System

Normalized System (NS)

/[Lehman
_ System

Figure 5.

Different levels of modularity [22]

memory remapping of the surrounding system is necessary,
and thus requires a shutdown of this system.

It is important that the application engineer is aware of
this discussed limitation, especially when the choice has
to be made to pass by reference or not. One should be
aware that copying pass-by-value-variables costs processor
time and memory space (which can be even more than
strictly required when applying stamp coupling). Remember
that the Normalized Systems authors advocate a higher
granularity, i.e., smaller modules with the consequence that —
for the same functionality— the amount of modules increases,
including the (amount of) modular interfaces.

The definition of the theorem ‘separation of concerns’ has
a focus on separation of ‘tasks’ (Section II), which might
be interpreted as a separation of functionality. However, a
concern can also be interpreted as a data memory address
space, let it be on a different level of aggregation. More
specifically, separation of functionality is advantageously on
the lowest level of modularity, —decisions are supported
with the concept of change drivers— but on a higher level
the technical environment, e.g., the data memory address
space, might be considered a concern. In other words, we
propose that higher level constructs (aggregating one or
more entities) can use the concept of passing by reference
internally to let entities communicate mutually by way of
stamp coupling, reusing the same interface for every entity.
This might limit the consequences of the higher granularity
by enabling the reuse of modular interfaces. More levels of
this design might be possible in cascade, like suggested in
the migration scenario’s in Figure 5 [22].

E. Static and external variables

In his thinking on the recursive procedure, Dijkstra praised
the concept of local variables, but he also mentioned the
shortcoming of life-time of local variables. Local variables
are ‘created’ upon procedure entry, and cease to exist when
the procedure ends. The fact that local variables relate to
an instantiation and only exist during that specific instan-
tiation makes it impossible for the procedure to transmit

information behind the scenes from one instantiation to
the next ([16], p. 48). In this paper, we do not wish to
advocate recursive procedures, but we do emphasize that the
concept of static local variables (i.e., local variables which
can remember their state of the previous run or incarnation)
is advantageous towards the separation of states principle.
The term static refers to the fact that the memory for
these variables are allocated statically —at compile time— in
contrast to the local variables, whose memory is allocated
and deallocated during runtime. This concept is clearly
exemplified in [18], where local (temporal) variables in a
module of the form FC (Function) cannot remember their
previous state, and local (static) variables in a module of the
form FB (Function Block) can. For storing static variables,
this type of PLCs use dedicated data memory constructs they
call Data Blocks (DBs). In the case they connect such a DB
to an FB they call it an instance DB.

The concept of external variables requires some expla-
nation concerning definition and declaration. The definition
of global variables decides in which memory address space
they can be used, and the declaration of these global
variables in the documentation of a module informs the
potential user of the module that these global variables are
needed to be able to use the module. The definition of a
variable triggers the compiler to allocate memory for that
variable and possibly also initializes its contents to some
value. A declaration however, tells the compiler that the
variable should be defined elsewhere, which the compiler
should check. In the case of a declaration there is no need
for memory allocation, because this is done elsewhere. The
VAR_EXTERNAL keyword in an IEC 61131-3 environment
indicates that the following variable is declared for the
module where this keyword is used, and defined elsewhere
(probably global).

Unfortunately, following a study of de Sousa, the details
of defining global variables and declaring external variables
are discussable to the letter of the IEC 61131-3 standard
[23]. This author even doubt whether it is advantageous
to have the possibility of external variable declarations
within function block declarations, because passing a global
variable via the keyword VAR_IN_OUT has a similar effect.
In earlier work, we also advocated the use of in/out variables
in an IEC 61131-3 project [9], but still, when we evaluate
the concept of external variables based on the Normalized
Systems theory, the explicit declaration of the use of global
variables in a module eliminates potential combinatorial
effects caused by common coupling. In this context, it
is interesting that de Sousa considered VAR_EXTERNAL
variables as belonging to the interface ([23] p. 317).

V. CONSTRUCTS FOR FUNCTIONALITY

In the previous section, we discussed mainly the concerns
of data memory, and also how data memory relates to
the first type of software modules, ‘closed subroutines’,

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

48

and its successor ‘procedures’. The latter can have local
variables, and an interface. The modular interface consists
of a name for the procedure, and the input and output
data variables, which are preferably data structures. We
now discuss some other types of modules, which can be
considered as extensions of the concept of the procedure
and its interface.

A. Object-Oriented programming

The main new construct for implementing modules in
object-oriented languages is the class. A class consists of
both data variables (member variables) and functionality
(methods). Methods can have their own local variables, but
can also access the member variables and other methods of
the class it belongs to. To allocate data memory and enable
the methods to really work, a class needs to be instantiated
or constructed to make an object. Objects of the same class
can co-exist. Data and functionality are tightly coupled in
an instance (object). Methods which are declared as public,
are visible for other objects. Memory variables are normally
considered as private to the class and, therefore, invisible
for other objects. The interface of a method consists of
a name for the method, and input and output variables.
An object-oriented design consists of a network of objects
calling methods of other objects, which can be implemented
as data coupling or stamp coupling.

Since each method has its own interface, and a class can
contain multiple methods, an object as a module can have
multiple interfaces. Classes can be extended with the concept
of inheritance. This concept envisaged to mimic the concept
of ontological refinement. Just like a bird is a special type
of animal, and a sparrow a special type of bird, inheritance
was created to define classes as refinements of other classes.
Such a subclass would inherit the member variables and
methods of a superclass, and extend it. However, Mannaert
and Verelst state that in practice, very few programming
classes are in line with the assumption that object-oriented
inheritance is based on ontological refinements ([2], p. 29).
If we cannot count on ontological refinements, a class can
also be seen as just an amount of methods, grouped together
based on the intuition of the programmer, and sharing the
same set of member variables. When the size of such a
class grows, the situation becomes comparable with a system
based on procedures, having their own local variables, but
sharing the system’s global variables.

In terms of Normalized Systems, we evaluate that the
object-oriented programming paradigm is not guaranteeing
compliance with the separation of concerns principle. First,
in case the data type or data representation can change
independently from the functionality, the tight coupling be-
tween data and functionality makes version transparency not
straightforward. For example, consider that in an application,
a house-number-field changes its data type from numeric to
alpha-numeric, without any functional change. The datatype

change might require the functionality to change, too. As
such, it seems possible that combinatorial effects occur,
which makes version transparency infeasible when the size
of a system grows. Second, when the size of a class grows,
the member variables are similar with (class-wide) global
variables. Consequently, common coupling between methods
is imaginable and combinatorial effects can occur. As a
remedy, this dependency could be made explicit by declaring
the use of every member variable in a method by way of
declaration concept similar to the the declaration of external
variables. Indeed, from the point of view of a method, a
class member variable can be seen as ‘external’.

Public methods can be called via their interface, as if they
make part of the programming environment. However, they
belong to a class. If someone wants to reuse such a method in
another system, at least the ‘hosting’ class should be copied
as well. In addition, other classes which contain coupled
methods should be copied, too (note that a class can contain
methods, from which the code include the construction of
objects, based on other classes). In other words, public
methods, which reside in classes, are available in a flat name
space. Any public method can call any other public method,
which can result in a complex network of calling and called
method, residing in the same or different objects. In an
evolving system, the required version management between
the calling and called (public) methods (with additionally
tightly coupled data), is not straightforward. To be able to
keep track of all couplings, including the versions of these
methods, we propose a similar explicitation like we did for
memory variables. The method interface should include a
declaration or documentation part, which informs the user
of all methods which are called inside the method, including
the object and class version to which they belong. This
declaration might be done in a similar way as the declaration
of external variables, i.e., the announcement that one or
more functional constructs are used or called in the code
of the concerning method. In terms of Normalized Systems,
we evaluate that methods and classes might comply with
the separation of concerns principle, but extra constraints
are necessary. There should be only one ‘core’-method
containing the core functionality of the class, surrounded by
supporting methods like cross-cutting concerns. Also version
transparency should be an extra constraint when using the
object oriented paradigm.

The concept of inheritance does not guarantee version
transparency, because it is based on an anthropomorphical
assumption, which is not realistic in all cases. It would be
better to implement explicit version management, based on
version IDs. This version management should be twofold:
first, the versions of data memory entities (including type
or representation) should be made explicit, and second,
the versions of the functionality, how the versions of data
memory entities relate to the versions of functionality and
vice versa should be made explicit as well.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

49

Version ID

Calling Wrapping
entity module

The concept of version wrapping

Figure 6.

We do discuss some potential drawbacks of the object-
oriented paradigm, but we emphasize that it is possible
to build evolvable systems, based on the object-oriented
paradigm, complying the Normalized Systems theorems.
However, the object oriented paradigm itself does not guar-
antee the property of evolvability. Additional constraints
are necessary to eliminate combinatorial effects. One of
the key remarks is that an object should not contain more
than one core functionality, and functionality should be
separated from data representation. One of the possibilities
is the introduction of data objects and functional objects.
In addition, the use of memory variables and methods in a
method should be declared on a similar way like the concept
of external variables. We also think that polymorphism,
combined with explicit version management might be an
alternative for inheritance. This alternative could exhibit
version transparency, but more elaboration and future work
is needed to figure this out.

B. Modules in IEC 61131-3

In an IEC 61131-3 environment, we have Functions (FCs),
which have in addition to the input and output variables only
temporary local variables. The Function Block (FB) con-
struct can have static local variables, too. More general, these
constructs are called Program Organization Units (POU),
and are stored in a flat program memory space. On the same
level global variables and derived data types are defined
(in IEC 61131-3 terms, as a configuration definition). Note
that, besides the functionality, FBs need data memory before
they can actually run. Several FB instances can co-exist
with separated data memory. This concept is very similar
to the object-oriented paradigm. Indeed, Thramboulidis and
Frey state that the Function Block concept has introduced
in the industrial automation domain basic concepts of the
object oriented paradigm [24]. There is a restriction in the
behavior definition of the FB: only one method can be
defined. There are no method signatures as in common
object oriented languages; actually there is no signature even
for this one method defined by the FB body. This method
is executed when the FB instance is called [24][4]. Note
that the object oriented extension of the FB construct that is
under discussion in IEC is not considered in this paper.

Polymorphism is not supported in version two of the IEC
61131-3 standard, nor is inheritance [4]. In a commercial

IEC 61131-3 environment, the only way to implement
version management is doing this explicitly. In earlier work,
we proposed the concepts Transparent Coding and Wrapping
Functionality [9]. Transparent coding is defined as the writ-
ing of internal code in a module which is not affecting the
functionality of previous versions. When Transparent Coding
is not possible (e.g., because of conflicting functionality of
the versions, or when the combination of the functionality
of different versions requires too complex code), Version
Wrapping can be applied. Following this principle, different
versions of a module co-exist in parallel, and a wrapping
module selects the desired version based on the version ID
(see Figure 6).

As a reflection with regard to the general object oriented
paradigm, it is straightforward to implement only one core
functionality in an (IEC 61131-3) FB, because following the
analysis of Thramboulidis and Frey only one method is de-
fined in a FB [24]. However, software application engineers
tend to extend the possibilities of FBs by way of control
coupling. In other words, it is possible to select different
functionality based on parameters. In terms of Normalized
Systems reasoning, control coupling should be restricted to
version selection only. In this way, several versions can co-
exist, but still not more than one core functionality resides
in one module.

We also reflect on the issue of separation of data and
functionality. If we would do this rigorously and strict, we
would abandon the use of FBs and stick to the use of FCs
only, because FBs can have static variables, and FCs cannot.
This also implies that FBs can call other FBs, but FCs cannot
call FBs. Indeed, FCs cannot instantiate FBs because they
can not allocate the static memory FBs require in syntactical
sense. However, we do advocate the use of FBs, because we
think it is advantageous to separate technical data, which can
be tightly coupled with the functionality, and content data,
which has a meaning with regard to the algorithm which is
processed in the functionality. For example, to detect the so-
called rising or falling edges, e.g., the arriving of a bottle on
a filling location, we need to remember the previous state of
a sensor. The memory needed to detect these rising or falling
edges is a technical matter, of which we might desire to be
hidden. In contrast, the information that the event of arrival
occurred, is something important for the process algorithm,
e.g., to trigger the filling process of the arrived bottle.
Another example is the case of the control of a valve, which
includes an alarm state. The valve is operational when the
feedback sensors (i.e., open or closed sensors) correspond to
the output control (i.e., open or closed commands). However,
the valve has a mechanical inertia, i.e., it needs some time
to open or close, so having a discrepancy between feedback
and control is temporary normal. Typically, a timer construct
is used to temporary allow a discrepancy, while not entering
the alarm state. The data needed for the technical instance
of the timer construct is data we call a technical data entity,

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

50

which can be hidden and tightly coupled to the module
which is performing the alarming algorithm. The result of
the decision whether the valve is in the alarm state or not, is
related to the control algorithm of the valve, and should be
stored in a separated data entity, or more specifically, passed
via the modular interface.

C. Libraries and packages

Libraries are collections of compiled modules, which can
be shared among various application programs. In an IEC
61131-3 environment, they can also include the definition
of the so-called derived data types, i.e., user defined data
types, such as structs. Some libraries are called ‘standard’
libraries, because the content is specified in a standard (this
kind of library functionality is also specified in IEC 61131-
3). The functionality offered in a standard library is assumed
to be widely known, and application engineers should be
able to treat them as if they make part of the programming
environment. However, in an IEC 61131-3 environment, the
details of standard constructs might slightly differ from one
brand to another, because this standard allows the so-called
implementation-dependent parameters ([4], annex D).

At first sight, the concept of adding ‘standard’ or other
constructs with a reuse potential by way of libraries sounds
interesting. Indeed, when the set of shared functionality is
small enough, this concept looks great. However, like Dijk-
stra already recognized back in 1972, one of the important
weaknesses in software programs is an underestimation of
the specific difficulties of size ([16], p. 2). Remember that
the Normalized Systems theory emphasize the importance
of separation of concerns. When we interpret a concern
as a module or user defined data type, we can count on
an unique identification of these constructs into the name-
space borders of an individual library or package. However,
when these libraries are selected in the library management
tool of a programming environment, these constructs end up
in a common flat name space. In other words, name space
conflicts can occur when constructs of different libraries end
up in the same flat module name space.

This might result in a so-called dependency-hell. This is
a colloquial term for the frustration of some software users
who have installed software packages, which depend on
specific versions of other software packages. It involves for
example package A needing package B & C, and package
B needing package F, while package C is incompatible with
package F. Again, when the amount of selected libraries
is limited, one could avoid a dependency-hell. However,
when constructs are shared between different developers,
who perform maintenance activities or make extension of
the same application over time, they might use constructs
of the same library, but from a different library version. If
it is desired that one construct of a library is used from a
early version, and another construct of the same library is
used from a recent version, it looks impossible to prevent

dependency problems in a flat name space. Also, in [18] the
modules have a number and a symbol. This number might
conflict with existing modules, or with modules from another
library.

To come back on the separation of concerns principle,
let us interpret a concern as a library. When different
libraries are selected in a programming environment, and
all constructs of these libraries end up in the same construct
name space, we evaluate this as a violation of the separation
of concerns principle. This violation is even worse when
two versions of the same library would be selected. If
the name of the library is not including the version, it
might be even impossible to select both. Having functional
constructs or data type definitions in a flat name space is
similar to common coupling. The use of a library construct
in a module should be documented in order to make an
evaluation whether the construct can be used in the con-
cerning module or not. The addition of a module, which
is using a conflicting name, indicates a bad separation of
the constructs available in the used libraries. We derive
that using modules from a library should be restricted to
standardized functionality and constructs. The designers of
the standard should prevent name conflicts in a similar way
how keywords are reserved in a programming language. One
should avoid to configure library constructs, dedicated for
reuse in specific applications, in a flat name space.

As a remedy, constructs belonging to a specific library
could be selected on the level of the module, not on the level
of the programming environment. This would mean a kind
of localization of library constructs. The declaration part of
a module could include a library browser, to select a desired
functionality or data type from that library. In addition, the
version of constructs and libraries should always be included
in the declaration part of the module. In this declaration,
the ‘hosting’ library of a construct, accompanied with its
version, should be included as a kind of path. As such,
it would be even possible to use co-existing versions of a
library construct in the same module, because the concerning
constructs are well separated.

D. Distributed calling via messages

In an IEC 61131-3 environment or in truly object oriented
languages, a module can only call other ‘local’ modules.
Local means that they need to be available within the same
program address space. Libraries are deployed locally in
the sense that they are compiled and linked into the same
program and memory address space. The concept of inter-
process communication allows remote calls to a library or
system, which is ‘hosted’ in another program and memory
address space. Following a paper of Birrel and Nelson,
remote procedure calls (RPC) appear to be a useful paradigm
for providing communication across a network between pro-
grams written in a high-level language [26]. The idea of RPC
is quite simple. When a remote procedure is invoked, the

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

51

Client
process

Invoke remote
procedure

Suspended

Arrival results

Server
process Execution
procedure
Figure 7. Principle of RPC between client and server [25]

calling environment is suspended, the parameters are passed
across the network to the environment where the procedure
is to be executed, and the desired procedure is executed
there (Figure 7). The idea of RPC was older, but Birrel and
Nelson were one of the first who implemented it [26]. This
concept is further elaborated with the standards CORBA
(Common Object Request Broker Architecture [27]) and
DCOM (Distributed Component Object Model [28]). Also,
the OPC Foundation based its first interoperability standard
for industrial automation on DCOM. This first family of
specifications is referred to as ‘the classic OPC specifica-
tions’ [29].

The ignorance on the part of the client about the fact
that the server is located in a remote address space, was
considered advantageous [25]. The client made use of a
(local) library, which is dedicated for making a connection
with a remote library, which was performing some tasks
on the server side. Both libraries collaborate on a rather
complicated mechanism to convert the client call to a
message, and unpacking this message at the server side and
convert it to a (local) call at the server side. All the details
of the message passing are hidden away in the two libraries.
Because of the message passing, this is message coupling,
but for the user it looks like data or stamp coupling. Since
the user cannot know whether there is a message coupling
behind the data or stamp coupling, using or not using the
concerned module cannot be a well considered choice or
decision.

We evaluate that on top of the problems explained in the
previous subsection about libraries and packages (subsection
V-C) this concept, shown in Figure 7, is a violation of the
separation of states theorem. Remember that a local module
call is based on and thus dependent on the local address
space. Hiding this dependency for the user also hinders
the potential control over this dependency or assumption.
For a local call, a fast reaction of the called module is
assumed. For a remote call, the extra transfer time is not
always negligible. Consequently, the suspension of the client
during the call might be unfeasibly long. Also, when a
communication failure occurs, the reply will not come at all,

Wait for
acceptance

Client
process

Arrival results

Invoke remote
procedure
Acknowledge
Server M /)
process Execution
procedure
Figure 8. Deferred synchronous RPC [25]

and the client will wait forever. In addition, the ‘assumption’
of the client that the call is local, does not discourages the
user to pass variables by reference. While passing variables
by reference assumes a local address space, this concept is
not ideal in a remote call. When crossing the borders of
a memory address space, each side of the coupling has to
keep its own state. In other words, a reference to an item in
an address space will become meaningless if the reference
address is moved to another address space (and similar
to content coupling). This would be an occurrence of a
violation of the separation of concerns principle. In addition,
because the value behind the reference is not copied in
the respectively address spaces, we have a violation of the
separation of states principle.

E. Synchronous versus asynchronous message passing

The concept of Figure 7, i.e., the client waits until the
server replies before carrying on with its task, is called
synchronous RPC. The action of communication on the
client side can be summarized in one single line of pro-
gramming code, there is a synchronization point between
sender and receiver on message transfer. To minimize the
‘wait for result’ time, the concept of asynchronous RPC is
introduced, where the client is not waiting for the reply, but
only on an ‘acceptance request’ message. In combination
with a similar call coming from the server (a so-called
‘callback’), the client can receive the return results from the
remote procedure in a comparable time frame as with syn-
chronous RPC, but then without being blocked all the time
(Figure 8). In comparison with synchronous communication,
asynchronous communicates requires buffering to enable the
program proceeding at the client side between request and
reply. Before indicating this as an disadvantage, one should
be aware that this buffering is exactly what the separation
of states principle calls for. However, this principle is still
not totally met, because the program at the client side can
still hang when the ‘acceptance request’ message does not
come, e.g., because of a network failure.

In the classic OPC specifications, both synchronous
and asynchronous reading/writing functionality is available.
However, experts indicated as a heuristic rule that asyn-

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

52

chronous communication is preferable. Indeed, the authors
of the new family of interoperability standards for industrial
automation, i.e., the OPC Unified Architecture (OPC UA),
have abandoned the synchronous communication concept
[30]. Instead, the OPC UA based communication is asyn-
chronous by definition [31]. In terms of Normalized Sys-
tems, asynchronous communication reaches further towards
complying the separation of states principle. In DCOM,
there was an attempt to handle the risk that the client hangs
when the ‘acceptance request’ message does not come by
introducing a time-out mechanism. However, experts of the
OPC Foundation reflected, based on worldwide surveys, that
practitioners still call this an issue (note that classic OPC is
based on DCOM). Lange et al. state that the time-out of
DCOM in case of communication failures is too long, and
not configurable [32].

We evaluate further that RPC, and DCOM, do not exhibit
version transparency. Any change to a server requires all
(remote) clients to have corresponding updates. When the
size of a (distributed) system grows, this becomes infeasible
because of the occurring combinatorial effects.

F. Service based communication

Services are modular constructs for aggregating software.
Internally, they consist of modules, and they have one or
more modular interfaces, that is accessible to the outside
world. The basic idea is that some client application can
call the services as provided by a server application. This
principle is very similar to what was aimed at with remote
procedure calls, except that the message coupling part is not
hidden for the user. Services were first proposed in terms of
web services, as they adhere to a collection of standards
that will allow them to be discovered and accessed over
the Internet. However, the term service has become more
broadly interpreted later on. A service refers to technology-
independent modules, implementable in different ways, in-
cluding web services.

Web services are described by means of the Web Service
Definition Language (WSDL) which is a formal language,
comparable with the interface definition languages used
to support RPC-based communication. A core element of
a web service is the specification of how communication
takes place. To this end, the Simple Object Access Protocol
(SOAP) is used, which is essentially a framework in which
much of the communication between two processes can be
standardized [25]. Strange as it may seem, a SOAP envelope
does not contain the address of the recipient. Instead, SOAP
specifies bindings to underlying transfer protocols. In prac-
tice, most SOAP messages are sent over HyperText Transfer
Protocol (HTTP). All communication between a client and
server takes place through messages. HTTP recognizes only
request and response messages. For our evaluation, a key
field in the request line of the request message and sta-
tus line of the response message is the version field. In

other words, HTTP exhibits version transparency. Client and
server can negotiate with the ‘upgrade’ message header on
which version they will proceed. SOAP is designed with
the assumption that client and server know very little of
each other. Therefore, SOAP messages are largely based
on the Extensible Markup Language (XML), which is on
top of a markup language also a meta-markup language. In
other words, in an XML description the syntax as used for
a message is part of that message. This makes XML more
flexible than the fixed markup language HyperText Markup
Language (HTML), which is the most widely-used markup
language in the Web.

Web services can be considered as a successor to RPC,
like OPC UA (based on services) is a platform- and tech-
nology independent ‘alternative’ for classic OPC (based on
DCOM). We doubt to use the word ‘alternative’ here, be-
cause classic OPC and OPC UA are complementary. Indeed,
services can internally consist of classes or components,
including DCOM based constructs. Web services separate
software components from each other. They enable self-
describing, modular applications to be published, located,
and invoked across the web. Being a standardized interface,
OPC UA enables interoperability between automation sys-
tems of different vendors. The industrial working groups
of the OPC Foundation introduced a mechanism to bring
interoperability on an abstract level, without leaving the
practical implementability. To achieve this ambitious goal,
they emphasized the importance of a communication con-
text, and made a connection management concept between
clients and servers mandatory. Probably OPC UA is also
implementable for interoperability in other sectors than
industrial automation [31].

The concept of asynchronous web-based messaging al-
lows clients to proceed functioning, even if the server does
not respond. From a technical point of view, a client can just
carry on based on its own state. From a functional point of
view, OPC UA incorporated mechanisms of notification and
keep-alive messages to enable handling communication or
remote system failures. This complies with the separation
of states principle. The version tag in the HTTP messages
enables compliance with the version transparency theorems.

VI. SUMMARY OF EVALUATIONS AND GUIDELINES

The core recommendation of this paper is making hidden
dependencies explicit in the module’s interface. In other
words, safe black box (re)use requires that a developer is
able to anticipate which conditions are necessary for (re)use.
A self-explaining interface is a good start, but typically
dependencies like packages, libraries, global variables,
implicitly used communication technologies, references to
a local address space, are not included in the interface. We
conclude that it should, and phrase the following rule.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

53

In order to design safe black box (re)useable software
components, every (re)use of a library, package, global
variable or implicitly use of a communication technology in
a module, should include a declaration, reference, path or
link to the identification of the dependency, accompanied
with the used version.

We make the reflection that there is a similarity between
global variables, which are not declared with the ‘external’
keyword and other dependencies, which are not declared
in the module’s interface. It can be interpreted that these
dependencies can cause common coupling. Hiding these
dependencies makes it impossible to evaluate them and let
the user decide whether these dependencies can or cannot
be made available in the environment in which the user is
considering them to (re)use. Note that declarations to make
these dependencies visible should include the versions of
the external constructs, to prevent combinatorial effects in
case of updates, and to enable the co-existence of different
versions of the same core constructs in a library or external
technology.

In addition to our rather general rule, we define some
explicit guidelines:

1) Explicitation of global variables: Global variables
should be treated as local variables of the main program,
and passed to called modules by reference or via the infout
variables in an IEC 61131-3 environment. These variables
could be passed further in cascade to submodules called
by modules, where they are locally always treated as infout
variables.

Application example: Consider an IEC 61131-3 Function
Block which is controlling a motor. This Function Block
(FB) is calling other FBs on submodular lever, where the
core functionality is a state machine of the motor. In addi-
tion, there are supporting FBs on submodular level, which
provide functionality to manage manual/automatic mode,
alarming, interlocking, hardware connection, and simulation.
The FB on modular level (dispatching task) receives a
data struct, which contains all the states, commands, and
hardware IOs of both core and supporting functionality. This
data struct is a global variable. The dispatching FB calls
FBs on submodular level and passes the data struct to each
of the supporting FBs as an in/out variable. This design
has a modular structure with a high granularity. Since the
functionality of the FBs on submodular level is limited and
generic, the reuse potential is high.

2) Pass by reference should strictly adhere to one single
address space: In/out variables, passed by reference, loose
their meaning in another address space. Therefore, the
pass by reference concept should be limited to the same
environment or address space where the referred variable
is defined. In case it is desired to cross the borders of the
address space, a copy of the concerned variable or a pass
by value is required.

Application example: Consider the same data structure
which contains all the data about a motor. This data structure
is defined as a global construct, and is passed to the
dispatching FB by reference. This reference is passed further
on submodular level to the supporting FBs. Now, outside
the PLC, a low level HMI (Human Machine Interface)
application is used to control the motor on submodular
level on a Windows PC. This Windows PC cannot use the
reference, which is only meaningful in the PLC. Instead, the
entire data structure is copied via an OPC interface (message
coupling) to the HMI application.

3) Explicitation of external modules: Couplings to exter-
nal modules can be (re)used, library modules included, but
they should be declared in a similar way like the ‘external’
keyword for global variables, including the path of the
communication context. In other words, library management
should be done on the level of the module, not on the level
of the programming environment. In addition, the versions
of the called modules should be declared.

Application example: Our data structure is defined as a
global IEC 61131-3 configuration. In the main program, this
is not visible, unless this data structure is declared as an
external defined data structure in the main program (POU).
As such, the data structure can be treated as local for the
main program.

4) Abstraction of external technologies: It is allowed
to hide information about an external technology, but an
abstraction of the core functionality should be declared,
including the fact that this functionality is abstract, and re-
lying on a remote technology. The entity which is managing
the connection with this abstract remote technology should
exhibit state keeping, and notify autonomously unexpected
behavior of the remote technology.

Application example: Suppose the motor is controller with
a frequency drive. We do not have control over potential
firmware updates of this frequency drive. It is also possible
that at some moment in time the frequency drive will be
replaced by another type or brand. Therefore, we include in
data struct fields which are representing the core function-
ality like setpoint, ramp, speed, current, etc. A connection
entity is responsible to convert the representation or data
type of these fields. For every version another connection
entity has to be written. A connection element selects the
appropriate version based on a version ID.

VII. CONCLUSION

The reasons why properties like evolvability, (re)usability,
and safe black box design are difficult to achieve, have most
likely something to do with a lack of making the existing
knowledge and experience-based guidelines on sound modu-
lar design explicit. Undoubtedly, the theorems of Normalized
Systems contribute on this issue by formulating unambigu-
ous design rules at the elementary level of software primi-
tives. On a higher implementation level, it is expected that

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

54

not all implementation questions like those related to, e.g., a
dependency-hell, are easy to answer. Experienced engineers
will find that these are violations of the theorems ‘separation
of concerns’ and ‘separation of states’. However, for less
experienced engineers, more practical oriented examples or
manifestations of violations and how to avoid them, seem
useful as well. We aim that — on top of these fundamental
principles — some derived rules can make these violations
easier to catch, also for less experienced engineers.

In this paper, we introduced the derived rule that any
dependency should be visible in the module’s interface,
accompanied by its state and version. The way how this
information is included in the interface, should be done in
a version transparent way, to prevent violations of the 2nd
and 3rd principle of Normalized Systems.

We made a study of a set of different kind of couplings
on an abstract way, and evaluated these types of couplings
against the Normalized Systems theorems. In addition, im-
plications arise when modules are placed in an address
space, based on a paradigm or construct in a concrete
programming environment. Special attention is needed when
a module, placed in the local address space, is coupled
with another module, which is placed in a remote address
space. After evaluating these implications, we derived four
guidelines towards better controlling dependencies.

We designed the derived rules with the potential to
become generic, independent of the application domain. As
a first start, we exemplified the rules and analyses in a PLC
(IEC 61131-3 based) environment. In future work, our aim is
to investigate to which extent these rules can be implemented
in other technologies and programming environments as
well.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] D. van der Linden, H. Mannaert, and P. De Bruyn, ‘“Towards
the explicitation of hidden dependencies in the module in-
terface,” in ICONS 2012, 7" International Conference on
Systems, 2012.

[2] H. Mannaert and J. Verelst, Normalized Systems Re-creating
Information Technology Based on Laws for Software Evolv-
ability. Koppa, 2009.

[3] M. Mcllroy, “Mass produced software components,” in NATO
Conference on Software Engineering, Scientific Affairs Divi-
sion, 1968.

[4] IEC, IEC 61131-3, Programmable controllers - part 3: Pro-
gramming languages. International Electrotechnical Com-
mission, 2003.

(3]

[6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

55

H. Mannaert, J. Verelst, and K. Ven, “Exploring the concept
of systems theoretic stability as a starting point for a unified
theory on software engineering,” in ICSEA 2008, 3" Interna-
tional Conference on Software Engineering Advances, 2008.

M. Lehman, “Programs, life cycles, and laws of software
evolution,” Proceedings of the IEEE, vol. 68, pp. 1060-1076,
1980.

H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. 76, no. 12, pp. 1210 — 1222, 2011.

——, “Towards evolvable software architectures based on
systems theoretic stability,” Software: Practice and Experi-
ence, vol. 42, no. 1, pp. 89-116, 2012.

D. van der Linden, H. Mannaert, W. Kastner, and H. Pere-
mans, “Towards normalized connection elements in industrial
automation,” International Journal On Advances in Internet
Technology, vol. 4, no. 3&4, pp. 133-146, 2011.

G. Myers, Reliable Software through Composite Design. Van
Nostrand Reinhold Company, 1975.

Wikipedia, “Coupling (computer programming),”
Wikipedia, last accessed June 2013. [Online]. Available:
http://en.wikipedia.org/wiki/Coupling_(computer_programming)

D. Van Nuffel, H. Mannaert, C. De Backer, and J. Verelst,
“Towards a deterministic business process modelling method
based on normalized theory,” International journal on ad-
vances in software, vol. 3, no. 1 and 2, pp. 54 — 69, 2010.

E. Dijkstra, “Go to statement considered harmful,” Commu-
nications of the ACM 11(3), pp. 147 — 148, 1968.

S.-M. Huang, C.-F. Tsai, and P.-C. Huang, “Component-
based software version management based on a component-
interface dependency matrix,” Journal of Systems and Soft-
ware, vol. 82, no. 3, pp. 382 — 399, 2009.

T. D. Vu, “Goto elimination in program algebra,” Science of
Computer Programming, vol. 73, no. 2 - 3, pp. 95 — 128,
2008.

E. W. Dijkstra, “Structured programming,” O. J. Dahl, E. W.
Dijkstra, and C. A. R. Hoare, Eds. London, UK, UK:
Academic Press Ltd., 1972, ch. Chapter I: Notes on structured
programming, pp. 1-82.

D. J. W. Maurice V. Wilkes and S. Gill, The preparation
of programs for an electronic digital computer. Addison-
Wesley Press, 1951.

Programming with STEP7, Siemens, 05 2010.

“ALGOL 60,” last accessed June 2013. [Online]. Available:
http://en.wikipedia.org/wiki/ALGOL_60

D. Nykamp, “Function machine parameters,”
last accessed June 2013. [Online]. Available:
http://mathinsight.org/function_machine_parameters

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

(21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

I. Kuhl and A. Fay, “A middleware for software evolution
of automation software,” IEEE Conference on Emerging
Technologies and Factory Automation, 2011.

D. van der Linden, G. Neugschwandtner, and H. Mannaert,
“Industrial automation software: Using the web as a design
guide,” in ICIW 2012, 7*" International Conference on Inter-
net and Web Applications and Services.

M. de Sousa, “Proposed corrections to the IEC 61131-3
standard,” Computer Standards & Interfaces, pp. 312-320,
2010.

K. Thramboulidis and G. Frey, “An MDD process for IEC
61131-based industrial automation systems,” in Emerging
Technologies Factory Automation (ETFA), 2011 IEEE 16th
Conference on, sept. 2011, pp. 1 -8.

A. Tanenbaum and M. Van Steen, Distributed Systems: prin-
ciples and paradigms. Pearson Prentice Hall, 2007.

A. D. Birrell and B. J. Nelson, “Implementing remote proce-
dure calls,” ACM Transactions on Computer Systems, vol. 2,
no. 1, pp. 39 — 59, 1984.

“Corba,” last accessed June 2013. [Online]. Available:
http://www.omg.org/spec/CORBA/

G. Eddon and H. Eddon, Inside Distributed COM. Microsoft
Press, 1998.

OPC DA Specification, OPC Foundation Std. Version 2.05a,
2002.

“OPC Unified Architecture Specifications,” last accessed June
2013. [Online]. Available: http://www.opcfoundation.org

W. Mahnke, S. H. Leitner, and M. Damm, OPC Unified
Architecture. Springer, 2009.

J. Lange, F. Iwanitz, and T. Burke, OPC From Data Access
to Unified Architecture. VDE-Verlag, 2010.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

56

Magnitude of eHealth Technology Risks Largely Unknown
An Exploratory Study into the Risks of Information and Communication Technologies in Healthcare

H.C. Ossebaard" ?, J.E.W.C. van Gemert-Pijnen?, A.C.P. de Bruijn' and R.E. Geertsma'
hans.ossebaard@rivm.nl , j.vangemert-pijnen@utwente.nl , adrie.bruijn@rivm.nl , robert.geertsma@rivm.nl

LRIVM - National Institute for Public Health and the Environment, Bilthoven, The Netherlands
2 University of Twente, Enschede, The Netherlands

Abstract — Many believe that eHealth technologies will
contribute to the solution of global health issues and to the
necessary innovation of healthcare systems. While this may be
true, it is important for public administrations, care
professionals, researchers, and the general public to be aware
that new technologies are likely to present new or uncertain
risks along with their great new opportunities. The present
paper aims to assess the risks of eHealth technologies for both
patient safety and quality of care. A quick-scan of scientific
literature was performed as well as an analysis of web-based
sources and databases. Outcomes were validated in a focus
group setting against expert views of stakeholders from health
care, patients’ organizations, industry, academic research, and
government. Risks at human, technological or organizational
levels appear to be no subject of systematic research. However,
they come into view as ‘secondary’ findings in the margin of
these studies. Extensive anecdotal evidence of risks is reported
at all three levels in web-based sources as well. Recent
authoritative reports substantiate these outcomes. Members of
the focus group generally recognized the findings and provided
valuable, additional information. A realistic approach to the
implementation of eHealth interventions is recommended,
taking into account potential benefits as well as risks, and
using existing risk management tools throughout the life cycle
of the intervention.

Keywords - risks; eHealth; health technology; patient safety;
quality of care

. INTRODUCTION

Trust in technology is of growing importance in view of
the challenges for global healthcare [1]. Most countries face
a serious increase in healthcare expenditures that
corresponds to ageing, a growth in multi-morbid chronic
ilinesses, the enduring menace of infectious diseases,
consumerism and other dynamics [2, 3]. eHealth
technologies have frequently been hailed as a panacea for
these challenges. We view eHealth as the use of information
and communication technologies (ICTs) to support or
improve health and healthcare. These technologies have
proven their potential to contribute to the increase of (cost-)

effectiveness and efficiency of care, the improvement of the
quality of care, the empowerment of consumers, system
transparency, and eventually to the reduction of health care
costs [4-7]. However, expectations have recently been
mitigated due to the publication of studies that emphasize
the complex nature of innovation in healthcare and the lack
of rigid, systematic evidence for the impact of eHealth
technologies on healthcare outcomes so far [8, 9].
Moreover, the application of eHealth technologies in
healthcare may introduce risks for patient safety and quality
of care [10-12]. Nonetheless, trust in information and
communication technologies seems to remain unaffected by
these moderating results. This is remarkable against a
backdrop of widespread declining trust in the legal system,
in politics, finance, science and other public domains [13,
14]. Public administrations, care professionals, researchers
and the general public are generally trustful and overly
optimistic about the *a-political’ power of digital technology
in virtually all public and personal domains [15, 16].
Common principles of evidence based medicine are
apparently ignored regularly in this field, leading to fast
introduction of promising eHealth interventions without
carefully evaluating benefits versus risks.

Recently, we have reported on some drawbacks of
eHealth technologies at another level and from a different
perspective [17]. This study was based on a comprehensive
analysis of eventually sixteen frameworks regarding the
development and implementation of eHealth interventions
over the last decade (2000-2010). The reported
shortcomings are closely related to risks. Eventually, they
imply equivalent and immediate hazards for the patient’s
safety or the quality of care. Therefore, we think it relevant
for the present study to provide a short summary of these
findings. Table I shows a summary of these risks phrased in
conceptual terms.

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

57

TABLE |. RISKS DERIVED FROM PREVIOUS RESEARCH”

Conceptual risk

Description

eHealth technology
development as an
expert-driven process

If project management fails to arrange
stakeholder participation in the full
development process risks for rejection by
(end-)users increase.

eHealth technology
development ignores
evaluation

If the development is viewed as a linear,
fixed and static process instead of a
iterative, longitudinal research activity
risks of suboptimal outcomes increase.

Implementation of
eHealth technology as
a post-design activity

If conditions for implementation are not
properly accounted for right from the start in
all subsequent stages stakeholders may drop
out.

eHt development does
not affect organization
of healthcare

If it is ignored that eHealth technologies
intervene with traditional care characteristics
and infrastructure unexpected effects cause
stakeholders to abandon.

eH technologies as
instrumental,
determinist applications

If eH interventions ignore users’ needs for
affective, persuasive communication and
information technologies for motivation, self-
management and support, they drop-out..

eH research fails to
integrate mixed-
methods and data
triangulation

If conventional research methods keep falling
short of assessing the added value for
healthcare in terms of process (usage,
adherence) and outcome variables

(behavioral, clinical outcomes; costs) societal
and scientific refutation follows.

" Van Gemert-Pijnen et al., 2011 [22]

Precisely the opposites of factors that improve the uptake
and impact of eHealth technologies constitute risk for both
patient safety and quality of care; they increase the
probability of occurrence of harm and/or the severity of that
harm. These are exactly the two components used in the
internationally accepted definition for risk that we are
applying in our investigation, i.e., “risk is a combination of
the probability of occurrence of harm and the severity of that
harm” [18]. This definition is also used in the international
standard for risk management of medical devices [19], which
is the regulatory sector in which part of the eHealth
technologies can be classified, as well as in other standards
more specifically relevant to ICT applications in health care.

In the present study, we investigate the nature and
occurrence of any risk to patients” safety and quality of care
that may be associated with eHealth applications. These
interventions include web-based and mobile applications for
caregivers, patients and their relatives within a treatment
relationship as well as technology regarding quality in
healthcare. In view of the diversity and dynamics of the
field, we have chosen to use multiple approaches to gather
our data and to verify our findings. As a first approach, we

searched for risks as established in randomized controlled
trials and reported in scientific literature (see Section II).
This provides an inventory of documented risks that impact
on quality of care and the patients’ well-being. Additionally
we have searched a selection of web-based sources related
to (inter)national health organizations/government agencies,
incident databases, expert centers, and opinion papers in the
medical field (Section I11). While we were analyzing our
search results, three authoritative reports with scopes closely
related to our own were published, and we decided to
compare their findings with our own as a method of
independent control. The outcomes were eventually
validated in a focus group setting against expert views of
stakeholders from health care, patients’ organizations,
industry, academic research and government (Section 1V).
In Section V we present the outcomes of these approaches,
to draw conclusions in the next section and discuss the in
the last.
1. LITERATURE SCAN

The literature scan was designed to exploratory assess
only those risks that are reliably documented in systematic
studies, i.e., randomized controlled trials (RCTs). The scan
was restricted to scientific publications regarding risks that
affect the quality of healthcare and patient safety while
public health was excluded. Issues concerning security of
data-transmission, storage, encryption, standardization,
data-management and privacy were excluded as well to
avoid overlap and redundancy in view of other studies [20].
The search was limited to RCTs. This type of studies
represents the highest power of evidence in the absence of
meta-analyses or systematic reviews and allows for
comparisons with alternative approaches.

The bibliographic database SciVerse Scopus was
searched because of its broad content coverage including all
Medline titles and over 16.000 peer-reviewed academic
journals. The used search query combined the topic
‘eHealth’ with search terms regarding risk, healthcare-
setting, and study design. The complete query can be found
in Appendix I. One author reviewed the titles and abstracts
of the identified publications to decide whether they should
be examined in full detail. An overview of the inclusion
criteria is presented in Table Il. The study selection process
is included in Appendix II.

TABLE Il. INCLUSION CRITERIA FOR THE STUDY SELECTION PROCESS

Inclusion criteria
1. eHealth application
2a. in Title: outcome-measure and/or evaluation and/or risk
2b. in Abstract: risk and/or limitation found
3. Quality of care and/or patients” safety/well being
4. Design: Randomized controlled trial
5. Publication year: between 2000 — 2011
6. Language: German or English

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

58

Identified risks were structured according to a multi-level
approach covering risks dealing with either human factors,
technological factors or organizational factors, referring to
the framework for health information systems evaluation as
proposed by Yusof et al. [21].

I1. WEB-BASED SOURCES

To broaden our view we have included ‘grey literature’.
The “Prague Definition’* of grey literature states that "Grey
literature stands for manifold document types produced on
all levels of government, academics, business, and industry
in print and electronic formats that are protected by
intellectual property rights, of sufficient quality to be
collected and preserved by library holdings or institutional
repositories, but not controlled by commercial publishers,
i.e., where publishing is not the primary activity of the
producing body." This material cannot be found and
disclosed easily through the usual channels. It may include
government research and non-profit reports, dissertations
and expert assessments, conference proceedings and
technical reports, institutional repositories, investigations,
and other primary resource materials such as records,
archives, observations, data, filed notes and ‘new’ sources
such as pre-prints, web logs, online preliminary research
results, open data, unpublished theses, project web sites,
standards and specifications collections, online data archives
or other types of documentation.

Given the plethora of different types of organizations
publishing information on eHealth, we decided to start with
explorative searches in sources of different status without
using a systematic selection procedure. Firstly, we have
visited a series of websites of international and national
health organizations/government agencies to see if they
mention risks associated with eHealth technology in any
way. Secondly, we have searched databases, respectively of
the U.S. Food and Drug Administration and the ECRI
Institute. Thirdly, we have accessed websites of three expert
centers on medical technology: the ECRI Institute, Prismant
(Dutch) and ZonMw (id.). Finally, a major Dutch
professional journal on health care matters was queried on
risk factors concerning eHealth and telemedicine (see
Appendix V). On each website we searched for information
on the risks involved with eHealth and telemedicine. The
search terms used were ehealth, telemedicine and tele*.
Results involving the monitoring, programming or diagnosis
of pacemakers and other implantable cardiologic devices
were excluded because they are considered to represent
ancillary functions to those devices, rather than eHealth
applications in their own respect.

12" International Conference on Grey Literature (Prague, Dec. 2010);
http://www.opengrey.eu/item/display/10068/700015
[accessed Jan 15, 2013]

V. Focus GRoup

To test the findings from literature against the opinions
of stakeholders we organized an invited expert meeting’.
We selected experts from industry, health care, government,
patient organizations, insurers and universities from our
networks and requested them to participate. In advance, they
received a working draft version of the research report. A
focus group (n=38) could be composed representing the
respective stakeholders. Its main goal was to identify
important sources of data that were not yet included at that
time, and to further discuss and develop the preliminary
conclusions and recommendations from the literature scan.

A professional talk-host led the meeting that opened
with an introduction and a summary of the study outcomes
by the authors. This was followed by a one-hour
‘knowledge café’ method, an informal but systematic way to
exchange and map opinions and ideas of participants. After
a break and a philosophical reflection on technologies and
risk, a discussion panel took place wherein representatives
of stakeholders actively participated. Outcomes were noted
down, analyzed and summarized.

V. OUTCOMES

A. Literature scan

The search was performed in SciVerse Scopus in July

2011 delivering initially 340 potentially relevant
publications. Of these, 17 were eventually included after the
selection procedure described sub 1.
Human, technological or organizational risks appear to be
no primary subject of the randomized clinical trials
identified in the search. However, they are reported as
secondary effects or unintended outcomes of eHealth
technology effectiveness studies. In most cases, the
observed risks are related to a lack of effectiveness in all or
part of the target groups due to either the design of the
intervention, implementation factors or intrinsic
characteristics of the target groups. Other types of
unintended adverse effects leading to harm for patients,
users or third persons were rarely mentioned.

Identified risks have been structured with regard to their
primary occurrence at a human level, a technological level
and an organizational level (Table I11). Appendix Il contains
a detailed overview of risks, the level where they occur, their
classification and their source in eHealth literature.

1) Risks concerning Human factors

Masa et al. [22] compared conventional spirometry to
online spirometry with regard to outcome measures like
forced vital capacity, quality criteria (acceptability,
repeatability) and the number of maneuvers and time spent
on both of the two procedures. They found that the number
of spirometric maneuvers needed to meet quality criteria
was somewhat higher in the online mode as compared to

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

59

conventional spirometry. Online spirometry also took more
time for patients (mean differences of 0.5 additional
maneuvers and 0.7 minutes more). Higher time-
consumption may also negatively affect the remote
technician instructing the patient while the latter uses the
spirometer. The spirometric values achieved online were
very similar to the values achieved by conventional
spirometry.

Some eHealth applications appear to be more beneficial
for specific patient groups. Bujnowska-Fedak et al. [23]
tested a tele-homecare application for monitoring diabetes.
Older and higher educated patients, spending a lot of the
time at home and having acquired diabetes recently,
benefited most from the application. A positive association
was found between educational level and ability to use the
tele-monitoring system without assistance. Spijkerman et al.
[24] evaluated a web-based alcohol-intervention without
(group 1) and with (group 2) feedback compared to a
control group in order to reduce drinking behavior in 15-20
years old Dutch binge-drinkers. They found that the
intervention may be effective in reducing weekly alcohol
use and may also encourage moderate drinking behavior in
male participants over a period of 1-3 months. The
intervention seemed mainly effective in males while for
females a small adverse effect was found. Women following
intervention group 1 were less likely to engage in moderate
drinking and had increased weekly drinking a little,
although significantly (p=0.06; 1.6 more drinks/week), at
one month follow-up. Zimmerman et al. [25] performed a
secondary analysis on data from an RCT on a symptom-
management intervention for elderly patients during
recovery after coronary artery bypass surgery. They found
that the intervention had more impact on women than on
men for symptoms such as fatigue, depression, sleeping
problems and pain. Regarding measures of physical
functioning no gender differences were found. Cruz-
Correira et al. [26] tested adherence to a web-based asthma
self-management tool in comparison to a paper-based diary.
The tool was designed to collect and store patient data and
provide feedback to both patient and doctor about the
former’s condition in order to support medical decision
making. Patients’ adherence to the web-based application
was lower than in the control group. Willems et al. [27]
tested a home monitor self-management program for
patients with asthma where data such as spirometry results,
medication use or symptoms were recorded. They found a
low compliance of participants with the intervention
protocol. Participants in the intervention group recorded in
average less PEF tests (peak expiratory flow; lung function
data): 1.5 per day versus the required number in the protocol
of 2 tests per day. Verheijden et al. [28] tested a web-based
tool for nutrition counseling and social support for patients
with increased cardiovascular risk in comparison to a
control group receiving conventional care. The authors
found that the uptake of the application in the intervention

group was low (33%) with most participants using the tool
only once during the 8 months study period. Patients
properly using the intervention were significantly younger
than those who did not. Morland et al. [29] compared an
anger management group therapy for veterans delivered
face-to-face versus via videoconferencing. Group therapy
via videoconferencing teleconferencing seemed effective to
treat anger symptoms in veterans. While no differences
could be found between the two groups regarding
attendance or homework completion, the control group
reported a significant higher overall group therapeutic
alliance than the intervention group. Postel et al. [30]
evaluated an eTherapy program for problem drinkers, where
therapist and patient communicated online to reach a
reduction of alcohol use, as compared to a control group
receiving regular information by email. While effective for
complying participants, they found high drop-out rates in
the eTherapy group though quitting the program did not
automatically mean that the participant had also relapsed or
increased alcohol consumption. Ruffin et al. [31] tested a
web-based application where participants received tailored
health messages after giving information about family
history of six common diseases. In the intervention group
the authors found modest improvements in self-reported
physical activity and fruit and vegetable intake. But
participants also showed a decreased cholesterol-screening
intention as compared to the control group who received
standard health messaging.

In summary, higher time consumption, unintended
adverse effects, and selective benefits differing for sex,
education, age and other variables are the risks observed on
the side of the human (end-)user. Frequently adherence (or:
compliance, drop-out, alliance, up-take) is mentioned and
associated with a negative impact on the desired effect of an
intervention.

2) Risks concerning Technology

Evaluating a tele-homecare application for monitoring
diabetes Bujnowska-Fedak et al. [23] observe usability
problems among participants; 41% of them (patients with
type 2 diabetes) were unable to use the system for glucose-
monitoring needing permanent assistance. Patients who
could easily use the application derived a greater impact
from its use. Nguyen et al. [32] evaluated an internet-based
self-management program for COPD patients but
discontinued before the sample target was reached due to
technical and usability problems with the application.
Participants stated at the exit interview that decreased
accessibility, slow loading of the application, and security
concerns prevented them from using the website more
frequently. Participants reporting usability problems had to
complete (too) many actions on a PDA-device before being
able to submit an exercise or symptom entry. Other
problems dealt with limited wireless coverage of the PDA.
The technical problems decreased participants” engagement

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/systems_and_measurements/

60

with the tools. Decreased engagement was associated with
the number of web log-ins and the exercise and symptom
entered via the website and/or the PDA. While evaluating a
web-based asthma self-management tool Cruz-Correira et
al. [26] found nine patients reporting problems (19 in total)
related to the use of a web-based self-management tool.
Most problems concerned the internet connection and the
graphical user interface. Two of the patients could not even
use the application because of technical problems.
Demaerschalk et al. [33] tested the efficacy of a
telemedicine application (vs. telephone-only consultation)
for the quality of decision making regarding acute stroke.
They found technical issues in 74% of telemedicine
consultations versus none in telephone consultations. The
observed technical problems did not prevent the
determination of treatment decision but some did influence
the time necessary to treatment decision-making. Jansa et al.
[34] used a telecare-application for type 1 diabetes patients
having poor metabolic control to send glycaemia values to
the diabetes team. They found that 30% of team-patient
appointments were longer than expected (1h vs. 0.5h) due to
technical problems with the application. Technical problems
concerned the inability to send results of counseling caused
by problems with the application itself, the server or
internet-access. Using a telemanagement application for
diabetes patients Biermann et al. [35] found that 15% of the
participants had difficulties in handling the application, the
consequences of which were not elaborated. In a study of an
asthma self-management telemonitoring program by
Willems et al. [27] 1/3 of participants experienced technical
problems, mostly with malfunctioning devices. Practitioners
had to contact patients, e.g., regarding a missed data transfer
leading to logistical problems.

In summary, a variety of issues has been reported at the
technology level affecting patient safety or quality of care.
They range from usability problems and security issues to
problem with accessing the server or malfunctioning
devices.

3) Risks concerning Organization

Copeland et al. [36] tested whether a telemedicine self-
management intervention for congestive heart failure (CHF)
patients could be effective in terms of improving physical
and mental health-related quality of life and cost-
effectiveness as compared to a control group receiving usual
care. They could not find substantial differences between
groups, but overall costs related to CHF were higher for the
intervention group. The authors state that this might be
related to the intervention encouraging medical service
utilization by facilitating access to care.

One tele-management application for diabetics allows
patients to measure their blood-glucose values and send it to
their care provider [35]. Though time-saving for patients,
use of the application lead to 20% more time investment (50

vs. 43 min. per month over a 4-month period, and 43 vs. 34
min. per month over an 8-month period) on the side of the
care provider compared to conventional care. The higher
time expenditure did not reflect time necessary to manage
the application itself: it was due to more access to the
provider, so that patients tended to call more often. Montori
et al. [37] also found a comparable risk concerning time-
consumption. They tested a telecare-application for data-
transmission for type 1 diabetes patients. The nurses needed
more time reviewing glucometer data (76 min. vs. 12 min.)
and giving the patient feedback (68 minutes vs. 18 minutes)
in the telecare condition as compared to the control group.
The authors found more nurse feedback time to be
significantly associated with more changes i