

The International Journal on Advances in Software is published by IARIA.

ISSN: 1942-2628

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Software, issn 1942-2628

vol. 18, no. 1 & 2, year 2025, http://www.iariajournals.org/software/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Software, issn 1942-2628

vol. 18, no. 1 & 2, year 2025,<start page>:<end page> , http://www.iariajournals.org/software/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2025 IARIA

International Journal on Advances in Software

Volume 18, Number 1 & 2, 2025

Editor-in-Chief

Petre Dini, IARIA, USA

Editorial Board

Chrissanthi Angeli, University of West Attica, Greece
Vincenzo Arceri, University of Parma, Italy
Thierry Badard, Université Laval, Canada
Fabian Barbato, UDELAR, Uruguay
Fernando Boronat Segui, Universitat Politecnica de Valencia, Spain
Mina Boström Nakićenović, Flightradar24, Stockholm, Sweden
Antonio Brogi, University of Pisa, Italy
Carlos Casanova, UTN-FRCU, Argentina
Yoonsik Cheon, The University of Texas at El Paso, USA
Stefano Cirillo, University of Salerno, Italy
Emanuele Covino, Università di Bari, Italy
Mirela Danubianu, "Stefan cel Mare " University of Suceava, Romania
Cláudio de Souza Baptista, Federal University of Campina Grande, Brazil
Maria del Pilar Angeles, Universidad Nacional Autonónoma de México, México
Rafael del Vado Vírseda, Universidad Complutense de Madrid, Spain
Leandro Dias da Silva, Universidade Federal de Alagoas, Brazil
Roland Dodd, CQUniversity, Australia
Ann Dunkin, US Department of Energy, USA
Gledson Elias, Federal University of Paraíba (UFPB), Brazil
Thomas Fehlmann, Euro Project Office, Switzerland
Stoyan Garbatov, OutSystems, Portugal
Apostolos Gkamas, University of Ioannina, Greece
Gregor Grambow, Aalen University, Germany
Christoph Grimm, Kaiserslautern University of Technology, Germany
Andreas Hausotter, University of Applied Sciences and Arts, Hanover, Germany
Tzung-Pei Hong, National University of Kaohsiung, Taiwan
Dayang Norhayati Abang Jawawi, Universiti Teknologi Malaysia (UTM), Malaysia
Ahmed Kamel, Concordia College, Moorhead, USA
Ayad Ali Keshlaf, Sabratha University, Libya
Maqbool Khan, Pak-Austria Fachhochschule - Institute of Applied Sciences and Technology, Pakistan
Radek Koci, Brno University of Technology, Czech Republic
Dmitry Korzun, Petrozavodsk State University, Russia
Jana Kostičová, Comenius University Bratislava, Slovakia
Luigi Lavazza, Università dell'Insubria, Italy
Zheng Li, Queen's University Belfast, UK
Panos Linos, Butler University, USA
Qifeng Lu, Pivotal Commware, USA
Herwig Mannaert, University of Antwerp, Belgium
Adriana Martin, Universidad Nacional de la Patagonia Austral, Argentina
Goran Martinovic, J. J. Strossmayer University of Osijek, Croatia
Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal

José Carlos M. M. Metrolho, Polytechnic Institute of Castelo Branco, Portugal
Jose Manuel Molina Lopez, Universidad Carlos III de Madrid, Spain
Fernando Moreira, REMIT, Universidade Portucalense, Portugal
Roy Oberhauser, Aalen University, Germany
Constantin Paleologu, National University of Science and Technology Politehnica Bucharest, Romania
Elzbieta Pustulka, University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Switzerland
Kornelije Rabuzin, University of Zagreb, Croatia
Piotr Ratuszniak, Koszalin University of Technology, Poland
Hajarisena Razafimahatratra, Ecole Nationale d'Informatique - Université de Fianarantsoa, Madagascar
José Rouillard, University of Lille, France
Claus-Peter Rückemann, Universität Münster / DIMF / Leibniz Universität Hannover, Germany
Sébastien Salva, IUT Clermont Auvergne | University of Clermont Ferrand, France
Patrizia Scandurra, Università degli Studi di Bergamo, Italy
Mu-Chun Su, National Central University, Taiwan
Maryam Tayefeh Mahmoudi, ICT Research Institute, Iran
Mónica Isabel Teixeira da Costa, Technology School | Polytechnic Institute of Castelo Branco, Portugal
Pierre Tiako, Langston University, USA
Božo Tomas, University of Mostar, Bosnia and Herzegovina
Mariusz Trzaska, Polish-Japanese Academy of Information Technology, Poland
Chrisa Tsinaraki, Technical University of Crete, Greece
Miroslav Velev, Aries Design Automation, USA
Mudasser F. Wyne, National University, USA
Martin Zinner, Technische Universität Dresden, Germany

International Journal on Advances in Software

Volume 18, Numbers 1 & 2, 2025

CONTENTS

pages: 1 - 10
A Lightweight Web Component Toolbox for Database-Driven Web Applications
Andreas Schmidt, University of Applied Sciences Karlsruhe & Karlsruhe Institute of Technology, Germany
Tobias Münch, Münch Ges. für IT Solutions mbH & Chemnitz University of Technology, Germany

pages: 11 - 24
A Modular Approach for ABM/LMM Models: Specification of Reusable Building Blocks Centred on the Economic
Concepts of WTA and WTP
Eric Innocenti, UMR CNRS 6240 LISA, France
Dominique Prunetti, UMR CNRS 6240 LISA, France
Marielle Delhom, UMR CNRS 6134 SPE, France
Corinne Idda, UMR CNRS 6240 LISA, France

pages: 25 - 36
Model-Based Development of Code Generators for Use in Model-Driven Development Processes
Hans-Werner Sehring, NORDAKADEMIE, Germany

pages: 37 - 50
Features, Practical Applications, and Validation of COSMOS Simulator: A Construction-Process Simulation Tool
Jirawat Damrianant, Department of Civil Engineering, Faculty of Engineering, Thammasat School of Engineering,
Thammasat University, Thailand
Sakkaphant Meklersuewong, Department of Civil Engineering, Faculty of Engineering, Thammasat School of
Engineering, Thammasat University, Thailand

pages: 51 - 70
Designing at 1:1 Scale on Wall-Sized Displays Using Existing UI Design Tools
Lou Schwartz, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Mohammad Ghoniem, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Valérie Maquil, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Adrien Coppens, Luxembourg Institute of Science and Technology (LIST), Luxembourg
Johannes Hermen, Luxembourg Institute of Science and Technology (LIST), Luxembourg

pages: 71 - 81
Comparing Closed-Source and Open-Source Code Static Measures
Luigi Lavazza, Università degli Studi dell’Insubria, Italy

pages: 82 - 96
VR-GitEvo+CI/CD: Visualizing the Evolution of Git Repositories and CI/CD Pipelines in Virtual Reality
Roy Oberhauser, Aalen University, Germany

pages: 97 - 105
Scalable Software Distribution for HPC-Systems with Software Pools Using MPI and File Systems in User Space
Jakob Dieterle, GWDG, Germany
Hendrik Nolte, GWDG, Germany
Julian Kunkel, Department of Computer Science Georg-August-Universität Göttingen, Germany

A Lightweight Web Component Toolbox for Database-Driven Web Applications

Andreas Schmidt∗‡ and Tobias Münch†§
∗ University of Applied Sciences

Karlsruhe, Germany
Email: andreas.schmidt@h-ka.de

‡ Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: andreas.schmidt@kit.edu
† Münch Ges. für IT Solutions mbH, Germany

Email: to.muench@muench-its.de
§ Chemnitz University of Technology, Chemnitz, Germany

Abstract—Creating, content editing and interacting with re-
lational databases in web applications has traditionally re-
quired developer knowledge of languages such as JavaScript
or PHP. We present a lightweight, framework-independent
toolbox for database-driven web applications. It provides intuitive
database visualization, querying, and editing directly in a web
browser—requiring only HTML knowledge. Unlike traditional
frameworks like Angular or React, our web components simplify
database interaction using a thin REST-based access layer.
This work extends prior research by detailing the architecture,
integration challenges, and considerations of extensibility.

Keywords-Web Component; Relational-Database; Interface; Pro-
totyping

I. INTRODUCTION

This paper is an extended version of a conference paper [1],
published in 2024 at the Sixteenth International Conference
on Advances in Databases, Knowledge, and Data (DBKDA-
2024) conference in Athens/Greece. In this extended paper,
we examine the components we developed and describe their
interactions in greater detail. We have also added an example
scenario showing the components’ use in a simple real-world
scenario. In a detailed discussion, we also address current
work in the area of security and authentication, as well as the
expansion of the functionality of our components. We have
also continued to work on linking the components to each other
and to the other elements within the website. This means that
the parameters of the components can now be read from the
values of other components or HTML elements and monitored
for changes. We have implemented a similar mechanism for
the implementation of parameterized SQL statements.

With digitalization, there is increasing demand for user-
friendly database interaction tools that support collaboration [2].
Traditionally, developers use frameworks such as Angular or
React to create dynamic, database-driven web interfaces [3].
However, they also introduce noteworthy complexity, requiring
developers to learn and maintain codebases, often leading to
vendor lock-in [4], [5]. Non-developers can not cope with this
complexity. The need for a lightweight and straightforward
approach outranks the benefits of full-scale frameworks for
scientific applications and internal business tools. For example,
Microsoft Access has enabled user-driven database-driven
development with minimal programming effort [6]. However, its

desktop-based nature limits its accessibility and collaboration
capabilities in modern web environments [6]. Additionally, in
many companies, there is a shortage of suitable IT personnel
and limited financial resources for IT services [7], [8]. The
shortage of software engineers in particular poses a major
challenge for companies [8], as they are needed to create and
maintain large, complex software solutions. Reacting quickly
to changing markets and optimizing processes are important
criteria for remaining competitive. One way of overcoming
these challenges is to expand the circle of potential developers.
This is the path taken by no-code or low-code applications. One
problem with this approach, however, is that the approaches
are often proprietary and you get into a vendor lock-in, and
the approaches are often difficult to maintain in a broader
environment [9].

One way to get around this vendor lock-in is to use
standards. In the last years, web components have emerged as
an alternative for building reusable, framework-independent
UI elements [10]. The World Wide Web Consortium (W3C)
defines these components across web browsers [11]. These
components enable developers to create custom HTML ele-
ments encapsulating functionality, style, and behaviour [10],
[11]. Thus, they can be modular and easily integrated [11].
Compared to the development of database applications based
on traditional programming languages, the development or
integration of database applications using HTML code is
less complex and therefore allows even business experts with
basic HTML knowledge to implement or adapt an application
according to their requirements and can therefore significantly
reduce the workload of a company’s IT-department.

As a consequence, we introduce a set of loosely coupled
web components designed for database interaction functionality
to web applications. Our approach is similar to adaptive Linked
Data-driven Web components [12]. These components provide
the following database operations:
• Table display and navigation (browsing relational database

content)
• Dataset editing (modifying individual records)
• Query execution (dynamically running predefined SQL

statements)
• Selection filtering (interactive searching and data retrieval)

1International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These components communicate with databases via a REST-
based access layer. Unlike traditional frameworks, this approach
provides a lightweight, low-code alternative that enables non-
experts to build database-driven web applications.

Unlike other low-code applications, which are often self-
contained applications, we rely entirely on the W3C composite
standard Web Components [13] and thus enable our components
not only to create new applications, but also to be easily
integrated into existing applications.

We structured the paper as follows: First, in Section II, we
give an overview over related work. After that, we provide
an overview of the composite standard Web Components
in Section III. Then, we outline the system architecture
in Section IV. Then, Section V presents the implemented
components. The coupling of components with each other
and with the other elements of the website is described in
Chapter VI. Section VII demonstrates a real-world example
application, while Section VIII discusses key challenges and
limitations. Finally, Section IX concludes with future directions
and planned enhancements.

II. RELATED WORK

A. Database Access Through the Web

The classic approach to bringing database content to the
web is via server-side programming such as PHP, Python or
node.js (server-side JavaScript). To avoid having to constantly
reinvent the wheel of web-based programming, frameworks
based on these languages such as django (Python), symfony
(PHP) or express (JavaScript) have emerged, most of which
implement some form of the Model View Controller (MVC)
paradigm and use an object relational mapping framework to
access the database. In the field of database administration,
phpMyAdmin [14] and derivatives such as pgMyAdmin are
popular tools. Our approach differs fundamentally from this
classic approach. Neither is the rendering done on the server
side, nor is an imperative programming model used to create
the content.

B. Java Applets

Java applets [15] took a different approach. These were typi-
cally small programs written in Java that were loaded from the
server and ran in the user’s browser in a protected environment
(sandbox). A sophisticated access API for relational databases
was also available through JDBC [16]. The integration of the
applets into the web pages is done with the element embed
or object and has a number of similarities with the web
components approach we use. Both approaches run on the
client within the browser and there are a number of predefined
methods that must be implemented to integrate the application
into the page. The integration is declarative in both cases and
parameters can be passed to the program. Both approaches
also allow the programmatic access to the DOM tree of the
embedding website. From the mid-2010s, however, support
for the applets was gradually discontinued by the browser
manufacturers.

C. Declarative Web

At the ACM Web Conference 2023, Steven Pemberton deliv-
ered a presentation titled "The One Hundred Year Web," high-
lighting the escalating complexity and consequent formidable
challenges in implementation [17]. Pemberton critiques the
departure from the declarative path of the web with HTML5,
referring to it as a "Cowpath" that is incongruent with the
original principles [17]. He expresses hope that the damage
incurred thus far can be rectified through the collaborative
efforts of the web community, aiming to ensure the long-term
backward compatibility of the web [17]. In our work, we want
to follow exactly this approach and show that the otherwise
imperative integration of database content can also be done
declaratively.

Michael Hanus has introduced a concept that combines
declarative programming with the use of a CGI program, which
generates a web application based on the database [18]. There-
fore, Hanus proposed an interface that integrates both functional
and logical aspects derived from his Curry approach [18]. He
posits that this conceptual framework is transferrable to a client-
side context through the generation of JavaScript [18]. The
primary distinction to our work lies in the rendering location
of the HTML document. In the presented method, the HTML
document is rendered on the server-side and transmitted to
the client. On the other hand, in the client-side approach, the
data is loaded from the server and rendered directly on the
client-side.

D. Low Code Development

Low-code development platforms have the potential to
significantly change the tasks of software engineering and help
developers in companies create applications themselves without
having to delve too deeply into coding, which significantly
expands the pool of potential developers. Typically, low-code
development platforms (LCDPs) provide a visual interface for
application development that is realized through model-driven
design and declarative programming [19], [20]. In addition
to platform-specific platforms, there are also approaches that
generate web applications as the target platform, such as the
low-code platform Xelence from Sagitec Software [21].

The low-code initiative has given rise to a number of
application developers, including Caspio [22], Budibase [23],
webflow [24], and Bubble.io [25], which enable web-based
applications to be developed in the form of single-page
applications with little or no programming effort. However,
these are standalone systems that are difficult or impossible to
integrate into existing web applications. In contrast to these
approaches, our low-code web components offer this function-
ality with ease of development, interoperability, extensibility,
and maintainability.

III. WEB COMPONENTS

Web Components are custom, encapsulated, and reusable
elements designed for integration into web pages or applications.
They are processed and executed within contemporary web
browsers. As of today, these APIs are integral components of

2International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the Web Hypertext Application Technology Working Group
(WHATWG) standard [26].

A custom element is a JavaScript class which can define
custom HTML elements [26]. This element has to be inherited
from the HTMLElement class [26].

The HTMLElement serves as the foundational class for
every element present on a web page [26]. While it is possible to
derive from a specific class like HTMLParagraphElement,
such an approach is not fully supported by all browsers.

A Custom Element follows a specific lifecycle when in-
voked. Initially, the constructor is executed, establish-
ing the initial configurations. Upon inclusion in the DOM,
the connectedCallback method is triggered. Subse-
quently, the component is prepared and capable of both
receiving and emitting events. If a property is changed,
the attributeChangedCallback method is called,
but only if the attribute is defined in the static property
observedAttributes. Finally, when the element is re-
moved from the DOM, the disconnectedCallback
method is employed to internally reset the component [26].

Custom elements are registered by calling the method
define(tagName,class) of class customElements.
The method expects the tag name as the first parameter, so
that it can be used in the markup, e.g. with db-table. The
name of the implemented class is specified as the second
parameter [26].

IV. ARCHITECTURE OF THE DATABASE WEB COMPONENTS

While the web components run in the browser, they have
to communicate with a database server. The developed web
components don’t communicate directly with the database,
but through a thin Representational State Transfer (REST)-
based access layer (see Fig. 1, middle). This service maps a
logical database identifier to a specific database on the server
side. We use the PHP-CRUD-API library [27] by Maurits van
der Schee as the core for this purpose and have extended
it with additional functionality. PHP-CRUD-API provides a
REST-based CRUD interface for accessing relational databases,
i.e., records can be created, read, updated, and deleted. We
implemented the necessary extension modules ourselves, such
as access to the database metadata and a module for executing
SQL statements, and integrated them into the PHP-CRUD-
API as customControllers [27]. In order to be able to handle
multiple databases per endpoint, we have also implemented
the wrapper module rdbms.php, which provides additional
meta information about the databases available at the endpoint
and initializes the PHP-CRUD-API module with the specific,
selected database.

Specifically, the service provides the following functionality:
Database scheduler:

The REST API can manage multiple databases
running on any computer. For this purpose, the new
entry point rdbms.php has been implemented, which
takes over the management of the databases. This also
includes providing meta information about which
databases are available via this endpoint. Once a

specific database has been specified, the rdbms.php
module forwards the request to the PHP-CRUD-API
module for processing.

Access Control:
In the configuration for accessing the databases, it
can be specified which tables are accessible. In
addition to this coarse-grained access control, the
PHP-CRUD-API library offers further mechanisms
such as authentication via API key, JWT token, or
username/password. Currently, we are implementing
authentication based on Keycloak [28] via JWT token
forwarding.

CRUD-Functionality:
This functionality is completely coverd by the PHP-
CRUD-API library and includes the (C)reation,
(R)eading, (U)pdating, and (D)eletion of datasets in
the database.

Metadata Module:
For the purpose of constructing forms for creating
and modifying data records, as well as for resolving
foreign key relationships, we require information
about the structure of the tables and their constraints.
We have implemented this functionality as a custom
controller of the PHP-CRUD-API module. This has
the advantage that the authentication mechanisms
used by PHP-CRUD-API can also be used for this
module.

SQL Module:
The SQL module was also implemented as a custom
controller of the PHP-CRUD-API library for the
same reasons as the metadata module. It allows the
execution of parameterized SQL select statements.

V. COMPONENTS

As part of our research work, we have developed a series
of web components for the declarative integration of database
functionality into HTML pages. Concrete, the following
components were realized:

db-connection: This component establishes the connection
between the components and the RESTful backend service.
It acts as an intermediary between the other components and
the RESTful service. Additionally, it is also responsible for
authentication based on Keycloak via JWT token forwarding.

db-table: This component represents a database table. The
functionality ranges from the simple display of data records
to a wide variety of interaction options like sorting, further
filtering an so on.

db-row: Component for representing a single data set (row in
a table). The functionality of this component ranges from
simple, non interactive visualization of the data set to the
creation and editing of data sets using predefined or freely
definable forms, and the use as a controller in a model-view-
controller (MVC) szenario.

db-field: This component represents a single attribute of a
data set. db-field components are used in conjunction

3International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Architecture of our database web components.

with the db-row component when arbitrary layouts are to
be realized for the visualization of a data set.

db-select: Analogous to the HTML select element, in which a
value can be selected from a list of predefined values. In the
case of the db-select component, the displayed values
come from the results of an SQL query or the selection of
certain columns from a table.

db-query: Component that displays the results of an arbitrary
SQL query. It is also possible to browse through the results
and resort them.

In the following we will present these components in detail.
The data in the example screenshots shown comes from the
Mondial database [29]. The PHP-CRUD-API library we use
does not support composite keys for write operations. For this
reason, we modified the Mondial database schema and added
artificial keys and corresponding foreign keys.

A. Connection-component

The connection-component is a non-visible component in a
page. It is responsible for the mapping to a concrete database
on server-side. The left side of Fig. 2 gives an example, how
the web component is integrated inside a HTML page. The
db-connection component communicates with a RESTful
service, which is specified by the parameter url. The further
parameter database specifies a logical database name, which
is mapped on server side (Fig. 2, middle) to a specific database
(right side of Fig. 2). Note that the database can run on any
computer and not necessarily on the computer with the REST-
API endpoint. Table I shows all possible attributes of the
component.

Figure 2. Database mapping (from [30]).

TABLE I
db-connection ATTRIBUTES

Attribute Description Mandatory
database Logical database name. This name is mapped

to a concrete database on the backend side.
yes

url URL of the REST-API endpoint
Default: URL, from where the web-
components are loaded

no

B. Table-component

The db-table component is responsible for displaying the
content of a database table or a part of it. Fig. 3 shows in the
upper part the definition of a db-table component. The table
to be shown is “country”, of which the three columns Name,
Capital, and Population are to be displayed (attribute
attribute-list). The actions attribute specifies the
possible interaction options. In this specific case, page-by-page
scrolling (paging) is enabled with a page size of 10 datasets
(parameter pagesize), the datasets can be sorted in ascending
and descending order according to the column values (sort),
and additional filtering can be carried out at column level
(filter). Inline-edit is also activated (inline-edit).

In the lower part of Fig. 3 the visual appearance of the
component inside the browser, according to the previously
described specification is shown. Paging (1), sorting (2),
filtering (3) and inline-edit (4) as specified in the markup are
activated. The full list of possible attributes of the component
are shown in Table II. The refresh-rate attribute, for
example, is responsible for ensuring that the current database
content is always displayed by accessing the database table

4International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

again every n seconds and rereading and displaying the
actual values. In addition to the parameters from Table II,
the appearance of the component can also be adapted to your
own requirements using cascading stylesheets (CSS).

Figure 3. Specification and visual appearance of the web component
db-table, showing different interaction elements like page-wise scrolling (1),
sorting (2), filtering (3), and inline-editing (4).

TABLE II
db-table ATTRIBUTES

Attribute Description Mandatory
table Name of the table yes
filter Mandatory filter condition, that all

datasets must fulfill
no

pagesize Maximum number of datasets on a page no
page Page to display no
order Sort order (column name) no

direction Sort direction (asc, desc) no
connection Id of a db-connection web-

component. If the attribute is not set,
the default server component is chosen

no

attribute-list Comma separated list of attributes to
display (default: all)

no

actions List of possible values: sort, filter, paging,
inline, edit, delete

no

refresh-rate Time in seconds after which the table
data is reloaded from the database

no

C. Selection-component

The db-select web component presents a selection box,
from which values can be selected and searched via a prefix
or infix search. The values are specified by an SQL-select
statement. The SQL-statement can either be specified directly
by the sql-attribute, or it is specified using the attributes
value, text, table and (optional) filter. On the left
side of Fig. 4, the visual appearance with prefix-search is
shown, while on the right hand side, the markup, defining the

web-component on the left, is shown. The attribute value
represents the table-column, which values are passed to the
HTML-form on submit, while the values of the column,
specified by the attribute text are displayed by the element
and are used for the prefix/infix-search. The attribute name
specifies the name of the db-select element, and thus
the name of the attribute under which the selected value is
transferred to the form. Table III provides an overview of all
possible attributes and their meaning.

Figure 4. web component db-select

TABLE III
db-select ATTRIBUTES

Attribute Description Mandatory
connection-id Id of a db-connection web-component no
prefix-search The term entered in the search field is

considered as a prefix (Default: true)
no

name Name of the element. The value of the
selected entry (attribute value in Vari-
ant I, first column of SQL-statement in
Variant II) is passed on to the form under
this name.

no

Variant I
table Name of the table yes
value Name of the attribute used for the value-

attribute of the option element (returned
by the form).

yes

text Name of the attribute used for the text-
node of the option element (value used
for search).

yes

filter Mandatory condition the datasets must
fulfill.

no

Variant II
sql SQL-Statement with one or two columns.

The statement can have one or two
columns in the select-clause. If only one
column is given, the value of this column
is used for the value and the text.

yes

D. Row-component

The component represents a single dataset. It allows you to
create a new record or edit an existing one. The component
provides its own HTML form for this purpose. To do this, the
component uses the functionality provided by the metadata
module to determine the structure and constraints of the table.
This concerns information about the names and data types
of the fields, not null constraint and information about
primary and foreign key relationships. With the help of this
information, foreign key relationships, for example, are resolved
by displaying not the foreign key value but the referenced data

5International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

record. This feature is shown on the left side of Fig. 5, where
the foreign key attributes Capital_fk (label: Capital), which
reference the capital city of a country, is not displayed, but
a selection box showing the current value and simply giving
the option to change it using the db-select web-component
described previously. If a renaming of the attribute identifiers
of the database table is desired (as here, Capital instead of
Capital_fk), this can be accomplished with CSS rules.

The right side of Fig. 5 shows, how the markup of the web-
component, shown on the left, looks like. The parameter key
expects the value of the primary key of the dataset. The name
of the primary key attribute does not have to be specified as it
is determined from the metadata of the table. If the attribute
key is omitted, the component provides a form within which
a new data record can be created.

Figure 5. Web-component db-row in edit-mode using the predefined layout.
Foreign keys (i.e., Capital) are represented by db-select-components,
allowing to search and select a concrete dataset.

Another use of the db-row component is as a con-
troller in a model-view-controller (MVC) setup (attribute
controller="true"). In this case, the component is
invisible and reads the parameters either from the GET
parameters of the current URL or from a JSON string that has
been passed to the data-attribute. Depending on whether the
primary key value has been specified, an SQL update or insert
operation is performed. Subsequently, the page specified by
the target-url is loaded (or error-url in case of an
error).

Table IV lists all possible attributes of the web component
db-row. The form attribute, for example, is used to create
your own HTML form layout and link it to the component,
so that this form is used instead of the internal one. If the
parameter is-editable is set to false, a predefined, read-
only representation of the dataset is displayed. If this does not
meet layout requirements, the visible attribute can be set
to false and the layout can be defined using db-field
components (see below).

E. Field-Component
The db-field component handles exactly the value of

one column of a dataset. It gets its value from a db-row

TABLE IV
db-row ATTRIBUTES

Attribute Description Mandatory
table Name of the table yes
connection-id Id of a db-connection web-component no
visible Specifies if the component should

display the dataset on the page. If
the component is used together with
db-field components you typically
set this parameter "off" (default: on)

no

is-editable Specifies if the dataset should be ed-
itable. Possible values: yes/no(default:
yes)

no

display-key Flag, if the database key should be
displayed or not

no

attribute-list Comma separated list of attributes to
be shown (default: all attributes)

no

key The value of the primary key of a
dataset in this table.

no

form the id of a form-element, the db-row
component should work with. Addi-
tionally a mapping between the form
fields and the table columns can be
specified using the mapping attribute
(see below).

no

mapping Mapping between form field name and
table column name.

no

controller Enable "controller-mode". If the pa-
rameter is set to "true", the pa-
rameter action must also be
set (store-from-get-request,
store-from-data).

no

action See description above (controller-
mode).

no

target-url,
error-url

Page to load after dataset is written
(controller-mode).

no

refresh-rate Duration (in seconds) until the dataset
is read again

no

component and returns the value within a element. If
only one db-row is specified on the HTML-page, this is used
automatically, otherwise the desired db-row must be specified
with the parameter dataset. Fig. 6 gives a minimal example,
displaying the name and population of the city with the primary
key value of 2037 (Paris). In the upper part, you see the result
in the browser, at the bottom the corresponding declaration of
the elements db-row and two db-field elements in the
HTML page. Note that in the db-row component, the attribute
refresh-rate is set to the value of 10. This ensures that
the dataset is reloaded every 10 seconds so that the actual
number of inhabitants is always displayed.

F. Query-Component

The visual representation of the db-query component is
similar to that of the db-table component in Fig. 3. The
main difference is that no table parameter is specified, but
an arbitrary SQL select-statement. Fig. 7 shows an example in
which the SQL statement determines the number of borders
and overall border length for all countries having more than
5 neighbors, sorted by decreasing number of neighbors and
decreasing border length. Table V provides a list of all possible
attributes.

6International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Two db-field components with an invisible db-row component

Figure 7. Web-component db-query executing a complex SQL statement.
The result datasets can be scrolled and ordered by the different columns of
the result.

One of the most important enhancements since the version
of our components described in [1] is the support of parameteri-
zable SQL-statements. Instead of values, it is possible to define
placeholders in the SQL-statement in the form of question
marks (?), which get their value from other HTML elements
of the website. This can be, for example, the value of an input
field, or the currently selected value of an HTML-selectbox
or the db-select (see Section V-C) component implemented by
us. Fig. 8 shows this functionality, where the SQL-statement
contains two parameters that take their values from the two
input fields that specify the minimum and maximum height
of the mountains to be displayed. The mapping between the
input fields and the parameters in the SQL statement is realized
by the attribute params of the component db-query. The

values of the attribute specify the id of the HTML components
and the property to be read. In the case of the HTML input
element, this is the property value.

Figure 8. Web-component db-query with a parameterized SQL-statement,
reading the values from two input fields.

By specifying the two input elements from which the values
for the parameterized SQL-statement are read, event handlers
are also registered, which inform the db-query component
about changes to the values for the input fields, so that the
component executes the SQL-statement again when the values
change.

TABLE V
db-query ATTRIBUTES

Attribute Description Mandatory
sql SQL Statement to be executed yes

pagesize Maximum number of datasets on a page no
page Page to display no

connection Id of a db-connection web-component.
If the attribute is not set, the default server
component is chosen

no

refresh-rate Duration (in seconds) until the query is
resubmitted

no

actions List of possible values: sort, paging no

VI. PARAMETER BINDING

Analogous to the behavior of parameterized SQL statements,
we have implemented a mechanism that allows the values
of the parameters of our components to be read from other

7International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

components. This is achieved by a special syntax, in which
instead of the value for an attribute, the id of the HTML
component followed by the concrete property (dot-notation)
is specified within double curly brackets. Fig. 9 demonstrates
this using the example of the pagesize attribute of the
db-table component. Instead of specifying the value as fixed,
the {{..}} notation is used here to reference the property
value of the select element with the ID choose-pagesize
({{choose-pagesize.value}}).

Figure 9. Parameter binding: Mapping attribute values to other HTML-
elements.

VII. EXAMPLE APPLICATION

In this section, the use of the components we have developed
will be demonstrated using a small example application. The
components db-connection, db-table and db-row will
be used. The aim of the application is a simple task list in
which tasks to be completed can be entered and managed with
a priority and optional deadline. The application consists of
two HTML pages, a view and a controller page. The view is
shown in Fig. 10 and contains a HTML-form for entering a
new task and below it a table with the tasks already created.
Beside the form-element with the input fields for the new task,
the page contains the web-components db-connection and
db-table.

When the submit button ("add task") is pressed, the form data
is send to the page iaria-demo.controller.html (see
Fig. 11) via the GET-method and this page acts as a controller
like in a MVC setup, storing the passed values and after that
reload the calling page. The complete code of the controller file
iaria-demo.controller.html is shown in Fig. 11. In
line 2 and 3, our database web-components are loaded. Line 4
and 5 sets up the component db-connection to establish a

connection to the database with the name iaria-demo. If
the attribute url is omitted, it is expected that the endpoint
resides at the same address, from where the components were
loaded (see line 2). In lines 6 to 8, the component db-row is
configured as a controller (controller="true"), reads the
parameters passed from the previous page (the view with the
form from Fig. 10) and inserts the dataset into the todo_list
table. Since no target-url or error-url parameter are
specified, the previous form page is reloaded after the insert
operation is executed.

VIII. DISCUSSION, FURTHER CHALLENGES

Our web components for database developers serve as a
proof of concept, demonstrating that lightweight, framework-
independent database interaction is feasible. However, we must
work towards a low-code or no-code solution to transition from
a developer-focused prototype to a solution for no-coders. A
visual tool allowing users to connect components dynamically
could improve accessibility - such as a split-screen UI with
commands on the left and live interaction on the right.

Challenges such as validation, scalability, and security are
critical for real-world usage. Performance testing is needed
to ensure components handle large datasets and concurrent
users efficiently, while usability testing will determine if non-
developers can use the system effectively. Hosting components
on a CDN and optimizing the backend REST API will enhance
scalability. Security remains a primary concern, requiring
role-based access control (RBAC) to restrict data access.
Additionally, input sanitization is necessary to prevent SQL
injection and XSS attacks.

To address these challenges, we will:
1) Develop a wizard-based UI for configuring components

without coding.
2) Implement authentication and authorization mechanisms for

secure user access on the World Wide Web.
3) Integrate components into third-party web applications for

real-world test settings to evaluate arising problems.
Our database components could enhance scalability, security,

and usability and serve as an alternative to traditional methods,
effectively connecting developer-driven tools and no-code
solutions.

IX. CONCLUSION AND OUTLOOK

We have implemented the first prototype of our web compo-
nents and are actively working on expanding their functionality.
One key improvement is evaluating all available database
metadata directly within the components. This metadata is
already visible in Fig. 5, where a selection box displays a
dereferenced value (e.g., "Paris") instead of the foreign key for
the capital.

Security remains a significant area for future work. Actually
we allow the restriction to only acces certain tables inside a
database and support authentication based on keycloak via JWT
token forwarding. For future iterations we plan to implement
a role-based access control (RBAC) meachanism. Using our
web components in another web application with RBAC makes

8International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Example Application: View with form and db-table component.

Figure 11. db-row component, acting as a controller (complete code).

the integration possibilities interesting and the security aspects
challenging.

Several functional enhancements are also in progress. The
db-select component will be extended to support multiple
selections, making handling n : m relationships easier. The
db-table component currently does not resolve foreign keys,
but this can be worked around using db-query with SQL-
join operations. In the future, native support for foreign key
dereferencing in the db-table will be added as an optional
feature.

For future work, we focus on four key areas:
1) Security and Authentication – Adding built-in authentica-

tion and authorization mechanisms.
2) Scalability and Performance – Optimizing data handling

for large datasets and concurrent users.
3) No-Code Accessibility – Developing a visual configuration

wizard for non-developers.
4) Evaluation - Evaluation of our framework in terms of the

time required to develop a specific application. This should
include a comparison with traditional software development
approaches as well as with modern existing low-code
solutions.

Future work will also involve real-world testing and integra-
tion into enterprise applications to gather feedback and further
refine the components. Our components will enable business
developers to create new business cases with software support
without needing software engineers.

REFERENCES

[1] A. Schmidt and T. Münch, “Web components for database
developers”, in Proceedings of the Sixteenth International

Conference on Advances in Databases, Knowledge, and Data
Applications, 2024, pp. 20–22.

[2] H. Chen, R. H. Chiang, and V. C. Storey, “Business intelligence
and analytics: From big data to big impact”, MIS quarterly,
pp. 1165–1188, 2012.

[3] R. Vyas, “Comparative analysis on front-end frameworks
for web applications”, International Journal for Research in
Applied Science and Engineering Technology, vol. 10, no. 7,
pp. 298–307, 2022.

[4] J. Hassan, “The effects of architectural design decisions
on framework adoption: A comparative evaluation of meta-
frameworks in modern web development”, Ph.D. dissertation,
May 2024. DOI: 10.13140/RG.2.2.10552.97287.

[5] C. Shapiro, Information rules: A strategic guide to the network
economy. Harvard Business School Press, 1999.

[6] J. Eckstein and B. R. Schultz, Introductory relational database
design for business, with Microsoft Access. John Wiley & Sons,
2018.

[7] K. Almaree et al., “The usefulness of cash budgets in micro,
very small and small retail enterprises operating in the cape
metropolis”, Expert Journal of Business and Management,
vol. 3, no. 1, 2015.

[8] M. Skare, M. d. l. M. de Obesso, and S. Ribeiro-Navarrete,
“Digital transformation and european small and medium
enterprises (smes): A comparative study using digital economy
and society index data”, International journal of information
management, vol. 68, p. 102 594, 2023.

[9] K. Rokis and M. Kirikova, “Challenges of low-code/no-code
software development: A literature review”, in International
conference on business informatics research, Springer, 2022,
pp. 3–17.

[10] T. Münch, “Vanilla js-design and implementation of a progres-
sive web application from scratch”, in International Conference
on Web Engineering, Springer, 2024, pp. 461–464.

[11] D. Glazkov and H. Ito, Introduction to web components, https:
/ / www. w3 . org / TR / components - intro/, [Online; accessed
2025-05-27].

[12] A. Khalili, A. Loizou, and F. van Harmelen, “Adaptive linked
data-driven web components: Building flexible and reusable
semantic web interfaces: Building flexible and reusable seman-
tic web interfaces”, in The Semantic Web. Latest Advances and
New Domains: 13th International Conference, ESWC 2016,
Heraklion, Crete, Greece, May 29–June 2, 2016, Proceedings
13, Springer, 2016, pp. 677–692.

[13] “Web components - specifications”, [Online; accessed 2025-
05-27], 2015, [Online]. Available: https://www.webcomponents.
org/specs.

9International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] M. Delisle, Mastering phpMyAdmin 3.1 for Effective MySQL
Management. Packt Publishing, 2009, ISBN: 1847197868.

[15] E. Boese, An Introduction to Programming With Java Applets.
Jones and Bartlett Publishers, 2009.

[16] G. Reese, Java Database Best Practices: Persistence Models
and Techniques for Java Database Programming. O’Reilly,
2009.

[17] S. Pemberton, “The one hundred year web”, in Companion
Proceedings of the ACM Web Conference 2023, ser. WWW
’23 Companion, Austin, TX, USA: Association for Computing
Machinery, 2023, pp. 642–647, ISBN: 9781450394192. DOI:
10.1145/3543873.3585578.

[18] M. Hanus, “Lightweight declarative server-side web program-
ming”, in Practical Aspects of Declarative Languages: 23rd
International Symposium, PADL 2021, Copenhagen, Denmark,
January 18-19, 2021, Proceedings, Copenhagen, Denmark:
Springer-Verlag, 2021, pp. 107–123, ISBN: 978-3-030-67437-3.
DOI: 10.1007/978-3-030-67438-0_7.

[19] E. Elshan, E. Dickhaut, and P. Ebel, “An investigation of why
low code platforms provide answers and new challenges”, in
Hawaii International Conference on System Sciences (HICSS),
(Maui, Hawaii), Maui, Hawaii, 2023.

[20] N. Prinz, C. Rentrop, and M. Huber, “Low-code development
platforms-a literature review.”, in AMCIS, 2021.

[21] R. Arora, N. Ghosh, and T. Mondal, “Sagitec software studio
(s3)-a low code application development platform”, in 2020
International Conference on Industry 4.0 Technology (I4Tech),
IEEE, 2020, pp. 13–17.

[22] Caspio, Caspio: Low-Code Platform - Build Online Database
Apps, https://www.caspio.com/, (Accessed on 2025-05-23),
2024.

[23] Budibase, Github: Budibase/budibase, https : / / github. com /
Budibase/budibase, (Accessed on 2025-05-23), 2024.

[24] Webflow, Webflow: Create a custom website | Visual website
builder, https://webflow.com/, (Accessed on 2025-05-23), 2024.

[25] Bubble, Bubble: The full-stack no-code app builder, https :
//bubble.io/, (Accessed on 2025-05-23), 2024.

[26] WHATWG. HTML Living Standard, https://html.spec.whatwg.
org/multipage/, [Online; accessed 2025-05-27].

[27] M. van der Schee, PHP-CRUD-API, https : / / github . com /
mevdschee/php-crud-api, Last accessed 17.2.2025, 2025.

[28] S. Thorgersen and P. I. Silva, Keycloak-identity and access
management for modern applications: harness the power of
Keycloak, OpenID Connect, and OAuth 2.0 protocols to secure
applications. Packt Publishing Ltd, 2021.

[29] W. May, “Information extraction and integration with FLORID”,
Last accessed 17.2.2025, 1999, [Online]. Available: http://dbis.
informatik.uni-goettingen.de/Mondial.

[30] A. Schmidt and T. Münch, “Enable Business Users to Embed
Dynamic Database Content in Existing Web-Based Systems
Using Web Components and Generic Web Services”, in
Proceedings of the 20th International Conference on Web Infor-
mation Systems and Technologies - WEBIST, 2024, pp. 296–306.
DOI: 10.5220/0013000000003825.

10International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Modular Approach for ABM/LMM Models: Specification of Reusable Building Blocks
Centred on the Economic Concepts of WTA and WTP

Eric Innocenti ∗, Dominique Prunetti ∗, Marielle Delhom †, Corinne Idda ∗
∗UMR CNRS 6240, LISA Research Laboratory, University of Corsica Pasquale Paoli, Corte, France

e-mail:{eric.innocenti|prunetti_d,|idda_c}@univ-corse.fr
†UMR CNRS 6134, SPE Research Laboratory, University of Corsica Pasquale Paoli, Corte, France

e-mail: marielle.delhom@univ-corse.fr

Abstract—Agent-Based Models focusing on land markets
provide a computational framework to simulate socio-economic
dynamics in land and real-estate markets. In this paper, we intro-
duce the 5-Step Simulation Iterative Modelling Process method,
an iterative, five-step modelling and simulation decomposition
approach specifically designed to structure the development of
Agent-Based Land Market Models. We describe how implement-
ing reusable building blocks—conceptual, computational, and
executable—enhances modularity and fosters reusability of both
theoretical concepts and software code. An illustrative example,
applied to land and real-estate markets in Corsica, concretely
demonstrates the application of the method and the creation
of these reusable components. The integration of the economic
concepts of Willingness To Accept and Willingness To Pay into the
design of an Agent-Based Land Market Model exemplifies how
these building blocks contribute to market dynamics formation.
Finally, we highlight the potential of this approach to strengthen
computational simulation, support socio-economic analysis, and
promote sustainable land management.

Keywords-Agent-Based Modelling; Land and Real Estate Markets;
Reusable Building Blocks; Socio-Economic Dynamics; Sustainable
Land Management.

I. Introduction

This article presents an extended version of the international
conference paper titled "Reusable Building Blocks for Agent-
Based Simulations: Towards a Method for Composing and
Building ABM/LUCC", which was presented during SIMUL
2024 [1]. Computer simulations of Agent-Based Models of
Land Use and Cover Change (ABM/LUCC) constitute a
relatively recent interdisciplinary research domain within com-
putational economics, positioned at the intersection of computer
science, software engineering, economics, geography, and
social sciences. ABM/LUCC models represent an increasingly
specialised branch of Agent-Based Models (ABM), originating
from Multi-Agent Systems (MAS) within the broader field
of Distributed Artificial Intelligence (DAI). In this work, we
argue that modelling complex socio-economic systems must
follow a progressive and iterative approach, characterised
by an iterative composition-decomposition process, extending
from the formulation of a conceptual model—defining key
study elements—to the development of executable, modular,
and adaptive computer code. The 5-Step Simplified Iterative
Modelling Process (5-SSIMP) guides this modelling procedure
from initial concept formulation to the execution of computer-
based simulation experiments. The process is structured around
producing intermediate models (Phase A), categorised as

abstract and concrete, with the ultimate objective of delivering
a modular and adaptive executable model. This approach
involves specifying Reusable Building Blocks (RBB) [1], [2].
[2] advocates structuring agent-based models around atomic,
clearly documented, and context-specific RBBs. Building upon
their approach, our work expands this concept by specifically
defining and integrating economic building blocks centred on
Willingness To Accept (WTA) and Willingness To Pay (WTP).
These model entities integrate theoretical concepts (conceptual
model), computational components (computational model), and
executable code modules (executable model). Such entities must
be designed generically to ensure their reusability across diverse
computational simulation projects. Ultimately, this methodology
aims to reduce development costs and time, ensure code
reliability, and facilitate integration with artificial intelligence
systems. The modelling phase A of the 5-SSIMP specifically
targets the creation of three types of RBB: conceptual-RBB
(conRBB), computational-RBB (comRBB), and executable-RBB
(exeRBB). In this article, we illustrate how RBB are produced
according to phase A of the 5-SSIMP methodology. We detail
the construction of RBB using the generic economic concepts
of WTA and WTP, commonly employed in ABM/LUCC of
the Agent-Based Land Market Model (ABM/LMM) type. These
represent specialised socio-economic MAS designed to study
and analyse spatial-economic phenomena driven by agent
interactions within market frameworks [3]–[5]. The WTA
and WTP concepts are indispensable for characterising agent
decision-making processes within ABM/LMM.

In the second part, we clarify the theoretical and methodolog-
ical framework that structures this interdisciplinary research.
We present in detail the generic economic concepts of WTA
and WTP, specifying their roles and integration within the
conceptual model.

The third part provides a concise overview of the 5-
SSIMP method, briefly revisiting its primary phases and steps.
We define the three types of RBBs—conceptual (conRBB),
computational (comRBB), and executable (exeRBB)—, which
must be specified during phase A of the modelling process. We
also describe the fundamental characteristics of these blocks,
along with their structural roles in progressively developing
intermediate abstract and concrete models.

In the fourth part, we practically illustrate this methodological
approach through an application to land and real estate markets
in Corsica. We demonstrate how the economic concepts of

11International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

WTA and WTP can be specified and implemented as RBBs
within an ABM/LMM, tailored to the unique socio-economic
characteristics of this tourist region. This case study also serves
as an illustrative example of modular structuring within the
computational model, highlighting methodological advantages
associated with the use of objects, design patterns and RBBs.

The fifth part engages, in an in-depth discussion of the
essential roles played by WTP and WTA concepts within
agent decision-making processes in the ABM/LMM. Using
preliminary simulation results, we illustrate how this modular
approach, based on RBBs, effectively explores simulation data,
addressing specific sustainable land management challenges in
Corsica.

Finally, the sixth part concludes by summarising the major
contributions of this work and outlines future research per-
spectives. We envisage further refinements of the Corsican
ABM/LMM and its integration into dedicated software Python
infrastructure, facilitating broader generalisation and reusability
across larger different territorial and thematic contexts.

II. Theoretical foundation
A. Willingness To Pay and Willingness To Accept

First introduced over a century ago for the former concept [6],
WTP and WTA are fundamental in economics for understanding
consumer and producer decision-making processes. WTP is
defined as the maximum amount a consumer is willing to pay
to acquire a good or service. Conversely, WTA represents the
minimum amount an individual is willing to accept to give up
a good or forego a service. These concepts are grounded in
the theory of subjective value, where the value of a good is
determined by the perceived utility it provides. WTP is often
employed in market studies to estimate potential demand and
set optimal prices. It can be measured using various methods,
such as contingent valuation or conjoint analysis, though these
techniques are sometimes biased by strategic or hypothetical
factors [7]. In theory, WTP and WTA should be equivalent
according to the standard model of neoclassical economics.
However, in practice, they often differ, with this gap known as
the endowment effect. This effect highlights that individuals
tend to place a higher value on what they already own. The
discrepancy is attributed to psychological factors such as loss
aversion, perceptions of relative value, and cognitive biases
[8], [9]. Practically, WTP helps determine consumer surplus,
i.e., the difference between what a consumer is willing to pay
and the actual price. Meanwhile, WTA assists in estimating
producer surplus, i.e., the difference between the price received
and the minimum acceptable amount. These indicators are
essential for evaluating economic welfare, whether in contexts
such as differential pricing, environmental valuation, or public
policy analysis [10]. Ultimately, WTP and WTA are crucial tools
for specifying agent decision-making processes and pricing
behaviours in an ABM/LMM. During the simulation data
analysis phase, the comparison of WTP and WTA serves as
a key indicator, reflecting the potential for a convergence of
interests between buyers and sellers within the markets of an
ABM/LMM. These concepts thus provide a rigorous framework

for studying socio-economic dynamics in spatially explicit
environments, such as those modelled in ABM/LMMs.

B. Context of the Case Study
The primary empirical application of our work concerns

the land and housing markets in Corsica, which, due to their
dynamics and the scarcity of land available for residential use,
are characterised by significant pressure on prices and conflicts
over land use. Corsica is a geographically defined territory,
surrounded by the Mediterranean Sea. It is one of the least
densely populated Mediterranean regions, with the majority of
its population concentrated along the coastline, with only the
town of Corte, located inland, standing as an exception due to
the presence of the island’s sole university within its territory
[11]. Since the 1970s, Corsica has experienced the development
of a tourism-based economy, which today represents the island’s
main economic sector. This tourism expansion has led to the
construction of infrastructure for mass tourism, as well as
a significant rise in the number of second homes, a trend
that continues to grow. By 2015, there were over 90,000
second homes in Corsica, accounting for more than 37% of
the regional housing stock [12], a proportion nearly four times
higher than the national average. Consequently, in cities such
as Ajaccio and Bastia, as well as other tourist areas, securing
affordable accommodation has become increasingly difficult.
These findings raise important questions, which we aim to
address through the development of a virtual computational
simulation environment based on an ABM/LMM model. Our
objective is, first, to determine how investments in properties
intended for short-term tourist rentals affect the availability
of housing at affordable prices for local residents. Secondly,
we seek to examine, from a public policy perspective, which
measures could be implemented to address these issues (e.g.,
zoning regulations, investment taxes, or the creation of a
permanent resident status).

III. Method
A. 5-Step Simulation Iterative Modelling Process

To structure this computational modelling and simulation
work within an interdisciplinary context, we employ the
iterative composition-decomposition method known as the
5-Step Simulation Iterative Modelling Process (5-SSIMP)[1].
This approach ensures a logical and coherent progression,
from the concepts formulated in intermediate models to the
validation of results obtained through simulation experiments.
Its iterative nature allows for continuous adjustments to the
modelling components. As illustrated in Figure 1, the 5-
SSIMP method consists of two main phases (A.-Modelling,
B.-Simulation), and five stages (A.1-Conceptualisation, A.2-
Integration, A.3-Implementation, B.1-Experimentation, and B.2-
Data Analysis. This ensures a smooth transition from conceptual
theory to operational simulation. The principle of the 5-
SSIMP method is illustrated in Figure 2. During the A.1-
Conceptualisation stage, modellers simplify the real-world
system by formulating a conceptual model, identifying key
components and their relationships. In the A.2-Integration stage,

12International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. The 5-SSIMP method is an iterative composition-decomposition approach for the modelling and simulation process.

modellers translate the conceptual model into a computational
model, defining objects (classes, interfaces), modules (groups
of objects), and appropriate links (relationships). In the A.3-
Implementation stage, the computational model is transformed
into an executable model (executable code modules). This
process is based on Object-Oriented Programming (OOP) and
Generic Programming (Template Programming) techniques
[13], as well as Design Patterns (DP) [14]. During the B-
Simulation phase, in the B.1-Experimentation stage, modellers
must validate and verify the executable model through rigorous
testing to ensure the accuracy and reliability of the simulated
data obtained, comparing it, where possible, with real-world
data. In the B.2-Data Analysis stage, the executable model
is finalised for routine practical use, ensuring that it remains
reliable, robust, and efficient over time and across evolving
conditions. As illustrated in Figure 1, the RBB components of
the executable model are continuously refined and validated
through the iterative cycle of continuous adjustments within the
5-SSIMP method. These iterations enable feedback loops and
the integration of new elements derived from field survey data
and questionnaire responses. The 5-SSIMP method effectively
structures the iterative phases of development, testing, and
refinement involved in constructing ABM/LUCC models.

B. Reusable Building Blocks

TABLE I
Links between intermediate models (abstract and concrete) and

Reusable Building Blocks (RBB) in the 5-SSIMP method.

Intermediate RBB Specification Tools
model
A1. Conceptual conRBB Mathematics, ODEs, PDEs, etc.

Formalisms, DTSS, DEVS, etc.
A2. Computational comRBB Standards, norms,

UML, AML, ODD, SysML, etc.
A3. Executable exeRBB OOP, Template programming,

DP, etc.

The 5-SSIMP method is based on the creation of Reusable
Building Blocks (RBB), which ensure the modularity and
reusability of various modelling components. Each of these
components is designed independently, facilitating its evolution
from conceptual specification to implementation in an object-
oriented programming language. Within this framework, generic
building blocks (conRBB, comRBB, exeRBB) are defined,
integrated, and implemented in a way that allows them to
be reused and adapted for other simulation projects. The 5-
SSIMP method significantly reduces development time and
associated costs by optimising collaboration among team

13International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. The core concept of Reusable Building Blocks (RBB) in the A-Modelling phase of the 5-SSIMP method.

members involved in the modelling process. In this paper, the
concepts of WTP and WTA serve as representative examples to
illustrate the relevance and efficiency of the 5-SSIMP method.
These concepts are specified in the form of RBB to structure
their modular integration into the intermediate models of the
5-SSIMP method. Furthermore, this approach facilitates their
future application in various other contexts related to land
and housing markets. The production of RBB is embedded
within the A.1-Conceptualisation, A.2-Integration, and A.3-
Implementation stages of the A–Modelling phase in the 5-SSIMP
method. During these stages, modellers identify and isolate key
elements characterising the socio-economic system under study,
defining corresponding intermediate models, both abstract
and concrete. These models incorporate both generic and
specific characteristics, which must be characterised separately.
Elements with generic properties are grouped into Reusable
Building Blocks (RBB) within the intermediate models, serving
to modularly organise structures and functionalities that can
be reused in other ABM/LUCC models. In this context, each
RBB represents a generic aspect of the intermediate model
(either abstract or concrete), such as generic agent behaviours,
generic social interactions, or generic economic dynamics.
The structuring of intermediate models into Reusable Building
Blocks (RBB) facilitates the iterative process by enabling:

• updates, replacements, maintenance, and evolution of the
executable model (modularity);

• the creation and updating of code libraries, allowing

validated code to be shared and reused across different
simulation projects (reusability);

• collaboration between modellers in economics and com-
puter science, supporting the development and evolution
of new generic modules tailored to specific requirements.

C. Conceptual Reusable Building Block
A Conceptual Reusable Building Block (conRBB) is a type

of RBB produced in the A.1-Conceptualisation stage of the 5-
SSIMP method. conRBB are formulated using specification
formalisms (e.g., rules, notations, formal languages, etc.),
mathematical notations, ordinary differential equations (ODEs),
and system specifications (e.g., DEVS [15]). These conRBB
structure and organise generic key components and their
relationships within abstract conceptual models in a clear and
structured manner.

D. Computational Reusable Building Block
A Computational Reusable Building Block (comRBB) is

another type of RBB, produced in the A.2 Integration stage
of the 5-SSIMP process. comRBB ensure the consistency,
standardisation, and reusability of generic objects or object
groups across different simulation projects. They can be reused
in various fields of study. comRBB should adhere to recognised
computational norms and standards, such as Unified Modelling
Language (UML) [16], Agent Modelling Language (AML) [17],
Overview, Design concepts, and Details (ODD) [18], or Systems
Modeling Language (SysML) [19], among others. To achieve

14International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

this, modellers rely on Object-Oriented Programming (OOP)
[20], Template Programming [13], and Design Patterns (DP)
[14]. Recent studies demonstrate that DP significantly enhance
the modularity and reusability of models in computational
simulations [21]–[23].

E. Executable Reusable Building Block
An Executable Reusable Building Block (exeRBB) is the

type of RBB produced in the A.3 Implementation stage
of the 5-SSIMP modelling process. These building blocks
consolidate the generic code components of the executable
model. This involves implementing, within a programming
language, the object groupings defined in the computational
model, incorporating Templates and Design Patterns where
applicable. exeRBB are essential for computational replications
carried out in the B.1-Simulation and B.2-Data Analysis stages
of the 5-SSIMP method. They consist of reusable code modules
that can potentially be adapted for use in other computational
simulation projects. These software libraries are designed
generically, providing a significant advantage in computational
simulation projects that require high productivity and software
reliability.

IV. Implementation
A. Conceptual Model

The ABM/LMM presented as an example in this study
comprises two economic markets: a Land Market (LM) and
a Housing Market (HM). This work builds upon the research
we initiated in 2021, focusing on the economic study and
analysis of a tourist region, Corsica [24]. In this section, we
provide a concrete example of modelling the decision-making
processes and price formation mechanisms of agents within
an ABM/LMM, following the implementation of the 5-SSIMP
method. We also present the RBBs that we have developed to
represent the WTA and WTP formulated within the ABM/LMM.

1) Land Market - LM: In the LM, household agents
who own land interact as sellers (LndHse-agents -
LM-sellers) with real estate developer agents acting as
buyers (Dev-agents - LM-buyers).

The concepts of WTP and WTA are employed to model the
decision-making behaviours of economic agents involved in
both the LM and the HM. These concepts serve to specify the
price-setting decision processes and behavioural mechanisms
of the agents within the ABM/LMM we are constructing. More
specifically, in the LM, WTA represents the minimum amount
that a LndHse-agent household owner is willing to accept
to sell a plot of land on the LM. This WTA corresponds to
the average past sale price of similar plots with identical
characteristics. Conversely, WTP represents the maximum
amount that a Dev-agent is willing to pay to acquire land
on the LM. This WTP is determined by the Dev-agent
real estate developer, based on the anticipated selling price of
the house they intend to build on the land, while seeking to
achieve a target profit margin on the total cost of the house.
Interactions between the LndHse-agents as sellers and the
Dev-agents as buyers in the LM are illustrated in Figure 3.

Figure 3. Interactions between household landowner agents
(LndHse-agents) as sellers and real estate developer agents (Dev-agents)
as buyers in the ABM/LMM (LM).

2) Housing Market - HM: In the HM, Dev-agents (real
estate developers) resell land with newly built houses. Their
WTA corresponds to the amount required to generate a profit
margin on the total costs associated with producing the housing
unit (construction costs and the price paid for the land). Within
this HM, there are two categories of buyers. Hse-agents are
Households seeking accommodation, whose WTP is determined
through the maximisation of a quasi-linear utility function under
budget constraints.

Figure 4. Interactions between real estate developer agents as sellers
(Dev-agents), household agents as buyers (Hse-agents), and the single
investor agent as a buyer (Inv-agent) in the ABM/LMM (HM).

Inv-agent is the single representative investor who
purchases houses and rents them as tourist accommodations.

15International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For the Inv-agent, WTP is based on the opportunity cost
of investing in a tourist rental property versus an alternative
financial investment of the same amount. In other words, this
WTP follows an objective criterion whereby the expected return
from purchasing a house at a given price must be equal to or
greater than the return from an equivalent investment in the
financial market.

3) Agent’s Interaction: In terms of interactions,
Dev-agents purchase land assets (plots) sold by
LndHse-agents, with the objective of constructing
a house. For the sake of conceptual model simplification,
each real estate developer is specialised in constructing only
one category of house m = {1, ...,M} (e.g., detached house,
chalet, bungalow, etc.), which is subsequently sold on the
HM. In the HM, real estate developer agents who previously
acted as buyers in the LM become sellers (Dev-agents -
HM-Sellers) and interact with household agents as buyers
(Hse-agents - HM-buyers), as well as with the single
representative investor agent (Inv-agent - HM-buyer).
Whether in the LM or the HM, the price formation processes
of agents in the model are based on the key economic concepts
of WTA and WTP. These two fundamental concepts are
represented as Conceptual Building Blocks (conRBB) within
ABM/LMM models.

4) Price Formation in the LM: Household landowner agents
(LndHse-agents) make their decisions based on their WTA,
represented as a Conceptual Reusable Building Block (conRBB).
This decision depends on various factors, such as opportunity
costs, market conditions, and the financial objectives of the
agents. The WTA of LndHse-agents in the LM is given by
Equation (1).

WTALndHse (zi) = Pt−1 (zi) (1)

The vector zi represents the characteristics of the land
asset being sold, while the past average sale price Pt−1(zi),
calculated using a spatial regression model, is estimated based
on the historical sale prices of similar plots with compara-
ble characteristics zi. Interviews conducted with real estate
professionals (three estate agents and one property developer)
revealed that an implicit rule prevails across various segments
of the Corsican housing market: sellers and buyers tend to
maintain a negotiation margin when finalising a transaction.
For sellers, this margin manifests as an attempt to secure a
transaction price above their reserve price, whereas for buyers,
it reflects an effort to negotiate a transaction price below their
maximum WTP.

a) AskpriceLwd-Agent: According to our interviewees, this
negotiation margin is approximately 7% of the sale price. We
denote this margin a ψ, a value specific to each individual,
which plays a role in the negotiation process between seller
agents (LndHse-agents) and buyer agents (Dev-agents)
during land transactions. It is incorporated into the calculation
of the asking price set by sellers in the LM, AskpriceLwd-Agent,
as defined in Equation (2).

AskpriceLwd-Agent = (1+ψLwd-Agent)×WTALwd-Agent (2)

b) WTP - Dev-agents: The purchasing decisions of
real estate developer agents (Dev-agents) in the LM are
based on their WTP, represented as a conRBB, as defined in
Equation (3).

WTPm (zi) =
PH,i,t−1 (zi, LivAm)

1 + πm
− CLivA (zi)LivAm

(3)
LivAm represents the surface area of a house belonging to

category m. πm denotes the anticipated profit margin of the
real estate developer agent. PH,i,t−1 is the average past price of
a house built on a plot of land, both of which have equivalent
characteristics i corresponding to zi. CLivA (zi) represents the
construction cost per unit of surface area required to build the
house.

c) BidpriceDev-agent: Taking into account the negotia-
tion margin ψm of a Dev-agent and in an attempt to secure
a transaction price lower than their WTP, the purchase price
(Bidpricem) is given by Equation (4).

Bidpricem = (1− ψm)WTPm(zi) (4)

Figure 5. Flowchart of the Negotiation and Transaction Process in the LM
Algorithm.

16International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

5) Negotiation and Transaction in the LM: Once all
buyer agents in the LM have set their bid prices
(Bidpricem−Dev-agent) and seller agents have determined
their asking prices (Askprice−Lwd-Agent), the matching and
exchange mechanism is executed. Dev-agent submit offers
for available plots of land while considering their construction
capacity constraints, whereas LndHse-agents evaluate the
received offers. Seller LndHse-agents review all proposals
and identify the highest bid (Bidpricem−Dev-agent). Matching
then occurs between the Dev-agent buyer who submits
the highest offer and the corresponding LndHse-agent
seller. Once this matching is completed, the negotiation and
transaction process can begin.

a) Direct Transaction Process - DTP: If the highest
Bidpricemax, submitted by the Dev-agent, is greater than
or equal to the asking price (AskpriceLwd-Agent) set by the
household landowner agent, the transaction is completed
immediately without negotiation. In this case, the transaction
price (P̄ (zi)) is set at the asking price (AskpriceLwd-Agent)
determined by the selling household agent.

b) Transaction Process with Negotiation - TDN:

P̄ (zi) =WTAHse(zi) +
NDi

χ
[WTPMax −WTAHse (zi)]

(5)
If the asking price (AskpriceLndHse-agent) set by the

household landowner agent is strictly higher than the maximum
bid price Bidpricemax offered by the real estate developer
agent (Dev-agent), a negotiation process may be initiated,
provided that the buyer’s WTP (Dev-agent) is greater than or
equal to the seller’s WTA (LndHse-agent). The transaction
price P̄ (zi) is determined by Equation (5). NDi represents the
number of expressed bids for the property, while χ corresponds
to the total number of Dev-agents for which nm′ ≥ 0,
with m′ = {1, ..., χ}. In Equation (5), the distribution of the
difference between the buyer’s maximum WTP WTPmax and
the seller’s WTA WTAHse(zi) depends on market conditions
and the relative bargaining power of both parties. Thus, the
higher the number of expressed bids (NDi) for a property, the
stronger the seller’s bargaining power, leading to an increase in
the transaction price. Conversely, when the number of expressed
bids is low, the buyer’s bargaining power increases, resulting
in a lower transaction price.

c) No Transaction: Finally, if the asking price
(AskpriceLndHse-agent) set by the household landowner
agent strictly exceeds the maximum bid price
(Bidpricemax−Dev-agent) and the WTA (WTALndHse)
of the landowning household is greater than the WTP
(WTPm) of the Dev-agents, no transaction can take place
for this plot.

6) Price Formation in the HM: The HM represents the inter-
action between “real estate developer agents” Dev-agents,
who become sellers of their properties, “household agents”
Hse-agents acting as buyers, and a single “investor agent”
buyer Inv-agent (HM-buyer).

In this market, the WTA (ConRBB) of the Dev-agents selling
their houses is given by Equation (6):

WTAi,m (zi, LivAm) = (1 + πm)
(
Pi (zi) + CLivALivAm

)
(6)

where Pi (zi) represents the price paid for the parcel i with
characteristics zi.

A negotiation margin similar to that used by sellers and
buyers in the LM is also applied by economic agents in
the HM. Sellers initially propose an asking price above their
WTA, attempting to achieve their individual negotiation margin.
Similarly, buyers initially propose a bid price below their WTP,
based on their individual negotiation margin.

To avoid unnecessarily complicating the exposition of the
conceptual model, the explicit relationships linking sellers’ Ask
prices to their WTA and buyers’ Bid prices to their WTP in
the HM are not presented here.

Following the maximisation of a quasi-linear utility function
under budget constraints, the WTP for household agents seeking
accommodation is defined by Equation (7):

WTPc (η) =
(1 + δc)

[
(1 + δc)

T − 1
]

δc
θc (η) (7)

where δc is the household agent’s discount rate, T is the average
duration of a real estate loan, and θc (η) is the function defined
by Equation (8), based on [25]:

θc (η) =
Y Dc

(
VMax
c

)2
b2 + (VMax

c)
2 (8)

where:
• Y Dc represents the monetary amount allocated by the

household to housing each period;
• b represents the slope of their bid function.
7) HM: Purchase Process of the Inv-agent: The pur-

chasing decision-making process of the Inv-agent buyer
relies on the WTP (conRBB) described by Equation (9):

WTPI (η) =
1− (1 + r)

−T

r (1− ρ) (1 + r)
−T

+ rT − 1 + (1 + r)
−T

γζφ (η)

(9)
where:

• η: vector of the house characteristics;
• r ∈ [0, 1]: interest rate in the financial market;
• γ ∈ [0, 1]: coefficient of net rental yield (net of mainte-

nance costs);
• ζ: number of days in the tourist season;
• φ (η): average daily revenue of a tourist residence with

similar characteristics;
• ρ ∈ [0, 1]: residual value coefficient of the house after T

years.
The conRBB of the Inv-agent involves a limited budget,

denoted as Ω, representing the total investment in the HM over
a given period. The agent can choose between two investment
types: a financial market investment or a real estate investment.

17International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

8) Negotiation and Transaction in the HM: The negotiation
and transaction algorithm of the HM is similar to that of the
LM. To avoid unnecessarily complicating our presentation, and
due to the similarity of these two algorithms—particularly their
reliance on the WTA and WTP of seller and buyer agents—this
algorithm is not detailed here.

For a more detailed description of the conRBB used in this
article’s conceptual model, the interested reader can refer to
[26] and [24].

B. Computer Model
In this section, we present the computational integration of

the ABM/LMM and its computational Reusable Building Blocks
(comRBB) related to the generic concepts of WTP and WTA,
previously formulated as conceptual Reusable Building Blocks
(conRBB).

1) Design patterns: In computational modelling, the number
of objects can rapidly become very large, especially when
multiple organisational levels are involved. In such contexts,
modellers must address the challenge of defining numerous
objects and relationships.

Figure 6. In the computer model, comRBB related to WTP and WTA are
implemented following the Delegation design pattern.

The use of design patterns helps manage this complexity,
allowing structurally well-defined and organised comRBB to
be implemented and improved independently. The concept of
design patterns originates from the seminal work A Pattern
Language: Towns, Buildings, Construction [27] by architects
Christopher Alexander, Sara Ishikawa, and Murray Silverstein.
During the 1970s, these authors defined a pattern as: “Each
pattern describes a problem, which occurs over and over
again in our environment, and then describes the core of
the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing
it the same way twice”. This statement defines a design

pattern as a recurring problem with its associated solution,
a specific context, an architecture, and the expression of the
associated generic solution. Subsequently, the concept of design
patterns was introduced into computer science during the 1970s
with object-oriented programming (OOP), notably through the
renowned Model-View-Controller (MVC) pattern [28]. The
MVC pattern was initially proposed by Tryve Reenskaug
as a generic solution for complex data-handling problems
[29]. Towards the late 1980s, the contributions of Reid Smith
also supported their use in computer science [30], alongside
the influential article by Kent Beck and Ward Cunningham,
which proposed adapting design patterns to OOP through five
interface-design compositions [31].

TABLE II
Characteristics of a Design Pattern in computer science according to

the “GoF” formalism [32].

Vocabulary Element Meaning
Name Name of the design pattern.
Problem Description of the problem addressed

by the Design Pattern.
Initial context The context to which the pattern applies.
Forces Description of situations where the De-

sign Pattern is applicable.
Solution Components of the solution and their

relationships.
Examples Examples of application.
Consequences Description of how the Design Pattern

achieves its goal.
Logic Description of the logic implemented.
Related patterns Closely related Design Patterns refer-

enced here.

However, it was not until 1995 that the use of Design Patterns
became widespread within OOP, particularly due to the influen-
tial work of the “GoF” (Gang of Four)—Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides [32]. This book
standardised precise vocabulary and formalisation for design
patterns, now commonly adopted in computer science literature
(see Table II). Since then, Design Patterns have progressively
promoted unambiguous modular and reusable code expression,
facilitating best practices and expertise dissemination among
designers and developers [28], [33], [34].

Recognising the valuable knowledge encapsulated in expert-
driven design patterns, we propose using them to integrate the
comRBB of the ABM/LMM into the computer model, ultimately
aiming at implementing modular and reusable exeRBB in the
executable model.

Additionally, using Design Patterns in computational sim-
ulation promotes reproducibility by precisely and completely
describing generic object-based model elements. Consequently,
the implemented exeRBB code is easily understandable and
replicable by the scientific community. Using established
Design Pattern names helps modellers clearly explain, justify,
and communicate the structure of their comRBB and exeRBB,
ensuring reproducibility in executable implementations from
the conceptual stage onwards.

2) NetLogo Design Pattern: In an interdisciplinary scientific
context, the NetLogo simulation platform is preferred for initial

18International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prototyping of reusable building blocks (RBB) within agent-
based ABM/LMM models.

Figure 7. The NetLogo Design Pattern allows rapid construction of an
ABM/LMM prototype using only four generic types of components (comRBB):
an omniscient observer, patches, turtles (mobile agents), and relational links
(links) between agents [1].

NetLogo simplifies modelling by providing four generic types
of reusable components (comRBB): an omniscient observer
(Observer), spatially explicit fixed cells (Patches), mobile agents
(Turtles), and social connections (Links). These components
significantly facilitate the initial modelling stage of ABM/LMM
by enabling rapid prototyping and systematic testing of generic
behaviours implemented within executable reusable building
blocks (exeRBB). This structuring of the NetLogo simulation
platform (cf. Figure 7), as proposed by Seth Tisue [35], facil-
itates modelling through clear modular organisation, thereby
promoting rapid prototyping and verification of RBBs. Never-
theless, we restrict the use of NetLogo to the initial prototyping
phase of RBB, given its limitations when dealing with intensive
real-world data processing tasks, for which higher-performance
object-oriented languages, such as Python or C++, are more
suitable.

3) Delegation Design Pattern: In computational integration
phases of an ABM/LMM, the description of numerous objects
and relationships can quickly increase complexity, exacerbated
by extensive inheritance use. However, inheritance creates
strong coupling among objects, limiting modularity, evolvability,
and reusability. To ensure optimal computer model structuring
and avoid such restrictive couplings, an alternative delegation-
based approach is necessary. The Delegation Design Pattern
precisely addresses this challenge, allowing an object to
delegate a specific part of its behaviour to another specialised
object without direct inheritance, thus reducing strong coupling.
In this work, the architectural choice of delegation, outlined in
Figure 6, enables the creation of modular, maintainable, and
easily evolvable comRBB for WTA and WTP. The characteristics
of the delegation design pattern are summarised in Table III.
In Figure 6, the price determination classes WTA and WTP
both implement the abstract method compute_price()

defined in the common interface PriceDetermination. The
abstract class PriceDetermination specifies a common
interface protocol for different price determination strategies
within the ABM/LMM model. Concrete classes WTA and WTP
represent specialised objects responsible for implementing
their specific strategies to determine asset prices, thereby
encapsulating the model’s economic concepts of WTA and
WTP. This approach notably prevents coupling between objects
of the final executable model and those from the simulation
infrastructure. The resulting object-oriented code is significantly
more modular and reusable; dependencies between objects of
the executable model and those of the simulation infrastructure
are thus substantially reduced [36]. Thus, it is essential to
design the components of the computer model with design
patterns in mind, to ensure modularity and reusability.

TABLE III
Characteristics of the Delegation design pattern according to the GoF

formalism.

Vocabulary item Meaning
Name Delegation
Problem Ensuring that an object can transfer or

delegate part of its behaviour to another
object without resorting to inheritance.

Initial context When a component must execute an oper-
ation, but the processing varies depending
on context. It is desirable to avoid strong
coupling or a rigid class hierarchy.

Forces
- Reduction of coupling between

classes.
- Easier code reuse.
- Improved maintainability.

Solution Introduce a delegate object responsible for
the desired behaviour. The primary class
redirects the call to this object, allowing
the behaviour to be specialised or modified
dynamically.

Examples
- Implementation of multiple behaviours

in agent-based simulations.
- Management of different calculation

strategies (pricing, behaviour, etc.) via
a separate object.

Consequences
- Enables combining functionalities

without multiplying subclasses.
- Makes the system more flexible and

modular.
- Simplifies future modifications or ex-

tensions.

Logic A primary object holds a reference to a
secondary object (the delegate). Calls related
to specific behaviour are transferred to this
delegate rather than being implemented di-
rectly.

Related patterns Strategy (for algorithm specialisation),
Adapter (for interface compatibility), Decora-
tor (for dynamic addition of responsibilities).

19International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Executable Model

The delegation design pattern is implemented in accor-
dance with the organisation of the WTA-comRBB and WTP-
comRBB components of the computational model shown
in Figure 6. The code is structured into abstract classes
(PriceDetermination) to facilitate the implementation
of the delegation design pattern and to implement the WTA-
exeRBB and WTP-exeRBB. As a reminder, abstract classes are
fundamental tools in object-oriented programming, allowing
code to be structured in a modular and reusable way. They
define a common interface that multiple subclasses can imple-
ment, thus ensuring a consistent organisation of the code and
facilitating its extension. Their use in the executable model
promotes separation of responsibilities, with each subclass
being responsible for implementing its own behaviours while
maintaining compatibility with the overall model. Abstract
classes also enable the addition of new functionalities without
altering the existing object structure, thereby enhancing the
flexibility and scalability of the model. In this perspective,
as illustrated in Figure 6, the creation of agents within the
computational model follows a modular approach, externalising
decision-making strategies related to WTP and WTA into
specialised object codes (exeRBB). This design avoids direct
implementation of price formation calculations within agent
classes, delegating this responsibility to dedicated objects. The
implemented exeRBB thus allows agents to adopt various
pricing strategies without altering their internal structure. Fur-
thermore, this approach facilitates the addition or modification
of strategies without requiring a complete overhaul of agent
class codes, while ensuring the reusability of these modules in
other modelling contexts.

Listing 1. The abstract class (PriceDetermination) implements the
delegation design pattern in Python.
from abc import ABC, abstractmethod
class PriceDetermination(ABC):
"""
Abstract class defining a common interface for price
decision strategies related to WTA and WTP.
Abstract methods:
compute_price(): Method to calculate the price based on
the agent’s attributes and asset characteristics.
"""

def __init__(self,delegate, **kwargs):
"""
Abstract constructor that accepts a variable number of
keywords.
arguments to provide flexibility for derived
strategies.
Args:

**kwargs: Dictionary containing named arguments
specific to derived classes (here WTP or WTA RBBs).

"""
self.__kwargs = kwargs
self.delegate = delegate
Additional initialisation specific to subclasses can
be added here.
@abstractmethod
def compute_price(self):
"""
Abstract method to calculate price (i.e., WTP or WTA).
Returns:
float: Computed price according to the decision-making
strategy implemented by subclasses.
"""
pass

In order to implement this object-oriented architecture,
the PriceDetermination module presented in List-
ing 1 is defined as an abstract class serving as a com-
mon interface for economic agents’ decision-making pro-
cesses. This interface requires implementation of the ab-
stract method compute_price(), which models the price-
formation calculation according to market dynamics. Thus,
the PriceDetermination object in Listing 1 provides a
common basis for implementing decision-making strategies
related to WTA and WTP.

Listing 2. Implementation of the exeRBB WTA in Python.
from PriceDetermination import PriceDetermination
import math
class WTA(PriceDetermination):
"""
Represents the minimum acceptable price (WTA) for
selling an asset. This class computes the WTA using
a regression model where the natural logarithm
of the price is a function of various parameters
and regression coefficients.
"""
def __init__(self, **kwargs):
"""
Initialise a WTA instance.
Keyword arguments include:
- past_land_price: Historical land price.
- regressCoeff_k0 to regressCoeff_kN:
Regression coefficients for the model.
- parcel_surface: Surface area of the parcel.
- beach_distance: Distance to the beach.
- cbd_distance: Distance to the central business
district.
- sea_viewIndex: Index representing the quality of
the sea view.
- currentTime: The current time variable.
"""
Initialise the superclass with the provided keyword ↪→

arguments.
super().__init__(self, **kwargs)
Dynamically extract regression coefficient keys
from kwargs.
This ensures that the number of coefficients is
determined by the input.
coeff_keys = sorted([key for key in kwargs if key.↪→

startswith("regressCoeff_")], key=lambda x:int(x.↪→
split("_k")[1]))

Create a dictionary mapping ’k{i}’ to its
corresponding coefficient.
self.coeffs = {f’k{int(key.split("_k")[1])}’: kwargs.↪→

get(key, 0.0) for key in coeff_keys}
Retrieve additional parameters with default values if
not provided.
self.past_land_price = kwargs.get(’past_land_price’↪→

,0.0)
self.parcel_surface = kwargs.get(’parcel_surface’,0.0)
self.beach_distance = kwargs.get(’beach_distance’,0.0)
self.cbd_distance = kwargs.get(’cbd_distance’,0.0)
self.sea_viewIndex = kwargs.get(’sea_viewIndex’,0.0)
self.currentTime = kwargs.get(’currentTime’,0.0)

def compute_price(self):
"""
Compute the minimum acceptable price (WTA) using
the regression formula: ln(price) = k0 +
k1 * log(parcel_surface) +
k2 * (log(parcel_surface))^2 +
k3 / beach_distance + k4 / cbd_distance +
k5 * sea_viewIndex + k6 * currentTime
Returns:
The computed price, obtained as the exponential of:
ln(price).
In the event of a division by zero, 0.0 is returned.
"""
try:
Compute the natural logarithm of the parcel’s
surface area.
log_parcel = math.log(self.parcel_surface)

20International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Calculate the natural logarithm of the price based
on the regression model.
ln_price = (
self.coeffs.get(’k0’, 0.0) +
self.coeffs.get(’k1’, 0.0) * log_parcel +
self.coeffs.get(’k2’, 0.0) * (log_parcel ** 2) +
self.coeffs.get(’k3’, 0.0) / self.beach_distance +
self.coeffs.get(’k4’, 0.0) / self.cbd_distance +
self.coeffs.get(’k5’, 0.0) * self.sea_viewIndex +
self.coeffs.get(’k6’, 0.0) * self.currentTime
)
Return the computed price by exponentiating
ln(price).
return math.exp(ln_price)
except ZeroDivisionError as e:
Error message in case a division by zero occurs.
print("Error computing WTA: division by zero.", e)
return 0.0

In Listing 2, the code excerpt demonstrates how the
exeRBB PriceDecision specifically implements the
compute_price() method, which is used to calculate the
minimum acceptable price for a seller agent’s WTA in the
ABM/LUCC.

Similarly, the WTP class shown in Figure 6 implements the
WTP strategy for buyer agents by determining the maximum
price a buyer agent is prepared to offer. This amount is
calculated based on the agent’s available budget, anticipated
selling price, estimated construction costs, and desired profit
margin. The modules WTA and WTP exeRBB inherit from the
PriceDetermination class and implement their own com-
putational logic through the methods compute_price(),
tailored to the specific strategies of seller and buyer agents,
respectively. Thus, agents within the model can instantiate a
WTA or WTP object and delegate the price calculation to it,
without directly handling the complexity of these decisions.
This organisation, structured into increasingly specialised imple-
mentations of PriceDetermination, promotes a modular,
scalable, and reusable architecture, ensuring a clear separation
of responsibilities and enhanced flexibility in adapting the
model to various economic scenarios. The exeRBBs thus
defined not only contribute to the modularity and clarity of the
executable model’s code but also facilitate its adaptation and
reuse in other ABM/LMM modelling contexts. This enhances
the modularity, reusability, and flexibility of the model by
allowing the dynamic customisation of behaviours within the
exeRBBs.

V. Discussion and preliminary results

Owing to its modular architecture based on RBBs, the devel-
oped ABM/LMM exhibits high flexibility, enabling extensive
testing, fine-tuning, and comparative evaluation of various
simulation scenarios. Within this context, initial simulation
experiments focus on analysing the behaviour of previously
developed RBBs. To this end, several land and real estate
policy tests scenarios were considered to evaluate how the
WTA and WTP RBBs influence price formation and market
dynamics. Examples of these test scenarios, preliminarily
validated through prototyping in NetLogo [35], for the validation
of RBBs [1], are presented and discussed in detail in Table IV.

Each scenario is based on varying configurations of the
WTA and WTP RBBs, enabling a detailed analysis of economic,

TABLE IV
Example scenarios of land and real estate policies simulated in Corsica.

Scenario Description
BAU This baseline scenario extrapolates current trends, serving

as a comparative reference to evaluate the effects of more
interventionist policies.

BTRI This scenario explores the impact of a total prohibition
of new tourist rental investments, reflecting drastic yet
plausible policy measures to curb tourist accommodation
saturation.

TTRI A tax varying from 0.01 to 0.5 is imposed on revenues
derived from tourist rental investments. This measure aims
to reduce profitability, limiting investment expansion and
influencing LM dynamics.

CZ This scenario mandates a minimum compulsory distance
(between 1 and 50 distance units) from the coastline for
any new tourist rental investment. The goal is to protect
coastal zones by reducing development concentration near
sensitive habitats.

CBD-Z Similar to coastal zoning, this policy imposes a mandatory
minimum distance (1 to 50 distance units) from the
city centre (CBD) for new tourist rental investments.
Its objective is to redistribute tourist accommodations
across the territory, alleviating urban centre pressures and
encouraging development in less exploited areas.

TABLE V
Fixed Parameters

Input Value
Percentage of low revenue households 54%
Percentage of middle revenue households 20%
Percentage of high revenue households 26%
Percentage of households that own their home 52%
Percentage of households that own a buildable
parcel of land

87%

Share of households income spent on housing 0.3
Time Horizon (year) 20
Transport cost (=C/km) 0.5404
Number of buildable parcels of land 2,500
Number of resident households 5,625
Number of developers 4
Number of Rent days 220
Slope of the bid function 0.8

regulatory, and behavioural parameters influencing agents’
price-setting processes. These variations allow a nuanced
examination of public policy impacts on land and real estate
dynamics, particularly regarding price setting, market pressures,
and housing accessibility. Table V summarises the fixed
parameters used throughout simulation experiments, which
remain constant to provide reference points.

Table VI presents parameters randomly assigned values
following a uniform distribution, introducing variability into
the simulations.

Data sources for these simulation experiments include
the detailed PERVAL database provided by the Chamber of
Notaries, offering various land and property market indicators,
and AirDNA, which supplies data on short-term holiday rentals
to estimate average daily revenue from tourist properties.
Additional datasets from the INSEE (French National Institute
of Statistics and Economic Studies) provide demographic and
economic parameters. Supplementary data sources include
references [37] for construction sector data and [38] for trans-

21International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

portation costs to the CBD, alongside valuable insights from
discussions with real estate agents and property developers.

As an example, we present a selection of preliminary
simulation results obtained using the parameters listed in Table
VII.

Figure 8. Number of developer bankruptcies by scenario.

Analysing these results, we extensively examine the impacts
of agent interactions on Corsica’s land and real estate dynamics.
Each simulated policy scenario illuminates potential public pol-
icy effects on urban development and HM evolution. Detailed
examination of developer bankruptcies, market price variations,
distances to strategic interest points such as the Central Business
District (CBD) and coastline, as well as the Mean Sea View
Index, provided particularly insightful findings. These indicators
offer valuable interpretations of the economic, social, and
environmental consequences of each policy. Specifically, we
detail developer bankruptcies and average price trends observed
across both studied markets for each simulated scenario.

TABLE VI
Random uniform value parameters

Input Value
Land Area (m2) [500, 2500[
Sea view Index [0.75, 23.25[
Disposable budget of low revenue
households

[6200, 23200[

Disposable budget of middle rev-
enue households

[10000, 40000[

Disposable budget of high revenue
households

[11500, 71500[

Disposable budget of Investor [900000, 1100000[
Interest rate [0.02, 0.04[
Discount rate [0.01, 0.11[
Leeway [0.05, 0.09[
Net return of rental [0.65, 0.75[
House loss value [0.08, 0.12[
Margin rate [0.02, 0.024[
Cost Parameter (=C/m2) [750, 1000[
Max Building sites [1, 3[
Number of Bedrooms [1, 6[
House surface : a +
b(N. of Bedrooms − 1)

a : [18, 31[,a : [24, 33[

Building time : 8 +BTSup BTSup : [0, 4[

TABLE VII
Experimental parameters and data sources.

Aspect Details
Initial Experiments start with an initial

seed of 0 to ensure reproducibility.
Replications Simulations ran for a total of 2,500 replications

over 40 time steps, with each step representing
a semester.

Environment The world is a grid of 501×501 = 251,001 patches,
with the CBD located at coordinates (20, 50).

Data The ABM/LUCC heavily relies on real-world
data for accuracy, including results from four
spatial regressions and a hedonic model
categorising households by income classes.

A. Developer Bankruptcies

Figure 9. Dispersion of price per square meter for LM and HM.

Figure 8 reveals significant variation in developer bankrupt-
cies across scenarios. Developer bankruptcies totalled 2,791
under the BAU scenario, escalating sharply to 27,333 under the
BTRI scenario. Scenarios TTRI, CZ, and CBD-Z demonstrate
relatively stable or mildly favourable conditions for developers,
highlighting the delicate balance required between stringent
regulation and market economic sustainability.

B. Market Price Variations
Figure 9 demonstrates LM resilience, displaying only minor

price fluctuations across scenarios.

22International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Comparison with the mean distance to the CBD in the LM and
HM markets.

While the LM generally withstands simulated policies, the
HM reacts significantly to restrictive scenarios, especially
BTRI, with notably higher price increases. This pattern aligns
with typical market responses under restrictive conditions,
underscoring substantial impacts of such policies on supply-
demand dynamics.

C. Influence of Central Business District (CBD)
Figure 10 assesses the scenarios’ effects on average transac-

tion distances to the CBD. The BTRI scenario notably induces
a shift in investor-to-household purchasing, reducing average
distances to the CBD, thus indicating household-driven spatial
realignment towards urban centres.

Investor-driven submarkets show less sensitivity to CBD-
based zoning policies, highlighting investors’ resistance to such
spatial regulation.

D. Distance to the Coastline
Figure 11 analyses average distance variations to the coastline

across scenarios, revealing increased distances in the CZ
scenario, especially among investors. Conversely, BTRI triggers
decreased coastal distances in the HM, suggesting spatial
substitution and a shift favouring household proximity to coastal
areas. These observations illustrate the spatial behavioural
impacts regulatory policies exert on economic agents, shaping
territorial development dynamics.

VI. Conclusion and future work
In this article, we have presented the 5-SSIMP modelling

method, based on the design, integration, and implemen-
tation of RBBs. We specifically focused this study on the
economic concepts of WTA and WTP. By applying the iterative
composition-decomposition modelling method 5-SSIMP to the
development of an ABM/LMM, we demonstrated how these

Figure 11. Comparison with the mean distance to the Beach in the LM and
HM markets.

modular blocks (conceptual, computational, and executable)
effectively structure price formation dynamics and economic
agents’ decision-making processes. Applying this method
to the case study of LM and HM in Corsica, concretely
illustrated the benefits brought by the use of the Delegation
Design Pattern in the development of exeRBBs in Python.
This architectural choice significantly improves the modularity,
flexibility, and reusability of the executable model, while
simplifying the integration of complex economic concepts
such as WTA and WTP. The modular approach proposed
here offers several key advantages: it reduces development
time and associated costs; ensures enhanced robustness of the
software code; and facilitates reproducibility of simulation
experiments. Furthermore, it promotes effective collaboration
between economists and software development specialists,
enabling easier adaptation of models to different territorial
contexts or new research objectives. In terms of future research,
this work opens several promising avenues. Firstly, it would be
valuable to extend experimentation by diversifying public policy
scenarios further, aiming to better understand their impacts
on socio-economic and environmental dynamics. Secondly,
integrating exeRBBs as modules within a dedicated Python-
based software infrastructure, would facilitate the construction,
parametrisation, and simulation of these models across various
geographical and thematic contexts. Lastly, this approach also
opens promising interdisciplinary perspectives by fostering
dialogue between economic and computer science modellers.

Our findings rely on calibrating the model to a single
island—Corsica—which constitutes one of the limitations of
our study. Addressing this constraint will be the focus of future
work, notably by applying the model to other territories across
the Mediterranean basin to assess its external validity.

23International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

References
[1] E. Innocenti, D. Prunetti, M. Delhom, and C. Idda, “Reusable

Building Blocks for Agent-Based Simulations: Towards a
Method for Composing and Building ABM/LUCC”, in The
16th International Conference on Advances in System Modeling
and Simulation (SIMUL 2024), 2024, pp. 28–33.

[2] U. Berger et al., “Towards Reusable Building Blocks for Agent-
Based Modelling and Theory Development”, Environmental
Modelling & Software, vol. 175, pp. 1–12, 2024.

[3] D. C. Parker, “An Economic Perspective on Agent-Based
Models of Land Use and Land Cover Change”, in The Oxford
Handbook of Land Economics, J. Duke and J. Wu, Eds., Oxford
University Press, 2014, ch. 16, pp. 402–429.

[4] D. C. Parker, D. G. Brown, J. G. Polhill, P. J. Deadman,
and S. M. Manson, “Illustrating a New “Conceptual Design
Pattern” for Agent-Based Models of Land Use via Five Case
Studies—the MR POTATOHEAD Framework”, in Agent-Based
Modelling in Natural Resource Management, Universidad de
Valladolid, 2008.

[5] D. C. Parker et al., “MR POTATOHEAD: Property Market
Edition | Development of a Common Description Template and
Code Base for Agent-Based Land Market Models”, in 15th
Annual Social Simulation Conference (SSC 2019), 2019.

[6] H. J. Davenport, “Proposed Modifications in Austrian Theory
and Terminology”, The Quarterly Journal of Economics,
vol. 16, no. 3, pp. 355–384, 1902.

[7] J. Schmidt and T. H. A. Bijmolt, “Accurately Measuring
Willingness to Pay for Consumer Goods: A Meta-Analysis of
the Hypothetical Bias”, Journal of the Academy of Marketing
Science, vol. 48, pp. 499–518, 2020.

[8] D. Kahneman, J. L. Knetsch, and R. H. Thaler, “Experimental
Tests of the Endowment Effect and the Coase Theorem”,
Journal of Political Economy, vol. 98, no. 6, pp. 1325–1348,
1990.

[9] W. L. Adamowicz, V. Bhardwaj, and B. Macnab, “Experiments
on the Difference between Willingness to Pay and Willingness
to Accept”, Land Economics, vol. 69, no. 4, pp. 416–427, 1993.

[10] C. A. Vossler, S. Bergeron, M. Doyon, and D. Rondeau,
“Revisiting the Gap between the Willingness to Pay and
Willingness to Accept for Public Goods”, Journal of the
Association of Environmental and Resource Economists, vol. 10,
no. 2, pp. 413–445, 2023.

[11] A. Huyssen and R. Malleville, “En Corse, 86 % de la Population
Vit dans l’Aire d’Attraction d’une Ville”, Insee Flash Corse,
vol. 54, 2020, https://www.insee.fr/fr/statistiques/4808381.

[12] H. Touzani, “Des Résidences Principales et Secondaires en
Forte Croissance”, Insee Flash Corse, vol. 32, 2018, https:
//www.insee.fr/fr/statistiques/3571002.

[13] D. Vandevoorde and N. M. Josuttis, C++ Templates: The
Complete Guide. Addison-Wesley Professional, 2002, isbn:
978-0201734843.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design
Patterns: Abstraction and Reuse of Object-Oriented Design”,
in ECOOP’93—Object-Oriented Programming: 7th European
Conference, Kaiserslautern, Germany, Springer, 1993, pp. 406–
431.

[15] M. J. Blas, S. Gonnet, and B. P. Zeigler, “Towards a Universal
Representation of DEVS: A Metamodel-Based Definition of
DEVS Formal Specification”, in 2021 Annual Modeling and
Simulation Conference (ANNSIM), IEEE, 2021, pp. 1–12.

[16] I. Jacobson, J. Booch, and G. Rumbaugh, The Unified Modeling
Language Reference Manual. Addison-Wesley, 2021.

[17] R. Cervenka and I. Trencansky, The Agent Modeling Lan-
guage—AML: A Comprehensive Approach to Modeling Multi-
Agent Systems. Springer Science & Business Media, 2007.

[18] V. Grimm et al., “The ODD Protocol for Describing Agent-
Based and Other Simulation Models: A Second Update to
Improve Clarity, Replication, and Structural Realism”, Journal
of Artificial Societies and Social Simulation, vol. 23, no. 2,
2020.

[19] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to
SysML: The Systems Modeling Language. Morgan Kaufmann,
2014.

[20] M. Aniche, J. Yoder, and F. Kon, “Current Challenges in Practi-
cal Object-Oriented Software Design”, in 2019 IEEE/ACM 41st
International Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER), IEEE, 2019, pp. 113–116.

[21] M. Najdek, M. Paciorek, W. Turek, and A. Byrski, “Three
New Design Patterns for Scalable Agent-Based Computing and
Simulation”, Informatica, vol. 35, no. 2, pp. 379–400, 2024.

[22] M. Rudolph, S. Kurz, and B. Rakitsch, “Hybrid Modeling
Design Patterns”, Journal of Mathematics in Industry, vol. 14,
no. 1, p. 3, 2024.

[23] L. Serena, M. Marzolla, G. D’Angelo, and S. Ferretti, “Design
Patterns for Multilevel Modeling and Simulation”, in 2023
IEEE/ACM 27th International Symposium on Distributed
Simulation and Real Time Applications (DS-RT), IEEE, 2023,
pp. 48–55.

[24] D. Prunetti et al., “ABM/LUCC of a Complex economic system
of land and home markets facing an intense residential devel-
opment”, in 2021 IEEE Symposium Series on Computational
Intelligence (SSCI), IEEE, 2021, pp. 1–8.

[25] T. Filatova, D. C. Parker, and A. Van der Veen, “Agent-Based
Urban Land Markets: Agent’s Pricing Behavior, Land Prices
and Urban Land Use Change”, Journal of Artificial Societies
and Social Simulation, vol. 12, no. 1, p. 3, 2009.

[26] E. Innocenti, C. Detotto, C. Idda, D. C. Parker, and D. Prunetti,
“An Iterative Process to Construct an Interdisciplinary ABM
Using MR POTATOHEAD: An Application to Housing Market
Models in Touristic Areas”, Ecological Complexity, vol. 44,
p. 100 882, 2020.

[27] C. Alexander, A Pattern Language: Towns, Buildings, Con-
struction. Oxford University Press, 1977.

[28] E. M. Buck and D. A. Yacktman, Les Design Patterns de
Cocoa. Pearson Education France, 2010.

[29] T. M. H. Reenskaug, “User-Oriented Descriptions of Smalltalk
Systems”, Byte, vol. 6, no. 8, 1981.

[30] R. Smith, “Panel on Design Methodology”, in ACM SIGPLAN
Notices, ACM, vol. 23 (5), 1987, pp. 91–95.

[31] W. Cunningham and K. Beck, “Using Pattern Languages for
Object-Oriented Programs”, Proceedings of OOPSLA, vol. 87,
1987.

[32] R. Johnson, E. Gamma, R. Helm, and J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Boston, Massachusetts: Addison-Wesley, 1995.

[33] J. Hunt, Scala Design Patterns—Patterns for Practical Reuse
and Design. Springer, 2016.

[34] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture Volume 1: A
System of Patterns. Wiley, 1996.

[35] S. Tisue and U. Wilensky, “NetLogo: A Simple Environment
for Modeling Complexity”, in International Conference on
Complex Systems, Citeseer, vol. 21, 2004, pp. 16–21.

[36] E. M. Buck and D. A. Yacktman, Cocoa Design Patterns für
Mac und iPhone. mitp Verlags GmbH & Co. KG, 2010.

[37] RF, “Plateforme Ouverte des Données Publiques Françaises”,
2024, [Online]. Available: https://www.data.gouv.fr/ (visited
on 05/27/2025).

[38] RF, “Impots.gouv.fr”, 2024, [Online]. Available: https://www.
impots.gouv.fr/ (visited on 05/27/2025).

24International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Model-Based Development of Code Generators for Use in Model-Driven Development
Processes

Hans-Werner Sehring
Department of Computer Science

NORDAKADEMIE gAG Hochschule der Wirtschaft
Elmshorn, Germany

e-mail: sehring@nordakademie.de

Abstract—Model-driven software development is gaining at-
tention as a software engineering approach due to the various
benefits it offers. Typical approaches start with the modeling of the
application domain at hand and continue with the specification
of the software to be developed. Results are documented by
specific software engineering artifacts. Especially in model-driven
approaches, these artifacts are formal or semi-formal models.
Model transformations are applied to develop and refine artifacts.
In a final step, code is generated from the models. Code can
be source code written in specific programming languages,
configuration files, and the like. Practice shows that model-based
code generators have to bridge a rather large gap between the most
refined software models and the compilable code that implements
these models. This makes the development of code generators
itself an expensive task. In this article, we discuss ways to break
down the development of code generators into smaller steps. Our
discussion is guided by both principles of compiler construction
and by an application of model-driven development itself. Using
a modeling language, we demonstrate how code generation can
be organized to reduce development costs and increase reuse. In
addition, program code becomes part of the model transformation
sequence, allowing code changes to be automated and model
elements to be referenced from code.

Keywords-software development; software engineering; symbolic
execution; top-down programming.

I. INTRODUCTION

Software construction requires methods and processes that
guide development from an initial problem statement through
all stages of the software lifecycle, culminating in the imple-
mentation, testing, rollout, operation, and maintenance of the
software.

Model-Driven Software Engineering (MDSE) strives to
support such development processes by making explicit

• the artifacts created at each stage and possibly intermediate
results

• the decisions that lead to the development of each artifact.
Ideally, MDSE supports the entire software lifecycle from re-
quirements engineering and domain concepts through software
architecture, design, and programming to software operations.

Figure 1 outlines some typical artifacts of software en-
gineering processes. While many of them can be handled
in MDSE processes, executable code must be generated
for a particular target platform, such as a Programming
Language (PL), software libraries, a runtime environment,
and a target infrastructure. Later stages that depend on the
code, such as operations tasks, must also be considered in

code generation. This prepares the code for activities such as
maintenance, monitoring, etc.

The support provided by MDSE approaches has advantages
in many application areas. Models of sufficient formality
can be checked for completeness or correctness to a certain
extent. Traceability between artifacts allows understanding
of design decisions and model transformation steps during
software maintenance. A final step of automated generation
of executable code can save development costs during the
implementation phase. Fully automated generation allows
incremental development through model changes if the software
is generated in an evolution-friendly manner.

Therefore, code generation from software models allows to
take advantage of the potential benefits of modeling in MDSE.
However, experience shows that generator development tends
to be complex and costly. We see several reasons for this.

• The abstraction that models provide over programming
language expressions requires code generators to deal with
a higher level of abstraction than compilers for PLs.

• Implementation details that are not reasonably part of
software models must be added in code during generation.

• Various non-functional requirements of professional soft-
ware development must be satisfied by generated code
in addition to the requirements explicitly reflected by the
software models. A code generator must add code for
these as cross-cutting concerns.

Furthermore, these aspects of code generation typically require
the development of project-specific generators.

Code generators are similar to compilers for high-level
PLs. From this point of view, a model-driven process can
be divided into a frontend and a backend part. In this logical
division, the frontend deals with the more abstract models of
the application domain and software design in model-to-model
transformations (M2MTs). These early phases are covered by
MDSE approaches. The backend activities of code generation,
optimization, and target platform considerations are often
hidden in implementations of comprehensive model-to-text
transformations (M2TTs).

In this article, we propose a structure for decomposing code
generator development for easier development and a higher
level of reuse.

This article extends the presentation of a conference paper
on the topic [1].

25International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(Business)
Goals

Requirements

Systems
Architecture

OperationsCode

Goal selection
Goal quantification
Solution hypothesis

Domain
Model

Solution
Architecture

Software
Architecture

Subject domain section
Conceptualization

AbstractionComponent design
General interfaces

Processes
Data flows

Component configuration
Product customization
Interface specifications

Services

Product definition
Service design

Language selection
Software design

Choice of libraries

Communication paths

Runtime environments
Resource demand

Non-functional requirements

Infrastructure
SLAs
Monitoing points

Runtime behavior

Domain Constraints

Concept

Figure 1. Typical software engineering artifacts.

The remainder of this article is organized as follows: In
Section II, we review model-driven software engineering with
a focus on the final step of code generation. A corresponding
approach to code generation is outlined in Section III. We
use a meta modeling language to present some models as
experiments with the approach. This language is introduced in
Section IV. In Section V, we illustrate the model-driven code
generation approach with some sketches of code generation
models. Some remarks on the derivation of code models from
more abstract models are made in Section VI. The paper is
concluded in Section VII.

II. MODEL-DRIVEN SOFTWARE DEVELOPMENT

In this section, we revisit MDSE in general and code
generation in particular in order to lay the foundation for
the discussion of model-based code generation in the following
sections.

A. Subject Domain Modeling

With few exceptions, the purpose of software is to solve
some a real-world problem. For example, software is used to
perform scientific calculations, to support a company’s business
processes, or to control hardware. As a result, a software
project is typically embedded in a project with a broader scope.
Therefore, the analysis and documentation of the task at hand
begins with entities that lie outside the software domain, but
within the broader subject domain, application domain, or
simply domain.

The purpose of a domain model is twofold: it clarifies the
terms and rules of the (real-world) application scenario and it
defines a possible solution to the task at hand in terms of the
application domain. As a model, it furthermore provides an
abstraction by defining the section of the application domain
that is considered by the software to be built.

Figure 1 presents typical stages of a project by naming
the artifacts under consideration. Typically, a project begins
by setting goals. Goals define success criteria for the overall
project. Goals guide the choice of abstraction for the domain
model, which is also defined in an early stage of a project. The
same goes for the requirements (for the software), which are
derived from both the goals and the domain conceptualization.

Subject domain modeling is beyond the scope of this article.

B. Software Modeling

Models of the early steps in the software lifecycle are
formulated from the perspective of the application domain.
From these, models of software from a technical perspective
are derived. The solution architecture typically is the link
between the domain perspective and the software perspective
(see Figure 1).

Software description spans a series of models, starting from
abstract ones to increasingly concrete ones. M2MTs are applied
to derive models, even though mainly design decisions drive
the modeling process.

When software models reach a sufficiently concrete level,
code is finally emitted by M2TTs. The code generation
and maintenance part is often not well represented in an
MDSE process, though. On top of that, in most cases textual
representations of code are decoupled from the models of
earlier design phases.

Ideally, models of the software also support the operations
and maintenance phase. In this case, they must be available at
runtime [2].

The more abstract descriptions of software at the level of
software architecture specifications are not in the focus of this
article. However, it depends on the type of M2TTs or code
generators at which point the transition from abstract software
models to concrete source code takes place.

26International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Cases of Code Generation

We see two application scenarios for software construction
with MDSE:

1) approaches for systems of a given application class that
share fixed functionality at some level of abstraction

2) approaches for application-specific functionality
A typical case of an application class with fixed functionality

is the case of information systems, that typically provide only
Create, Read, Update, Delete (CRUD) operations. Models
of information systems, therefore, mainly represent domain
entities and their relationships. Software generation is based
on fixed patterns for code that provides CRUD functionality
for the various entities.

Approaches that can be found in the class of generators
that produce code with fixed functionality work with meta-
programming [3][4], template-based approaches (see below),
and combinations of these two [5]. Since generators for a
specific target implementation can be built in a generic way,
MDSE can be employed comparatively easy in this scenario.

In the general case of software containing custom business
logic, software must be generated according to specified
functionality. To automatically derive working software from
specifications, MDSE approaches for application-specific busi-
ness functionality must include formal models for precise
definitions.

Means for deriving software from formal models are often
built into editing tools for the respective formalisms. With
respect to running software, formal models are typically used
in one of two ways: Either code is generated from such models,
or hand-written code is embedded in formal models at specific
extension points.

For production-grade software systems, code generation is
the only option in order to satisfy nonfunctional requirements.
Depending on the modeling approach chosen, a model inter-
preter may not provide sufficient performance or scalability
at runtime. The coexistence of the higher-level model and the
lower-level PL code can increase maintenance complexity due
to the different roles involved. Since changes to a model can
affect the code [6], it is crucial to be able to trace of code
design decisions.

A practical software system consists of different components,
each of which is typically created by one generator each.
Therefore, multiple code generators need to work in concert.
To this end, different generator runs have to be orchestrated [5],
and information exchange (for example, for identifiers used in
different components) has to be managed [4].

D. Code Generation Techniques

Code is generated in a final step of an MDSE process, often
based on M2TTs [7].

Special attention is paid to code generation, as this step can
be well formalized in an MDSE process. There are several
techniques for code generation, mainly generic code generators,
meta-programming, and template-based techniques. Generative
AI could be an alternative.

This way, there is reuse of software generators that translate
formal specifications into code in a generic way. Typically,
there is little or no way to direct the code generation for the case
at hand [8]. Therefore, the generated code must be wrapped in
order to be integrated into a production-grade software system,
for example, to add error handling and additional code for
monitoring.

a) Generic Code Generators: Custom functionality gen-
erally needs to be formulated in a Turing-complete formalism.
Although the ability to verify such descriptions is limited, their
expressiveness is required. Formal specifications of software
functionality can be translated into working software by a code
generator, that works like a compiler for a PL.

Code generators of modeling tools provide a well-tested
and generally applicable translation facility. Specifications
according to a given formalism are translated into a supported
target environment. Examples include parser generators that
generate code from grammars, software generators that take
finite state machines as input [9], and those that use Petri Nets
to execute code on firing transitions [10].

Generic code generators require significant development
effort. But they can be developed centrally in a generic way.
Therefore, there is a high degree of code reuse in the form
of generators [11]. However, the models used as input are
application-specific, and they must be more elaborate than the
input for other forms of generators.

b) Meta-Programming: Programs that generate pro-
grams are an obvious means of generating software. Meta-
programming is possible with PLs, that allow the definition of
data structures that represent code and from which code can
be emitted. Since many widely used languages do not include
meta-programming facilities, this capability is added through
software libraries or at the level of development environments.

Meta-programming provides maximum freedom in generat-
ing custom code. Consequently, results can be tailored to the
application at hand, including specific business logic.

However, the development of such generators tends to be
costly, depending on the degree of individuality of code [12].
This is due to the fact that meta-programs are harder to maintain
and to debug due to their abstract nature. In addition, code
reuse is very low for custom code.

c) Templates: Code with recurring structures can be
formulated as templates with parameters for the variations of
this uniform code. Code is generated by applying the templates
with different parameter values.

A prominent example of a template-based approach is used
for the Model-Driven Architecture (MDA). The MOF Model to
Text Transformation Language [13] provides a means to define
code templates based on (UML) models.

Templates are easy to write, depending on the degree of
generics. They allow adaptation to the project at hand by
making changes to templates. The degree of reuse of templates
within a project can be high, depending of the structural
similarities between parts of the code. Cross-project reuse
can be expected to be quite low.

27International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Global Definitions Application-Specific Definitions

APM
Abstract Programming Model

ADM
Application Design Model

CPM
Concrete Programming Model

AIM
Application Implementation Model

Figure 2. Code models and their relationships.

d) Generative AI: The emerging generative AI approaches
based on large language models provide another way to
generate code from descriptions. Based on a library of examples,
they allow the interactive generation of code from less formal
descriptions, especially natural language expressions.

Generative AI can deal with complex requirements and rules.
It has the advantage of being able to generate code in multiple
PLs from (almost) the same descriptions.

There are indications that generative AI may be particularly
well suited to producing code on a small scale, for example,
individual modules [14]. Final quality assurance and assembly
currently remains a manual task.

Instead of generating the actual software solution, generative
AI can also be used to create code generators [7].

III. MODEL-BASED CODE GENERATION

In this paper, we discuss a way to construct code through
a series of model refinement steps and final code generation.
Thus, it follows the typical theme of M2MTs followed by an
M2TT. However, our goal is to make the code generation step
nearly trivial and fully automatic. To achieve this, we propose
certain code models that bridge the gap between domain or
solution models and executable code.

Our goal is to reduce the complexity of generators through
abstraction and to reduce costs through reuse of abstract code.

Figure 2 gives an overview of the kinds of code models.
Those in Global Definitions are provided centrally as a kind of
modeling framework. Those in Application-Specific Definitions
are models that are provided for each software project.

The four model boxes in the figure represent classes of
models. There will be several concrete models for each of
them.

We describe the models in the following subsections. Exam-
ples are given in the following main section.

The outline of the approach is as follows:
• Abstraction leads to a hierarchy of models.
• An Abstract Program Model (APM) provides a generic

model of code.
• An Application Design Model (ADM) defines the func-

tionality of a software system in terms of an APM.
• A Concrete Program Model (CPM) serves as a technology

model; it maps an APM to a concrete implementation
technology, such as a PL

• An Application Implementation Model (AIM) is used for
code generation; it provides a project-specific association
of the desired functionality and a technology model

With these models, some degree of reuse is achieved on the
level of

1) programming models / building blocks of abstract pro-
grams

2) idioms and design patterns for refactoring and optimizing
abstract programs

3) code generation from abstract representations of the
constructs of a particular PL into code

A. Models of Programming

APMs serve as meta-models for abstract programs. Pro-
gramming paradigms constitute a possible starting point for
describing programming in general. Models of paradigms help
to capture the essence of a class of PLs.

Properties of hybrid languages can be captured by combining
models of programming paradigms. To this end, the modeling
language used should allow models to be combined, and
paradigm models must be set up to allow combinations.

There are differences between existing PLs that cannot
be captured within one central model of programming. For
example, object-oriented PLs have different ways of handling
multiple inheritance. Therefore, there may be coexisting pro-
gramming models, even for the same programming paradigm.

B. Assigning Functionality to Domain Models

In contrast to pure programming, program models in an
MDSE process refer to more abstract models, especially those
formulated from an application domain perspective. Program
models result from M2MTs, or they refer to source models.
Resulting model relationships are a basis for traceability [15].

Figure 3 illustrates a model relationship. A hypothetical
domain model contains a SalaryIncrease concept with a Raise
subconcept . This specification is to be implemented using an
imperative programming language, so there is, for example, a
ConditionalStatement. The resulting model of the code for
the software is represented as an ADM with a procedure
CheckTargetSalary.

Application design models are essentially attributed syntax
trees. In a kind of “reverse programming”, we manually
construct syntax trees and generate code from them. This
is not the right level for manual development of software
generators. But program models can be derived from domain
models similar to template-based software generation. The
example in Figure 3 can be viewed this way. The advantage
of abstract models and model relations over code templates is
the independence from concrete programming languages. This
allows us to make an early connection between a domain and
a code model while still having the option of choosing the
implementation details, including the programming language
or other implementation technologies to be used.

28International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Domain Model
(from Project)

Programming Model
(global)

SalaryIncrease

Application Design

ConditionalStatement

CheckTargetSalary

...Raise

GreaterThanComparison

Condition

Raise 0

StateChange

FalseCaseTrueCase

Error

Salary+

Figure 3. Typical software engineering artifacts.

C. Stepwise Refinement of Programming Models

Concrete models define which language constructs are
available in a particular PL that is selected for implementation.
For code generation, the abstract application code (given as an
ADM) is combined with a CPM containing models of typical
programming language constructs / idioms etc. in generalized
form. M2MTs are applied to the combined model to transform
it into an AIM that is suitable for code generation.

Model transformation consists of refining abstract program
models with respect to a concrete PL or other implementation
technology. There are several reasons why concrete models
differ from abstract programming models. For example, there
are different ways to implement abstract code in concrete
PLs, similar PLs may have different best practices, they may
have different constraints, and they may require different
optimizations.

The transformation from an abstract to a concrete program
need not be done in one step. For example, there is typically
a hierarchy of abstractions, from abstract programs at the
programming paradigm level, to classes of PLs and PL families,
to concrete PLs, PL implementations or dialects, or even project-
specific style guides.

D. Generating Code from Abstract Programs

An AIM is a model of a program that is suitable for code
generation. This means that all parts of a model are assigned
a concrete PL expression and thus a syntactic form.

With this model property, code can be generated by assem-
bling pieces of code that each represent model entities.

IV. M3L OVERVIEW

We use the Minimalistic Meta Modeling Language (M3L)
as our modeling notation. This language is briefly introduced
in this section in order to discuss some model sketches in the
remainder of the article.

A. Basic Concept Definitions

The M3L is a (meta) modeling language that has been
reported about. It is minimal in the sense that it is designed
with a sparse syntax that is oriented towards metalogic and a
simple semantics that basically breaks down to set theory.

A model in the M3L consists of a series of definitions of
concepts. A concept definition, in its simplest form, just names
one concept:

A

Naming a concept leads to its evaluation (see Section IV-D
below), if it exists, or to its creation otherwise. In the simplest
form, just the name is introduced. Therefore, in either case,
the concept A is defined after the above statement.

A concept can be defined as a refinement of another. For
example, the following statement defines the concept A as a
refinement of the concept B using the “is a” / “is an” clause.

A is a B

A is also called a subconcept of B, B the base concept or
generalization of A. Multiple base concepts can be given at
once:

A is a B, an E

Refinements inherit the definition from their base concept.
This includes base concepts, content (see below), and rules
(see below).

Using the “is the” clause instead defines a concept as the
only specialization of its base concept.

C is the D

The concept C may have further base concepts, but D has no
refinements other than C.

There may be multiple definitions of one concept. If
definitions refer to the same concept name, their effect is
cumulated.

A is a B
...
A is an E

defines A as a subconcept of both B and E.

B. Contextual Concept Definitions

A concept C is defined in the context of a concept A by a
definition of the form

A is a B {
C is a D

}

C is part of the content of A. Each context defines a scope,
and scopes are hierarchical. Concepts like A are defined in

29International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an unnamed top-level context. A concept A is visible in the
context of a concept C if A belongs to the content of C or if
there is a concept B such that A is visible in the context of
B and C belongs to the content of B.

There can be multiple statements about a concept with a
given name in different scopes. Contextual definitions are
called redefinitions. All visible statements about a concept are
cumulated. This allows concepts to be defined differently in
different contexts. For example, the statements

A { C is a D }
C

define C as a specialization of D in the context of A, but
without base concept in the topmost context.

A concept in a nested context is referenced as

C from A

There are well-defined names that refer to a part of a
concept: “the concept” refers to the concept of a current
definition, “the name” to its name, and “the content” refers to
all content concepts of a concept. These are particularly used
in refinements and redefinitions, such as

ListOfThings {
Head is a Thing
Tail is a ListOfThings
AddToList {

Elem is a Thing
} is a ListOfThings {

Elem is the Head
the concept is the Tail

}
}

This code allows adding a element to a singly linked list by
using a current list as the tail of a new list (last line).

C. Semantic Rules

Semantic rules can be defined on concepts, denoted by a
double turnstile (|=), in code written as “|=”. A semantic rule
references another concept, that is returned when a concept
with a semantic rule is referenced. Like for any other reference,
a non-existing concept is created on demand.

The scope of a semantic rule is specific: concepts referenced
by the rule are resolved in the context of the concept to which
the semantic rule belongs. If the rule leads to the creation of
a new concept. then this concept is placed in the same context
as the concept carrying the rule.

An example of a semantic rule is as follows:

A is a B {
C is a D

} |= E { C }

In this example, E is defined by the semantic rule. Its content
C is taken from the content of A. Because of the scoping rules,
C must also be declared in the context of A. Otherwise, the
rule is considered erroneous.

D. Concept Evaluation

Context, refinements, and semantic rules are employed for
concept evaluation. When an existing concept is referenced, it
is first evaluated, and the result of the evaluation is returned.

A concept evaluates to the result of its semantic rule, if
defined, or else to its narrowing as defined below.

A concept’s semantic rule is determined by the following
steps:

1) If the concept’s narrowing (see below) has a semantic
rule, then this one is taken.

2) Else, if the narrowing inherits a semantic rule, then the
rule of the closest ancestor is used.

3) Else, the set of derived base concepts (see below) is
checked for semantic rules.

4) Else, there is no semantic rule.

A concept B is a narrowing of a concept A, if B is a
transitive “is the” refinement of A.

A concept B is a derived subconcept of a concept A if

• the set of (transitive) base concepts of B is a superset of
the set of (transitive) base concepts of A, and

• the content of A narrows down to content of B; this
means that for every concept C in the content of A, there
exists a concept D in the content of B such that D is C
or one of its narrowings.

To evaluate a concept, syntactic rules and narrowing are
applied repeatedly, until a concept evaluates to itself. Infinite
evaluation loops are considered erroneous definitions.

An example of concept evaluation is provided by Figure 8
in Section V-B.

E. Syntactic Rules

Concepts can be marshaled/unmarshaled as text by syntactic
rules, denoted by a turnstile (⊢), in code represented by
“|-”. A syntactic rule names a sequence of concepts whose
representations are concatenated, ended by a dot.

The representation of each concept is in turn defined by the
syntactic rule of its evaluation. A concept without a syntactic
rule is represented by its name.

Syntactic rules are used to represent a concept as a string
as well as to create a concept from a string; they define both
an output and a parser.

As an example, consider a definition

A is a B {
C is a D

} |- the name says C .

When producing output for

John { hello is the C } is an A

it produces “John says hello”, since John inherits the syntactic
rule. Note that previously undefined concepts like hello and
says are defined on spot, and that they are represented by their
name.

30International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TypedPL is a ProgrammingLanguage {

Type

Boolean is a Type
True is a Boolean
False is a Boolean

Integer is a Type {
Succ is a PositiveInteger {

the concept is the Pred }
}
0 is an Integer
PositiveInteger is an Integer {
Pred is an Integer

}
1 is a PositiveInteger { 0 is the Pred }

}

Figure 4. Sample base model of typed programming languages.

V. EXAMPLES OF MODEL DEFINITIONS FOR CODE

We outline some models in order to illustrate the approach
presented in Section III. We use the M3L as introduced in the
previous section as our modeling notation.

A. Example Programming Models

Sticking with the example of starting the modeling of
programming with programming paradigms, there may be
models that describe typical constructs of PLs of a particular
paradigm. We give short outlines of PL base models for the
most important programming paradigms that may provide
concepts for APMs. Many details are omitted for the discussion
in this article.

As the basis of programming models, assume base concept
ProgrammingLanguage. Different aspects of programming are
derived from that concept.

As a first specialization, Figure 4 sketches some basic
concepts for typed programming languages. The concept
Boolean represents a type for Boolean values; this type as the
finite set of values True and False. The type Integer provides a
definition of numbers based on the Peano axioms. Even though
concrete programming languages offer a builtin type for integers
that supports low-level operations provided by hardware, we
want APMs to have provable properties independently of any
concrete implementation. Please note that Succ is a method of
an Integer object that answers the successor; it will be created
if it does not exist. In contrast, Pred is an attribute that is set
explicitly, for example, by Succ. Other types are omitted in
this article, but may be defined accordingly.

1) Procedural Programming: Descriptions of some typical
constructs of imperative PLs are shown in Figure 5. Typical
control flow constructs, such as conditional statements and
loops are given as M3L concepts.

2) Functional Programming: Figure 6 outlines the basic
definitions for functional PLs. Note that this model contains

ImperativeProgramming is a TypedPL {

Variable {
Name
Type from TypedPL }

Statement
Sequence is a Statement {
Statements is a Statement }

CompoundStatement is a Sequence
ParallelExecution is a Statement {
ConcurrentStatements is a Statement }

ConditionalStatement is a Statement {
Condition is a Boolean
ThenStatement is a Statement
ElseStatement is a Statement }

Loop is a Statement {
Body is a Statement }

HeadControlledLoop is a Loop {
Condition is a Boolean from TypedPL }

CountingLoop is a Loop {
Counter is a Variable {
Integer is the Type }

LowerBound is an Integer from TypedPL
UpperBound is an Integer from TypedPL
Step is an Integer from TypedPL}

VariableDeclaration is a Statement {
Variable
InitialValue is an Expression }

Expression is a Statement
Value is an Expression
VariableReference is an Expression
UnaryExpression is an Expression {
Operand is an Expression }

BinaryExpression is an Expression {
Operand1 is an Expression
Operand2 is an Expression }

...

}

ProceduralProgramming
is an ImperativeProgramming

{

Procedure {
FormalParameter is a Variable
Body is a Statement }

ProcedureCall is a Statement {
Procedure
ParameterBinding {
FormalParameter from Procedure
ActualParameter is an Expression } }

...

}

Figure 5. Sample base model of procedural programming.

31International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

FunctionalProgramming {

Expression

Value is an Expression

ConditionalExpression is an Expression {
Condition is an Expression
TrueValue is an Expression
FalseValue is an Expression

}

Function is a Value {
FormalParameter
FunTerm

}

FunCall is an Expression {
Function
ParameterBinding {

FormalParameter from Function
ActualParameter is an Expression

}
}

}

Figure 6. Sample base model of functional programming.

definitions that may not apply to all functional PLs, so other
APMs exist.

The simple syntax of functional PLs makes the definition of
this programming paradigm quite short. Note, however, that
many properties of functional PLs are covered by the model.
For example, partial function application is expressible since
a function call (FunCall) is an Expression, and a Function is
a Value which is also an Expression. So function calls can
deliver functions. Likewise, higher-order functions are covered
by the model.

The model in Figure 6 omits typical libraries of predefined
functions, for example, the various kinds of recursive higher-
order functions. These differ slightly between concrete PLs,
though, so there will be variations.

3) Object-Oriented Programming: Only some base defi-
nitions for class hierarchies at the instance and class levels
are sketched in Figure 7. The complete model is much more
elaborate, and there are even more variants of PLs than in the
other paradigms.

In particular, typical object-oriented PLs consist of two
“sub-languages”. In a declarative part, objects or classes are
defined, method signatures (message formats) are declared,
etc. Executable code is mainly found in method bodies, which
are implemented depending on the kind of object-oriented PL
used.

Statements as used in imperative programming are one way
of implementing methods. In Figure 7, this is sketeched by the
OOP-imperative concept. In particular, compound statements
are typically used. In contemporary PLs, specific additions to
the set of statements cater for object-oriented structures.

ObjectOrientedProgramming {

MetaClass is an Object { Method }
Method {
Parameter is an Object
Body

}

Classifier is a MetaClass
Interface is a Classifier
AbstractClass is a Classifier
ConcreteClass is a Classifier

ObjectClass is a ConcreteClass
Object is an ObjectClass

}

OOP-imperative
is an ObjectOrientedProgramming,

an ImperativeProgramming
{
Method {
LocalVariables is the Parameter,

a Variable
Body is a Statement

}
}

OOP-functional
is an ObjectOrientedProgramming,

a FunctionalProgramming
{
Method {
Body is a Function {
FormalParameter is the Parameter

}
}

}

Figure 7. Sample base model of object-oriented programming.

A second option of implementing methods is in a functional
way by assigning a function to a message. This is outlined by
the concept OOP-functional in Figure 7. The parameter(s) of
the function (FormalParameter from Function) that is used as
a method body are passed from the parameters of the method
(Parameter from Method).

B. Programming Language Semantics

For model checking or for model execution, language
constructs as outlined in the previous subsection must be given
semantics. The semantics of specific PLs is abstracted so that
different generalized APMs can be defined to capture the
various interpretations of PL constructs.

As an example, the behavior of the ConditionalStatement
can be defined as shown in Figure 8. A concrete conditional
statement as part of a program may look like

32International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IfTrueStmt is a ConditionalStatement {
True is the Condition

} |= ThenStatement

IfFalseStmt is a ConditionalStatement {
False is the Condition

} |= ElseStatement

Figure 8. Semantics of conditional statements.

MyConditional is a ConditionalStatement {
SomePredicate is the Condition
Statement1 is the ThenStatement
Statement2 is the ElseStatement

}

A concrete conditional statement like MyConditional must not
have a semantic rule defined.

When evaluated, such a conditional statement will match (be-
come a derived subconcept) of either IfTrueStmt or IfFalseStmt,
depending on what SomePredicate evaluates to: MyConditional,
like any refinement of ConditionalStatement, has a superset of
the base concepts of both IfTrueStmt and IfFalseStmt since it
is an explicit subconcept. The content of which one of them
matches is determined by the evaluation of SomePredicate
that should yield either True or False. Then, exactly one of
IfTrueStmt or IfFalseStmt will be a derived base concept of
MyConditional which will inherit the semantic rule that leads
to the correct interpretation of the conditional statement.

The semantic rule is inherited from the derived base concept,
making the statement evaluate to either the “then branch” or
the “else branch”.

This way of attaching semantics is typical for M3L models;
other modeling languages may have different ways of attaching
semantics. We will not go into this in detail. However, it is an
important part of the PL base models.

C. Abstract Programs

Based on the programming concepts outlined in the preced-
ing subsections, abstract programs can be formulated using
“instances” of these concepts. This means that refinements of
the concepts of an APM form an ADM. Such a program is
abstract in the sense that it is not written in a concrete PL. It
is more like an attributed abstract syntax tree.

Figure 9 shows an example of an abstract code fragment
for a sample ADM. The code is based on the model shown
in Figure 3. An imperative object-oriented programming style
is chosen. The entire code fragment represents a conditional
statement that checks for a positive raise. The Conditional-
Statement is outlined in Figures 10 and 8. The GreaterThanIn-
tegerComparison may be a binary predicate that compares
integers. It is used as the condition. The two branches of the
conditional statement, ThenStatement and ElseStatement, are
set to accordingly. On a positive raise, there is a state change,
assuming that there is some employee object (omitted from
the example; Raise and Salary may be declared outside the
code fragment). On an invalid raise, the code is simply exited.

Domain Model
(from Project)

Program Model
(global)

SalaryIncrease

Abstract Program

ConditiionalStatement

CheckTargetSalary
 is the SalaryIncrease
 from SomeSubjectDomainModel
 a ConditionalStatement
 from ImperativeProgramming {
 GreaterThanIntegerComparison from Programming {
 Raise is the Value1
 0 is the Value2 } is the Condition
 StateChangeStatement from OOProgramming {
 Salary is the Property
 IntegerSum {
 Salary is the Summand1
 Increase is the Summand2
 } is the Expression
 } is the ThenStatement
 ReturnStatement
 from ImperativeProgramming is the ElseStatement
}

Raise ...

Figure 9. Typical software engineering artifacts.

This allows complete code bases to be formulated in an
abstract way. Starting from a domain model, programming
constructs can be introduced step by step to from an ADM.
Using a CPM, an ADM can be transformed into an AIM.

D. Abstract Program Transformations

In our experimental setup with the M3L, model transforma-
tions can be expressed by relating concepts to each other. In
other modeling languages, the respective model transformation
or model evolution facilities are used [16][17][18]. In the M3L,
M2MTs can be implemented by concept refinement, concept
redefinitions, and semantic rules. M2TTs are expressed by
syntactic rules in combination with concept evaluation.

Model transformations are, in the discussion of this article,
transformations of abstract programs. The advantages of
expressing code in abstract forms are manifold.

1) Stepwise Concretization: Many aspects of an implemen-
tation must be considered at once when there is just one
code generation step. Code generation does not only have to
produce code with the correct functionality. It must also respect
nonfunctional requirements. On top of that, there are cross-
cutting concerns like error handling when producing executable
code.

2) Higher Degree of Reuse: Abstract code has a possibly
higher chance of being reusable. In particular, concepts may
serve as prototypes that are redefined to concrete uses. On

33International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Java is a ProgrammingLanguage {

ConditionalStatement
|- if (Condition)

ThenStatement
ElseStatement .

}

Python is a ProgrammingLanguage {

ConditionalStatement
|- if Condition :

" " ThenStatement
else:
" " ElseStatement .

}

Figure 10. A sample abstract program.

top of that, high-level designs, such as design patterns can be
codified an applied where needed [19].

3) Roundtrip Engineering: When maintaining software,
traceability from models to code is improved over M2TTs
that generate code directly from more abstract models. If a
need for change can be localized in the working software, it
is potentially easier to trace it back to models.

4) Optimization: Code optimization is more effective at
higher levels of abstraction. For example, algorithmic changes
will usually have a greater impact than local code optimizations.
With the ability to optimize code at each model layer, any
generated code will benefit from optimizations without having
to rely on PL-specific tools, such as compilers.

5) Cross-Platform Development: Finally, abstract programs
allow target code to be generated in different PLs. This
facilitates the development of distributed applications in
heterogeneous environments, and the generation of code for
different platforms from the same (abstract) code base.

E. Code Generation

The final M2TTs to produce source code are performed on
models that combine an ADM with the abstract program for
the problem at hand and a CPM that declares concrete PL
constructs.

The CPM comes with predefined translation tables that are
used to generate code. Such translation tables can be formulated
by syntactic rules in the example of the M3L.

For example, rules for language-dependent code generation
for two different languages can be such as sketeched in
Figure 10.

By separating APMs and CPMs, it is possible to generate
different code from the same abstract program. In the M3L,
concepts can easily be redefined with different syntactic rules
in the context of a PL. When generating code in such a PL
context, the rules of all language constructs for that PL are used.
Variations for language dialects can be handled in subcontexts
where some rules are redefined.

Company {
Person { Name Age }

}

CompanyImpl is a Company {
PersonRecord is a Person,

a Record from TypedPL {
Name is a String from TypedPL
Age is an Integer from TypedPL

}
}

Figure 11. Sample of a first application design model for a domain model.

VI. HIGHER PROGRAMMING ABSTRACTIONS

In this article, we focus on models of programming language
code. In an overarching modeling process, there are M2MTs
that lead from domain models to software models and ones
that lead from general software models to code models. Such
M2MTs mark the start of a new development phase.

Depending on the models chosen, the gap between models
of two subsequent phases may be rather large. Reasons are the
change of concepts and the preferred structures that combine
them. In this section, we briefly discuss two kinds of models
that may bridge the gap more gently in the following two
subsections.

Intermediate models that contain concepts from both the
application domain as well as the software domain allow
introducing a subset of the required technical concepts.

There are certain abstractions of code that provide a starting
point for such intermediate models [3]. In particular, software
design approaches for manual software development can be
used as blueprints for the creation of initial code models.

A. Domain Models as Initial Application Design Models

An advantage of a consistent (meta) modeling approach like
the one provided by the M3L is the seamless transformation of
domain-centric models towards code-centric models. This may
be achieved by hybrid models, such as high-level code models
that are based on domain models as data or object models
and that constitute a first ADM. ADMs can be formulated
in the M3L as refinements of APMs. Implementation aspects
are added stepwise to transform such a hybrid model into an
adequate ADM.

Hybrid models provide more abstract software constructs in
the sense of Domain-Driven Development or Domain-Specific
Languages (DSLs) in which implementations relate to domain
concepts directly [20]. They also provide a domain model
that includes a connecting points to an implementation that
may alternatively be added in a generic way. For information
system, for example, typically CRUD operations are added for
a domain-specific data model (see Section II-C). In such an
approach, a first model provides consistent technical types for
the attributes of (domain) entities and operations defined on
them.

34International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Company {
OrgUnit is a Record {...}
BusinessUnit is an OrgUnit {

Departments is an Department
}
Department is an OrgUnit {

Teams is a Team
}
Team is an OrgUnit {

Members is a Person
}

}

CompanyImpl is a Company

OrgUnitImplementation
is a CompositePatternApplication

{
CompanyImpl is the TargetModel
OrgEntity is the ComponentClass
OrgUnit is the CompositeClass
Person is the LeafClass
Members is the AggregationRelationship

}

Figure 12. A sample domain model and design pattern application.

For an example, please consider a concept Person that is
part of a domain model Company. Data about Persons shall
be managed by an aggregated type that consist of a person’s
Name and Age. A first ADM for the example is outlined
in Figure 11 as CompanyImpl, where persons are modeled
as Records composed of a String and an Integer. This type
information is assigned on the basis of abstract type information
as sketched in Figure 4.

Depending on the choice for a technology, there will be a
direct mapping of the data types, and (CRUD) functionality
can be added based in that mapping (see Section II-C).

B. Design Patterns

Design patterns provide proven solutions for specific
tasks [21]. Additionally, they provide design standards that
are well known amongst developers. This additional use of
patterns may be codified in model transformations. There are
patterns that are helpful in elaborating code models, and ones
that help bridging the gap from more abstract to more concrete
models.

As an example, assume organizational units in a company
defined by a domain concepts in Figure 12. This sample
company has three organizational layers, BusinessUnit, De-
partment, and Team. A typical implementation will not reflect
these domain concpts directly. Instead, there will probably
be one implementation concept OrgUnit and the Composite
Pattern [21] applied to it.

Figure 13 outlines a formalization of the pattern. A pattern
defined this way can be applied by “instantiating” the pattern

PatternDefinitions {

CompositePatternApplication {
TargetModel
ComponentClass
CompositeClass
LeafClass
AggregationRelationship

} |= TargetModel {
ComponentClass is an AbstractClass

from ObjectOrientedProgramming
LeafClass is a Classifier

from ObjectOrientedProgramming,
a ComponentClass

CompositeClass is a Classifier
from ObjectOrientedProgramming,

a ComponentClass {
AggregationRelationship
is a ComponentClass

}
}

}

Figure 13. Layout of a pattern definition.

CompanyImpl {

OrgEntity is an AbstractClass
from ObjectOrientedProgramming

Person is a ConcreteClass
from ObjectOrientedProgramming,

an OrgEntity

OrgUnit is a Classifier
from ObjectOrientedProgramming,

an OrgEntity
{
Members is an OrgEntity

}

}

Figure 14. Sample implementation resulting an application of the composite
pattern.

concept, CompositePatternApplication in the example of the
company organization as shown in Figure 12.

With the placeholders TargetModel, ComponentClass, Com-
positeClass, and LeafClass set by “is the”, they each evaluate to
the actual concepts given in the pattern application. Therefore,
they will generate the model structure shown in Figure 14.
Please note that the resulting implementation model Company-
Impl amends the definition in Figure 12, which leads to the
concrete OrgUnits being available in the implementation, but
now combinable via the Members relationship.

This resulting software model is not as accurate as the
domain model, but better reflects the generalized way in which
the model will be implemented.

35International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. CONCLUSION AND FUTURE WORK

Model-Driven Software Engineering is receiving a lot of
attention for the benefits it brings to software engineering
processes. While model-to-model and model-to-text transfor-
mations are being researched, in practice the final step of code
generation from models is too costly to be applied in many
application scenarios.

In this article, we propose an approach for defining code
generators within the MDSE toolchain based on models.
Generic models lay a foundation for all code generators. To this
end, we studied models of typical programming paradigms with
certain language-specific properties. Code generators consist
of executable models that are derived from the base models.
They should, therefore, be formulated in the same modeling
language. If the models that define a code generator are also
formulated in the same modeling framework as the models for
earlier stages of the software engineering process, then models
of the application domain and models of the software can
be closely related. We use the M3L as a consistent modeling
framework.

The proposed approach allows us to achieve the goals of
reduced development costs for code generators and of increased
reuse, of both the base models and of parts of application-
specific models. The use of multiple levels of abstraction makes
each development step easier and less costly. Since the most
abstract models can be applied in a generic way, they can be
reused in different applications.

Future work includes experiments with real-world code
models before pursuing new research directions. Since many
important PLs are hybrid in nature, remaining issues with
combined APMs need to be addressed, such as the mismatch
between imperative and declarative PLs.

ACKNOWLEDGMENTS

The publication of this work was made possible through the
support of NORDAKADEMIE gAG.

REFERENCES

[1] H.-W. Sehring, “Building model-based code generators for
lower development costs and higher reuse”, in Proceedings
Nineteenth International Conference on Software Engineering
Advances, ThinkMind, 2024, pp. 26–31.

[2] R. France and B. Rumpe, “Model-driven development of
complex software: A research roadmap”, in Future of Software
Engineering (FOSE ’07), 2007, pp. 37–54.

[3] K. Czarnecki and S. Helsen, “Classification of model trans-
formation approaches”, in Proceedings OOPSLA’03 Workshop
on Generative Techniques in the Context of Model-Driven
Architecture, vol. 45, 2003, pp. 1–17.

[4] H.-W. Sehring, S. Bossung, and J. W. Schmidt, “Content
is capricious: A case for dynamic system generation”, in
Proceedings Advances in Databases and Information Systems,
Springer, 2006, pp. 430–445.

[5] H. Mannaert, K. D. Cock, and J. Faes, “Exploring the creation
and added value of manufacturing control systems for software
factories”, in Proceedings Eighteenth International Conference
on Software Engineering Advances, ThinkMind, 2023, pp. 14–
19.

[6] J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio,
“Dealing with the coupled evolution of metamodels and model-
to-text transformations”, in Proceedings of the Workshop on
Models and Evolution, ser. CEUR Workshop Proceedings,
vol. 1331, CEUR-WS.org, 2014, pp. 22–31.

[7] K. Lano and Q. Xue, “Code generation by example using
symbolic machine learning”, SN Computer Science, vol. 4,
2023.

[8] T. Mucci, What is a code generator?, [Online] Available from:
https://www.ibm.com/think/topics/code-generator. 2024.6.28.
Think 2024, 2024.

[9] T. E. Shulga, E. A. Ivanov, M. D. Slastihina, and N. S. Vaga-
rina, “Developing a software system for automata-based code
generation”, Programming and Computer Software, vol. 42,
pp. 167–173, 2016.

[10] K. Radek and J. Vladimír, “Incorporating Petri nets into
DEVS formalism for precise system modeling”, in Proceeding
Fourteenth International Conference on Software Engineering
Advances, ThinkMind, 2019, pp. 184–189.

[11] K. Czarnecki, “Overview of generative software development”,
in Unconventional Programming Paradigms, Springer Berlin
Heidelberg, 2005, pp. 326–341.

[12] S. Trujillo, M. Azanza, and O. Diaz, “Generative metaprogram-
ming”, in Proceedings of the 6th International Conference
on Generative Programming and Component Engineering,
GPCE ’07, Association for Computing Machinery, 2007,
pp. 105–114.

[13] Object Management Group, MOF model to text
transformation language, v1.0, [Online] Available from:
https://www.omg.org/spec/MOFM2T/1.0/PDF. 2024.7.4. OMG
Document Number formal/2008-01-16, 2008.

[14] M. Harter, “LLM Assisted No-code HMI Development for
Safety-Critical Systems”, ThinkMind, 2023, pp. 8–18.

[15] S. Hajiaghapour and N. Schlueter, “Evaluation of different
systems engineering approaches as solutions to cross-lifecycle
traceability problems in product development: A survey”,
in Proceedings International Conference of Modern Systems
Engineering Solutions, ThinkMind, 2023, pp. 7–16.

[16] A. Agrawal, “Metamodel based model transformation lan-
guage”, in OOPSLA ’03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, Association for Computing
Machinery, 2003, pp. 386–387.

[17] D. Song, K. He, P. Liang, and W. Liu, “A formal language
for model transformation specification”, in Proceedings of the
Seventh International Conference on Enterprise Information
Systems - Volume 3: ICEIS, INSTICC, SciTePress, 2005,
pp. 429–433.

[18] A. P. Fontes Magalhaes, A. M. Santos Andrade, and R. S.
Pitangueira Maciel, “Model driven transformation development
(mdtd): An approach for developing model to model trans-
formation”, Information and Software Technology, vol. 114,
pp. 55–76, 2019.

[19] A. Kusel et al., “Reuse in model-to-model transformation
languages: Are we there yet?”, Software & Systems Modeling,
vol. 14, pp. 537–572, 2 2015.

[20] D. Thomas and B. M. Barry, “Model driven development:
The case for domain oriented programming”, in OOPSLA ’03:
Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, Association for Computing Machinery, 2003,
pp. 2–7.

[21] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley Professional, 1994.

36International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Features, Practical Applications, and Validation of COSMOS Simulator: A
Construction-Process Simulation Tool

Jirawat Damrianant
Department of Civil Engineering,

Faculty of Engineering, Thammasat School of Engineering,
Thammasat University,
Pathum Thani, Thailand

E-mail: djirawat@engr.tu.ac.th

Sakkaphant Meklersuewong
Department of Civil Engineering,

Faculty of Engineering, Thammasat School of Engineering,
Thammasat University,
Pathum Thani, Thailand

E-mail: sakkaphant@gmail.com

Abstract—Computer-based simulation software is essential for
efficiently simulating complex processes. COSMOS Simulator
is a program developed specifically for simulating models
created using COSMOS methodology, a modified Petri Net
designed for simulating construction-based operations.
However, unlike some existing Petri Net-based simulators,
which may require a deep understanding of Petri Net theory,
COSMOS is designed to be intuitive and accessible to
construction professionals. Although previous studies have
used the COSMOS Simulator to simulate various construction
processes and documented its accuracy, no published work
directly describes the simulator itself. This article aims to
provide a detailed description and illustration of the COSMOS
Simulator's features, especially its ability to model and
simulate specific construction behaviours. In addition, this
article offers further summaries and discussions of previous
studies on the software’s practical applications and validation.
The paper provides a resource for researchers and
practitioners interested in leveraging COSMOS for their
construction modelling and simulation needs.

Keywords-COSMOS; Construction Process Simulation;
Domain-Specific Modelling; Petri Nets; Practical Applications.

I. INTRODUCTION
Process modelling and simulation are valuable

approaches for construction engineering. However, a suitable
software tool is necessary to simulate complex construction
operations. The need for construction simulation software
has been driven by the increasing complexity of construction
projects and the need for effective planning and resource
management tools. To address this need, the authors
previously presented a detailed description and
comprehensive illustration of the Construction Oriented
Simulation MOdelling System (COSMOS) Simulator's
features at the Sixteenth International Conference on
Advances in System Modelling and Simulation (SIMUL
2024) in Venice, Italy, and received the Best Paper Award
[1]. The present paper significantly expands on that earlier
work, further elaborating the simulator's distinctive
capabilities, practical applications, and validations.

Before discussing COSMOS in more detail, it is helpful
to briefly review the historical context of simulation software

development in construction. This overview will illustrate
the evolution of such software and highlight key challenges
encountered in the past, providing necessary background that
explains the rationale for COSMOS's development. A
comprehensive review of this historical context was
previously provided in [2] and is briefly summarised as
follows.

Early systems like the Micro-Computerised CYCLic
Operation NEtwork (MicroCYCLONE) and the Dynamic
Interface for Simulation of Construction Operations
(DISCO) laid the groundwork for the field. Still, their
adoption was often limited by the specialised knowledge
required to use them. The emergence of object-oriented
programming and discrete-event simulation paradigms led to
the development of more user-friendly and versatile tools
like the Construction Operation Simulation Tool (COST) and
the Construction Object Oriented Process Simulation
(COOPS) system. As construction projects grew in
complexity in the 2000s, simulation tools like Simphony and
STROBOSCOPE were developed to offer customisable and
user-friendly platforms for modelling specific construction
operations. However, the inherent complexity of
construction processes, with their intrinsic uncertainties and
dynamic interactions, continued to pose challenges for
simulation modelling. In addition, many previously
developed tools remained difficult to use, requiring
substantial technical knowledge of simulation methodologies
for construction practitioners.

These challenges led to the development of COSMOS, a
simulation methodology that extends traditional Petri net
frameworks with construction-specific modelling elements.
As detailed in this paper, the COSMOS Simulator
significantly advances construction process modelling and
simulation. The software can simulate models created using
the COSMOS methodology [3], a modified Petri Net
designed to facilitate simulation modelling of construction-
based operations. The methodology introduces new nodes,
arcs, and attributes to capture complex construction
behaviours, improving the ease and realism of modelling for
simulation and analysis. Reference [3] details how these
extended elements interact to represent various construction
scenarios, showcasing their flexibility in handling the

37International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

complexities of construction. However, unlike some Petri
Net-based simulators that may demand a deep understanding
of Petri Net theory, COSMOS is crafted to be easily
accessible for construction professionals.

This article addresses a gap in the existing literature by
providing a direct and detailed description of the COSMOS
Simulator's features and capabilities. While previous studies
have utilised the simulator for various construction
simulations (some in Thai) [4]-[12], and the software’s
accuracy has also been confirmed and reported in several
articles (some in Thai) [6][8][9][11], a dedicated publication
outlining its functionalities was lacking. This paper fills that
void. The article offers a detailed description and illustration
of the distinctive features of the COSMOS Simulator,
notably its capability to model behaviours not typically
accessible in other Petri Net simulators, such as [13]-[17].
These features include elements like Header, Follower,
Buffer, Pipe, End Arc, and DPA, which can manage
continuous processes and dynamically progressive activities
commonly encountered in specific construction processes. In
addition, this article offers further summaries and discussions
of previous studies on the software’s practical applications
and validation. The COSMOS Simulator’s user interface and
key components will be described in Section II. Section III
presents practical implementations of the simulator along
with validation results that attest to its accuracy and
applicability. A discussion, conclusion, and suggestions for
future work will be provided at the end of the article in
Sections IV and V.

II. DESCRIPTIONS OF USER INTERFACE AND KEY
COMPONENTS

This section will review COSMOS's user interface and
explain the essential components of the COSMOS Simulator.
Figure 1 displays the homepage of the COSMOS Simulator's
user interface, which can be accessed by selecting "Model"
in the "view mode selector" panel. It should be noted that the
Model mode is pre-selected by default. The system interface
comprises several key components: the Menu Bar,
Simulation-Run Controller Panel, Simulation Control Bar
Properties Palette, Modelling Element Panel, Model
Drawing Area, Status Bar, and View Mode Selector. The
following subsections will comprehensively describe each of
these significant components of the COSMOS Simulator.

A. Menu Bar
The menu bar in Figure 1 is divided into three tabs: Files,

Settings, and Help. Each tab contains commands for
manipulating files and software settings, such as creating a
new file, opening an existing file, saving files, and changing
font and grid settings.

B. Simulation-Run Controller Panel
To operate the simulation, users interact with the buttons

on the “simulation-run controller panel”. This panel
contains several buttons as follows;

"Continuous Run" initiates a continuous simulation with
animation as transitions fire and tokens move.

"Flash Run" simulates without displaying any animation,
only providing the simulation's results unless the user
specifies that animation should be shown.

"Pause" temporarily halts the simulation.
"Reset" brings the simulation back to its initial state.
"Previous Step" steps the simulation backwards by one

step.
"Previous Event" steps the simulation backwards by one

event.
"Next Event" steps the simulation forward by one event.
"Next Step" steps the simulation forward by one step.
See Figure 2 for the locations of these buttons in the user

interface.
It is important to note that running the simulation by a

step or by an event differs in terms of how the animation
displays tokens residing in the places between adjacent
transitions. When simulating by an event, the animation
does not show tokens temporarily residing in the places,
whereas simulating by a step does display these tokens.

C. Simulation Control Bar
Before running a simulation, users can define a seed

number in the "Seed" field of the "simulation control bar"
(see Figure 1). The specified seed number is the initiator for
generating a random number stream using the Linear
Congruential Method. This stream is subsequently utilised to
generate random samplings, including the firing duration,
referred to as 'Service Time' within the COSMOS Simulator.
Service time is sometimes stochastic; in such cases, the
generated random numbers are used to determine the service
time of the transitions each time they fire. These stochastic
durations are governed by Probability Density Functions
(PDF) specified by the users (see Figure 3). Additionally, the
COSMOS Simulator utilises the stream to determine events
for transition firings, whether they will fire or not. The
determination is based on the probability ratios associated
with transitions set by the users. These transition
probabilities can be employed to resolve conflicts among
transitions, should they arise.

The control bar offers additional functionalities. The
Time Interval field allows users to specify the display
frequency of the simulation run. For example, suppose the
COSMOS simulation begins at time = 0, and the Time
Interval is set to 5 minutes. In that case, the Simulator will
visualise the run at 5, 10, 15, 20 minutes, and so on,
showcasing the transition’s firing and token movement
animations at those time intervals. The simulation's speed
can be adjusted using the Play Speed slider. Additionally,
the Time Limit field allows users to define a specific time at
which the simulation will be forced to terminate, even if its
natural stopping conditions are not met.

D. Modelling Element Panel
The COSMOS modelling elements are located in the

"modelling element panel", as shown in Figure 1. The panel
contains various buttons representing different modelling
element types, except for the top-left button, which serves as

38International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Homepage of the COSMOS Simulator's user interface.

Figure 2. Simulation-Run Controller Panel

the selection mode. Clicking on any of these buttons allows
users to enter the mode for placing the selected element type
on the "model drawing area." The first four elements in the
panel, located next to the selection mode, are the common
Petri Nets elements: Token, Place, Transition, and Arc.

1) Place: A place element has two primary attributes:
capacity and marking. Capacity refers to the maximum
number of tokens that can be stored in a place at any given
time, whereas marking indicates the current number of
tokens present in the place. For instance, consider a Petri
Net shown in Figure 1, where place P1 has a capacity of 4
tokens and currently contains one token. The current
marking and capacity of the place are denoted by the
numbers on the top-right corner as "1/4". A black area
resembling a pie chart is used to visually represent the ratio
between the marking and the capacity of the place.

2) Transition: Transitions in the COSMOS Simulator
have several primary attributes that determine their

behaviours during the simulation. These attributes include
priority, probability, service time, and max firing queue.
Figure 1 provides an example of a transition's properties
palette (on the right-hand side of the figure), which displays
its primary attributes. Priority and probability are used to
resolve conflicts among transitions demanding tokens from
the same place. Service time is the firing duration of the
transition, which can be a constant value or a probability
distribution. Users can change the firing duration type by
clicking the "Edit" button in the properties palette. Figure 3
shows the properties editor for transition T1, which allows
the user to specify the firing duration as a triangular
distribution with minimum, mode, and maximum values of
5, 12, and 18 time units, respectively.

The term "max firing queue" refers to the maximum
number of times a transition can fire simultaneously. This
feature is handy for modelling certain construction
behaviours. For example, when two loaders are working

39International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

together to load three trucks, with each loader handling one
truck at a time, there are instances when loading activities
for two trucks occur simultaneously or overlap. The “max
firing queue” feature can be used in this case.

Consider the initial state of a truck-loading model, as
shown in Figure 4. Three trucks are located at P1, while two
loaders are stationed at P2. By setting the maximum firing
queue to 2, as shown in Figure 5, T1 can fire twice
overlappingly. When firing, the number 2 displayed in the
middle of T1 indicates that the transition handles two firings

simultaneously. If the maximum firing queue were set to 1
(the default value), T1 could only fire once at a time. This
scenario would not accurately reflect the real-world situation
in which two loaders are available to handle the loading
process simultaneously. Finally, the model in Figure 6
represents the circumstances when one truck is still being
loaded while another truck has already finished loading. The
number 1 displayed in the middle of T1 indicates that only
one firing is being handled by T1 at this point in time.

Figure 3. Properties Editor of Transition.

3) Token and Arc: Tokens and arcs in the COSMOS
Simulator serve the same function as those in common Petri
Nets. In the current version of the simulator, all tokens and
arcs are black and do not have any additional attributes or
colours.

4) Condition Arc: Condition arcs in the COSMOS
Simulator share similarities with inhibitor arcs found in
modified Petri Nets, although substantial disparities exist
between them. While the weight on a typical inhibitor arc is
fixed at "equals zero," a condition arc possesses the
flexibility to adopt any integer value as its weight, thereby
enabling the expression of conditions in either equality or
inequality formats. For instance, a condition arc's weight
can be designated as "greater than or equal to 4." Additional
instances illustrating the practical applications of condition
arcs can be found in references [6][10] or a brief model
delineated in Figure 7.

The model depicted in Figure 7 entails the transportation
of 8 pieces of precast elements from a casting plant to a

construction site. A loader situated at the plant facilitates the
loading of precast elements onto a truck for transportation
while also managing the unfinished precast elements within
the plant. Nonetheless, the primary emphasis of this
operation lies in the transportation of the eight precast
elements. Consequently, the simulation of the process
necessitates termination upon the completion of transporting
the eight elements to the construction site and the subsequent
return of the truck to the plant. In this model, a condition arc
with a weight of ">= 1" (greater than or equal to one) is
employed to govern the cessation of the process.

These features of condition arcs are handy for modellers
who require control over specific logic or conditions in their
construction process models. The features allow modellers to
make their models more concise.

5) Header, Follower, Buffer, Pipe, and End Arc:
Specific construction activities can only begin after their
respective preceding activities have operated for a
designated period. However, the completion of preceding
activities is not mandatory before commencing the
succeeding ones. When two or more activities share this

40International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

interdependent relationship, they are classified as
overlapping activities. To manage such overlapping
activities, the COSMOS Simulator utilises five modelling
elements: Header, Follower, Buffer, Pipe, and End Arc.
Figure 8 displays the symbols of the five elements in the
"modelling element panel" of the COSMOS Simulator.

A header is a unique transition type representing the first
activity in a series of overlapping activities. Like a normal
transition, it can be enabled and fired (shot). The primary
function of a header is to convert discrete units of work into
continuous units, represented as a percentage. When a
header shoots, it sends portions of the work through pipes
and a buffer to the next activity in the series.

Figure 4. Model illustrating “Max Firing Queue” feature (State 1).

Figure 5. Model illustrating “Max Firing Queue” feature (State 2).

41International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Model illustrating “Max Firing Queue” feature (State 3)

Figure 7. Model illustrating a sample application of "Condition Arc".

.

Additional details regarding the shooting mechanism
and the functionality of headers can be found in [4].

A follower can be regarded as a particular type of
transition, similar to a header. However, followers represent
subsequent activities instead of representing the first activity

in a series of overlapping activities. Like headers, followers
release portions of continuous work through shootings. The
quantity of work released from each shooting of a follower
is equal to the shooting percentage specified in the header of
the series. The shooting criteria for a follower are the same

42International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as those for a normal transition, with the additional
condition that the released quantity of work from the
preceding element (either a header or another follower)
must be available in the input buffer of the follower. Further
details on the functionality of followers can be found in [4].

A buffer is a special type of place where portions of the
quantity of work released from headers or followers are
stored. Buffers are connected to headers or followers via
pipes. It's important to note that tokens cannot reside in
buffers, and buffers have an unlimited capacity.

A pipe is a particular type of arc used to represent the
flow of work released from headers or followers. In other
words, pipes are used to send portions of work resulting
from shootings of headers or followers. Pipes can only

connect headers or followers to buffers and buffers to
followers.

The COSMOS Simulator utilises an "end arc" to
conclude overlapping series when the shooting percentage
of the final follower reaches 100%. Once this threshold is
met, the end arc sends a token or tokens to the connected
outgoing place, with the number of tokens depending on the
weight of the arc. This mechanism effectively terminates the
series and ensures proper execution of the simulation.

Reference [11] demonstrates the use of the five elements
(header, follower, buffer, pipe, and end arc) in a sample
application to simulate overlapping activities in a concreting
and waste-handling operation. The COSMOS model of the
operation is shown in Figure 9.

Figure 8. Header, Follower, Buffer, Pipe, and End Arc in Modelling Element Panel of the COSMOS Simulator.

Figure 9. COSMOS model with Header, Buffer, Follower, Pipes, and End Arc.

43International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

6) Dynamically Progressive Activity (DPA):
Dynamically Progressive Activity (DPA) is defined in
COSMOS as an activity whose duration varies due to the
increase in the amount of work for each iteration. DPAs
commonly occur in linear construction processes such as
road construction and drainage pipe installation. For
example, in reinforced-concrete road construction, the
"moving to placing spot" activity will have a longer duration
as the length of the road being constructed increases with
each iteration of the placement. This is because the starting
point of the placement area remains stationary while the
placing spots get further away for each round of the
placement. As a result, the distances between the beginning
of the placement zone and the placing spots increase,
thereby increasing the duration of the "moving to placing
spot" activity performed by ready-mixed concrete trucks.

If a DPA's working rate and amount of work are known,
its activity duration can be calculated. For instance, in
reinforced-concrete road construction, suppose a concrete
truck moves between the starting point of the placement
area and a placing spot at an average speed of 10 km/hr or
166.67 m/min (this represents the working rate), and the
distance between the beginning of the placement zone and
the placing spot is 100 m (this represents the amount of
work). In this case, the duration required for the truck in the
"moving to placing spot" activity will be 0.6 minutes,
indicating that, on average, the truck can cover a distance of
100 m within 0.6 minutes. Therefore, for distances of 200

m, 300 m, and 400 m, the truck will require 1.2, 1.8, and 2.4
minutes, respectively, to complete the activity.

After determining the duration of a DPA, users can input
this information into the corresponding activity within the
COSMOS Simulator. Subsequently, the simulator will
calculate the duration of each iteration of the DPA by
incrementally advancing the amount of work completed and
using these values to simulate the process.

Figure 10 presents a concrete-road placement model,
representing an operation similar to the abovementioned
process. The model showcases the implementation of the
DPA concept. Notably, a DPA element in the COSMOS
Simulator is a unique type of transition that features a
dynamically progressive firing duration. In the figure, the
elements labelled "DPA1-Truck proceeds from the starting
point of the placement area to the placing spot" and "DPA2-
Truck returns to the starting location of the placement area"
represent DPAs. When DPA1 fires for the first time, its
firing duration will be zero since a truck can discharge
concrete immediately upon reaching the starting point of the
placement area without needing to move further forward. In
the subsequent three iterations, the firing durations will be
0.6 minutes, 1.2 minutes, and 1.8 minutes as the placing
points for the truck will be located 100 meters, 200 meters,
and 300 meters away, respectively, from the beginning of
the placement zone.

These modelling features collectively enable users to
construct detailed and realistic simulations of construction
processes.

Figure 10. Dynamically Progressive Activities (DPAs) in a concrete-road placement model.

44International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

While the COSMOS methodology is based on an
extended Petri Net framework, its implementation in the
COSMOS Simulator intentionally abstracts away much of
the theoretical and mathematical complexity commonly
associated with Petri Nets. Users are not required to
understand formal definitions such as marking functions or
matrix-based calculations, although a basic understanding of
how tokens move and how transitions fire remains
necessary to develop valid models. Importantly, users do not
need to interact directly with abstract Petri Net syntax.
Instead, COSMOS offers domain-specific visual blocks—
such as headers, followers, buffers, pipes, and dynamically
progressive activities—that closely represent real
construction operations. As long as users can identify
construction activities and define logical relationships
between them (e.g., precedence, concurrency, or
dependencies), they can effectively create simulation
models. This design lowers the entry barrier for construction
professionals, ensuring practical usability while retaining
the analytical power of a Petri Net-based system.

III. PRACTICAL APPLICATIONS AND VALIDATION OF
COSMOS SIMULATOR

The COSMOS Simulator has been used to simulate
various construction processes, and its accuracy has been
demonstrated. This section will provide further summaries
and discussion of previous studies on the software’s
practical applications and validation. These aspects will
further reinforce confidence in the accuracy and reliability
of the COSMOS software and system, which is crucial for
its widespread adoption. Greater utilisation of the software
will, in turn, facilitate continuous improvements and
advancements in the COSMOS Simulator, enhancing its
capability not only in construction process simulation but
also in modelling other process-driven operations. Six cases
from “Energy Reduction” to “Concreting and Waste-
Handling Operation” will be discussed in this section.

A. Energy Reduction
The COSMOS Simulator was applied in the study to

analyse and optimise the utilisation of heavy equipment
fleets in an asphaltic-concrete road construction project in
Ratchaburi, Thailand [5]. The research aimed to minimise
energy consumption by identifying inefficiencies in the
construction process and improving resource allocation. The
study involved modelling and simulating the construction
operations using the COSMOS system, which is based on
Petri Nets.

The analysis covered seven key construction procedures,
including clearing, levelling, excavation, embankment
construction, base preparation, prime coating, and pavement
finishing. Data on activity durations, equipment usage, and
energy consumption were collected from an actual
construction site. The simulation identified significant idle
and waiting times within the equipment fleet, which
contributed to excessive fuel consumption. Specifically, the
original arrangement of one truck, one water truck, and one

asphalt truck resulted in a total process duration of 5,653
minutes, with substantial waiting times for key equipment.

Process improvements were implemented by increasing
the number of trucks and asphalt trucks from one to three
while keeping the number of water trucks constant. The
revised simulation showed a substantial reduction in process
duration to 2,969 minutes and significantly decreased idle
times. As a result, energy consumption was reduced by
26.8%, lowering diesel fuel usage from 523 litres to 383
litres.

These findings demonstrate the effectiveness of the
COSMOS Simulator in optimising construction operations
through systematic modelling and simulation. The study
highlights the potential of process adjustments in achieving
energy efficiency in road construction projects. However, the
research was limited to a specific project scope and
construction setting, and further studies could explore the
broader applicability of the approach to different project
types and conditions.

B. Optimisation of Supply Trains in Tunnel Boring
Operation
The COSMOS Simulator was employed in this study to

optimise the operation of supply trains in tunnel boring using
tunnel boring machines (TBMs) [6]. The research focused on
the Beung-Nongbon drainage tunnel project in Bangkok,
Thailand, which required an efficient muck evacuation
system due to the unusual tunnel length of 5.5 km without an
intermediate vertical shaft. The challenge was to determine
the optimal number of supply trains needed to synchronise
with the TBM’s excavation process.

A COSMOS (Petri Net-based) model of the tunnelling
operation was developed and simulated using the COSMOS
system (see Figures 11 and 12). The model accounted for
key activities, including muck evacuation, tunnel segment
transportation, and rail relocation. The results revealed that
the number of supply trains required varied based on the
tunnel length. For example, the optimal number of supply
trains was found to be two for tunnels up to 0.9 km, three for
0.9–2.7 km, four for 2.7–4.5 km, and five for 4.5–5.5 km.
The study also determined the optimal placement of double
track points to avoid bottlenecks, suggesting their positioning
at 1.8, 3.6, and 4.5 km for tunnels longer than 4.5 km.

A critical finding was that deadlock situations could
occur if supply trains were not strategically positioned at
double-track points. The simulation also established that the
maximum permissible single-track length (Track T) between
the last double track point and the TBM should not exceed
0.9 km, ensuring continuous TBM operation with minimal
delays. The maximum allowable distance between adjacent
double track points was found to be 2.3 km to maintain
optimal productivity. The study confirmed that the highest
achievable tunnelling rate was 27.8 rings per day, aligning
with historical data from similar projects.

These findings demonstrate the effectiveness of the
COSMOS Simulator in optimising TBM operations by
improving synchronisation between excavation and muck
evacuation processes. However, the study’s limitations
include the assumption of ideal conditions without

45International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

equipment breakdowns or unforeseen operational delays.
Future research could incorporate these uncertainties to
refine the optimisation approach further.

C. Resource Management for Concrete Placing Operation
The COSMOS Simulator was applied in this study to

analyse and optimise the resource management of a

concrete-placing operation in a gas separation plant
construction project in Rayong Province, Thailand [7]. The
research focused on reducing the duration of concrete
placement by improving the coordination of ready-mixed
concrete trucks, crane operations, and other logistical factors.

Figure 11. Partial COSMOS model represents activities at TBM in a tunnel construction operation [6].

Figure 12. Partial COSMOS model illustrates the movement of supply trains in a tunnel construction operation [6].

46International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A COSMOS-based simulation model was developed to
represent the real-world construction process. The study
collected empirical data over five months to identify patterns
in truck arrival times, concrete placement durations, and
crane availability. Various scenarios were simulated,
adjusting the number of trucks and daily concrete placement
volumes. The results indicated that using three concrete
trucks and placing 50 cubic meters of concrete per day
provided the optimal balance between efficiency and
resource utilisation. Implementing this strategy in the second
phase of the project resulted in a noticeable improvement in
construction progress compared to the first phase, where no
simulation-based planning was used. The optimised
approach reduced project delays and eliminated unnecessary
truck waiting times, which had previously led to
inefficiencies.

The study demonstrates the effectiveness of the
COSMOS Simulator in optimising construction scheduling
and resource allocation through systematic modelling and
simulation. However, limitations include the exclusion of
unpredictable external factors such as weather conditions and
equipment breakdowns. Future studies could incorporate
stochastic modelling to account for these uncertainties and
enhance the robustness of the simulation approach.

D. Comparison between COSMOS Simulator and Arena
The COSMOS Simulator has been verified and applied in

various construction process simulations, with a comparative
analysis conducted against the widely used Arena simulation
software [8]. Two key case studies were employed to
validate COSMOS’s accuracy and applicability: (1) concrete
placement using a concrete pump and (2) earthmoving
operations in tunnel excavation.

The first case study examined the concrete placement
process for an eight-story building, where ready-mix
concrete was transported by trucks and pumped through
pipes to the designated floors. The model accounted for
potential operational disruptions, such as pipe blockages and
relocations. Simulation results from COSMOS and Arena
showed strong consistency in key performance metrics,
including the concrete pouring rate and waiting times at the
mixing plant and pump. While minor variations were
observed due to stochastic process durations, statistical
hypothesis testing confirmed no significant differences
between the two software outputs.

The second case study focused on tunnel excavation,
specifically the earthmoving operations involving a tunnel
boring machine (TBM) and supply trains operating on a
single-track system with designated passing stations. The
COSMOS model successfully replicated the process flow,
including train scheduling, material transport, and resource
allocation. The total process duration from both COSMOS
and Arena simulations matched precisely at 46,690 minutes,
further validating COSMOS’s reliability.

These verifications demonstrate that the COSMOS
Simulator can produce accurate results comparable to Arena,
reinforcing its credibility as a tool for construction process
simulation. Moreover, the study highlights the suitability of
COSMOS for modeling construction workflows due to its

Petri Net-based methodology, which aligns well with the
logic of construction scheduling techniques such as the
Critical Path Method (CPM). This feature enhances model
interpretability for construction professionals, distinguishing
COSMOS from manufacturing-based simulation tools like
Arena

Overall, the findings confirm COSMOS’s robustness in
simulating complex construction operations, making it a
viable alternative to established simulation software for
process analysis and optimisation in the construction
industry.

E. Auger Horizontal Earth-Boring Process: Comparison
with MicroCYCLONE
The COSMOS Simulator was evaluated against

MicroCYCLONE in modelling an Auger Horizontal Earth-
Boring (HEB) process [11]. The case study involved the
installation of 100 linear feet of casing using an auger boring
machine, with activities including track placement, auger
installation, casing attachment, and soil removal. Both
deterministic and stochastic simulations were performed to
compare the total operation duration.

The deterministic results showed an identical process
completion time of 1,107 minutes for both simulators,
confirming COSMOS’s ability to replicate
MicroCYCLONE’s output. In stochastic simulations, 40
independent runs were conducted, yielding mean process
durations of 1,092 minutes for MicroCYCLONE and 1,096
minutes for COSMOS. A statistical hypothesis test
confirmed that the differences were not significant, verifying
that COSMOS produces statistically equivalent results to
MicroCYCLONE. This validation demonstrates COSMOS’s
capability to model cyclic construction processes accurately
while leveraging Petri Net-based representations that
facilitate process visualisation. The COSMOS model of the
operation is given in Figure 13.

F. Concreting and Waste-Handling Operation:
Comparison with PROMODEL
A second verification in [11] compared the COSMOS

Simulator with PROMODEL and SDESA in modeling a
concreting and waste-handling operation. The case study
involved a tower crane-based concrete pouring process,
incorporating skip cycles, slump testing, and waste handling.
The COSMOS model shown in Figure 14 effectively
captured the flow of materials, truck arrivals, and resource
allocations using Petri Net constructs.

The results were analysed in terms of resource utilisation
rates. COSMOS exhibited only a 0.6% deviation from
PROMODEL, demonstrating a high degree of consistency.
When compared to SDESA, COSMOS showed a slightly
larger deviation of 3.4%, but this was within acceptable
margins given the stochastic nature of the process. An
alternative COSMOS model incorporating a more advanced
resource allocation technique (using headers, buffers, and
end arcs) (see Figure 9) further reduced the deviation from
PROMODEL to just 0.1%. This suggests that COSMOS not
only provides accurate results but also offers enhanced
flexibility for modeling complex resource interactions.

47International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. COSMOS Model for an auger horizontal earth-boring process [11].

Figure 14. COSMOS model (Petri Nets-based model) of a concreting and waste-handling operation [11].

These verifications confirm that COSMOS can
effectively replicate results from both domain-specific
(MicroCYCLONE) and general-purpose (PROMODEL)
simulation tools while providing construction engineers with
an intuitive and domain-relevant modelling approach. The
findings reinforce COSMOS’s viability as a robust
construction-process simulation tool, ensuring accuracy
while enhancing process transparency and interpretability.

IV. DISCUSSION
Unlike some existing simulators, which often require

users to understand abstract Petri Net constructs or
mathematical formalisms, the COSMOS Simulator was
developed with a strong emphasis on usability and domain
alignment. Its visual modelling components—such as
headers, followers, buffer, pipe and dynamically progressive

48International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

activities—reflect how construction professionals naturally
conceptualise their operations. This domain-specific design
lowers the learning curve and enables practitioners with a
limited background in simulation theory to develop models
that still leverage the expressive power of Petri Net-based
logic.

In terms of modelling capability, COSMOS enables the
representation of complex construction behaviours that are
often difficult to express using traditional tools. These
include overlapping activities, dynamically progressive
operations, flexible precedence logic, and resource
allocation constraints. While COSMOS delivers results
comparable in accuracy to established simulators, its
practical value lies in making such capabilities accessible
and directly applicable to construction workflows. This
combination of analytical strength and usability
differentiates COSMOS as a simulation tool purpose-built
for real-world construction process analysis and design.

While COSMOS represents a significant step forward, it
is essential to acknowledge its limitations and potential
areas for future development. The simulator's primary focus
on discrete-event simulation may limit its applicability to
continuous processes or systems with complex interactions.
Additionally, although COSMOS can simulate dynamic
processes, its current version may have limitations in
incorporating real-time data from construction sites, which
is crucial for achieving a true digital representation of
construction processes. Future research and development
efforts can focus on expanding COSMOS's capabilities in
these areas, further enhancing its value and impact in the
construction industry.

The current version of the COSMOS Simulator is
available online [18].

V. CONCLUSION AND FUTURE WORK
This paper provided a comprehensive description and

illustration of the distinctive features of the COSMOS
Simulator, a computer program designed to simulate
construction processes effectively. COSMOS accounts for
real-world construction behaviours such as:

• Concurrent execution of similar activities through
"max firing queue" settings.

• Overlapping or interleaved activities facilitated by
headers, followers, buffers, pipes, and end arcs.

• Simulation of Dynamically Progressive Activities
(DPAs), where duration varies based on workload,
commonly seen in tasks like asphalt paving.

Notably, these modelling elements and features—
headers, followers, buffers, pipes, end arcs, and DPAs—are
unique to COSMOS, enabling the simulation of specific
behaviours found in construction, and they are not available
in other simulation tools.

Apart from normal arcs, COSMOS also has condition
arcs similar to inhibitor arcs in modified Petri Nets but allow
more flexibility. They can have any integer weight, enabling
the expression of equality or inequality conditions.

The COSMOS Simulator has been validated through
various practical applications, demonstrating its accuracy
and reliability in simulating construction processes. Its
ability to model complex workflows, optimise resource
utilisation, and produce results comparable to established
simulation tools highlights its potential for broader adoption
in the construction industry. However, further research is
needed to explore the needs and gather feedback from
diverse users. This information will be crucial in enhancing
the COSMOS system to make it even more effective in
simulating construction processes.

This paper offered a resource for researchers and
practitioners interested in leveraging COSMOS for their
construction modelling and simulation needs.

Despite its emphasis on functionality for construction
practitioners, the COSMOS Simulator and its associated
methodology can be used to model and simulate any discrete
event process.

Future research and development efforts will focus on
expanding COSMOS's capabilities to incorporate real-time
data from construction sites. Additionally, it would be
beneficial to broaden its functionality to simulate
construction processes with even more complex interactions.
Enhancing the modelling logic with appropriate control
statements will enable users to have finer control over the
behaviours of the COSMOS models and support an even
wider range of use cases relevant to complex construction
scenarios.

REFERENCES
[1] J. Damrianant and S. Meklersuewong, “COSMOS Simulator:

A Software Tool for Construction-Process Modelling and
Simulation,” The Sixteenth International Conference on
Advances in System Simulation (SIMUL 2024) IARIA, Sept.
2024, pp. 19–27, ISBN: 978-1-68558-197-8.

[2] B. Visartsakul and J. Damrianant, “A review of Building
Information Modelling and simulation as virtual
representations under the digital twin concept,” Eng. J., vol.
27(1), pp. 11-27, Jan. 2023, doi:10.4186/ej.2023.27.1.11.

[3] J. Damrianant, “COSMOS: A discrete-event modelling
methodology for construction processes,” Int. J. Internet
Enterp. Manag., vol. 1, pp. 128-152, Apr. 2003,
doi:10.1504/IJIEM.2003.003209.

[4] J. Damrianant and R. R. Wakefield, “A Petri Net-Based
Methodology for Modelling of Overlapping Activity
Processes,” The Second International Conference on
Construction Process Re-engineering (CPR-99), July 1999,
pp. 375-386.

[5] S. Meklersuewong and J. Damrianant, “Energy Reduction in
Road Construction,” The Third International Symposium on
Engineering, Energy and Environments (ISEEE 3), Nov.
2013, pp. 523-532, ISBN: 978-974-466-715-1.

[6] J. Damrianant, “Optimisation of Supply Trains in Tunnel
Boring Operation Using Tunnel Boring Machines,” The Sixth
International Conference on Advances in Civil, Structural and
Mechanical Engineering (CSM 2018), Apr. 2018, pp. 8-12,
ISBN: 978-1-63248-150-4.

[7] J. Damrianant and T. Panrangsri, “Resource management
using COSMOS modelling and simulation system to lessen

49International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

concrete-placing duration,” (in Thai) Thai J. Sci. Tech., vol.
7(5), pp. 553-566, Aug. 2018, doi:10.14456/tjst.2018.50.

[8] N. Suri and J. Damrianant, “Comparing construction process
simulation between the Arena and COSMOS programs,” (in
Thai). Eng. J. Res. Dev., vol. 30(4), pp. 89-104, Oct. 2019,
ISSN: 2730-2733.

[9] B. Visartsakul and J. Damrianant, “Determining costs and
time required for building construction by using 3D structural
models, unit costs, productivity rates, and project
simulations,” (in Thai) Eng. J. Res. Dev., vol. 31(4), pp. 63-
76, Oct. 2020, ISSN: 2730-2733.

[10] J. Damrianant, “Track management approaches for
underground tunnel construction,” Thai J. Sci. Tech., vol.
10(5), pp. 621-634, Sep. 2021, ISSN: 2286-7333.

[11] S. Meklersuewong and J. Damrianant, “Evaluating the
COSMOS software ecosystem for domain-specific
construction process simulation,” Int. Rev. Model. Simul.,
vol. 15(3), pp. 179-188, Jun. 2022,
doi:10.15866/iremos.v15i3.20268.

[12] J. Damrianant, “Comparison of process and project duration
assessment approaches for an industrial water-system
installation project using estimation method and COSMOS
program,” (in Thai) J. KMUTNB, vol. 33(1), pp. 127-139,
Jan. 2023, doi:10.14416/j.kmutnb.2022.06.004.

[13] M. A. Drighiciu and D. C. Cismaru, “Modelling a water
bottling line using Petri Nets,” Annals of the University of
Craiova. Electr. Eng. Ser., vol. 37, pp. 110–115, 2013, ISSN:
1842-4805.

[14] M. Herajy, F. Liu, C. Rohr, and M. Heiner, “Snoopy’s hybrid
simulator: A tool to construct and simulate hybrid biological
models,” BMC Syst. Biol., vol. 11(71), pp. 1-16, Jul. 2017,
doi:10.1186/s12918-017-0449-6.

[15] R. Davidrajuh, D. Krenczyk, and B. Skolud, “Finding clusters
in Petri Nets. An approach based on GPenSIM,” Model.
Identif. Control, vol 40(1), pp. 1-10, Jan. 2019,
doi:10.4173/mic.2019.1.1.

[16] E. Kučera et al., “New software tool for modelling and
control of discrete-event and hybrid systems using Timed
Interpreted Petri Nets,” Appl. Sci., vol. 10(15), pp. 5027, Jul.
2020, doi:10.3390/app10155027.

[17] V. B. Kumbhar1 and M. S. Chavan, “A Review of Petri Net
Tools and Recommendations,” The International Conference
on Applications of Machine Intelligence and Data Analytics
(ICAMIDA 2022), May 2023, pp. 710–721, doi:10.2991/978-
94-6463-136-4_61.

[18] COSMOS Simulator. [Online]. Available from:
https://drive.google.com/file/d/1qpxEvIq9TDNfynrqt_Wj5VE
HGE3uBW53/view?usp=drive_link.

50International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Designing at 1:1 Scale on Wall-Sized Displays Using Existing UI Design Tools

1st Lou Schwartz
Luxembourg Institute of Science and Technology (LIST)

Esch-sur-Alzette, Luxembourg
lou.schwartz@list.lu

2nd Mohammad Ghoniem
Luxembourg Institute of Science and Technology (LIST)

Esch-sur-Alzette, Luxembourg
mohammad.ghoniem@list.lu

3rd Valérie Maquil
Luxembourg Institute of Science and Technology (LIST)

Esch-sur-Alzette, Luxembourg
valerie.maquil@list.lu

4th Adrien Coppens
Luxembourg Institute of Science and Technology (LIST)

Esch-sur-Alzette, Luxembourg
adrien.coppens@list.lu

5th Johannes Hermen
Luxembourg Institute of Science and Technology (LIST)

Esch-sur-Alzette, Luxembourg
johannes.hermen@list.lu

Abstract—Wall-Sized Displays have spatial characteristics that
are difficult to address during user interface design. The design
at scale 1:1 could be part of the solution. In this paper, we present
the results of two user studies and one technology review, explor-
ing the usability of popular, desktop-optimized prototyping tools,
for designing at scale on Wall-Sized Displays. We considered two
wall-sized display setups, and three different interaction methods:
touch, a keyboard equipped with a touchpad, and a tablet. We
observed that designing at scale 1:1 was appreciated. Tablet-
based interaction proved to be the most comfortable interaction
method, and a mix of interaction modalities is promising. In
addition, care must be given to the surrounding environment,
such as furniture. We propose twelve design guidelines for a
design tool dedicated to this specific context. Overall, existing
user interface design tools do not yet fully support design on
and for wall-sized displays and require further considerations in
terms of placement of user interface elements and the provision
of additional features.

Keywords-wall-sized display; UI design; design at 1:1 scale; user
study; large scale display.

I. INTRODUCTION

This paper extends a previous study on the usability of
Figma, a popular user interface (UI) design tool, for Wall-
Sized Displays (WSDs) at the CENTRIC 2024 conference [1].
WSDs are increasingly used in public spaces to provide
general or contextual information, provide entertainment, or
for artistic purposes [2] [3]. WSDs are also applied in many
research areas. Traffic management [4] and automotive de-
sign [5] benefit from their large display area. They also support
data browsing and manipulation [6] [7], and are crucial for
visualizing and interacting with vast amounts of data in natural
sciences like physics, astronomy, chemistry, and biology [8]
[9]. In the medical field, WSDs aid interdepartmental commu-
nication [10], optimize surgery room scheduling, and improve
team transitions [11] [12]. They are also used for scheduling
activities, such as conference organization [13], and support
collaborative design tasks [14], including architectural design
reviews [15].

WSDs are also referred to as vertical Large Interactive
Displays (LIDs) or Large High-Resolution Displays (LHRDs).
However, the notion of ‘large’ is typically not precisely
defined and can be subjective [16]. Belkacem et al. defined
an LHRD as a display that “creates a coherent physical view
space that is at least of the size of the human body and
exhibits a significantly higher resolution than a conventional
display” [17]. According to Chen et al., WSDs improve user
performance and satisfaction for tasks, such as model design,
analysis, and visual data mining [18]. But, these new ways
of viewing, collaborating and interacting differ from desktop
and smartphone applications [16], because of their size, their
resolution, the collaboration they foster, and the so-called
natural interactions they enable, mainly through touch and
gestures [19]. WSDs vary in terms of visualization technology,
display setup (size, orientation), interaction modality, applica-
tion objectives (productivity, entertainment, social interaction,
games, and advertising) and location (city, office, education,
conference, third place and cultural site) [19].

Based on previous work, we enumerate nine challenges
raised by WSDs, each needing further research [16] [17] [20]:
1) More interactions: “natural” interactions with a mix of in-
teraction methods [16] [20]. 2) More users: and improvements
regarding how they collaborate [16] [17] [20]. 3) More space
(around): users’ movements and interactions in the space and
the management of the inherent fatigue [17] [20]. 4) Different
usage durations: for example, collaborative decision-making
tasks require long sessions spread over time [20], but for public
displays, the duration of use is often very short [16]. 5) More
complex content: complex data representations, large quanti-
ties of complex data needed by experts [16] [17] [20]. 6) More
devices: WSDs are often composed of several displays, but are
also often supplemented by other devices (e.g., supplementary
displays or sensors) [16] [17] [20]. 7) Variable screen space
and pixel count: displaying more data simultaneously requires
content to be designed differently to distinguish between

51International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and manage the visible, accessible and useful parts of the
display [16] [17] [20]. 8) Support for designers: tools or
methods for designing and testing are needed, as well as
guidelines and best practices [16] [20], and 9) Other concerns
arise like accessibility, compatibility, and portability from one
WSD to another, and workflow management [20].

Supporting designers with the right tools and methods to
design applications for WSDs is hence an open challenge.
Similar questions have also been raised regarding the design of
data visualization interfaces for WSDs, specifically [17] [21].
Overall, the challenge is three-fold: the difficulty of scaling
visual elements, e.g., text, the limited availability of design
software, and the lack of widely adopted design guidelines.

In this paper, we address the designer support challenge,
i.e., the need for design and testing tools and methods [16]
[20]. We look into the design of a UI prototype in WSD
environments at 1:1 scale and seek to assess the suitability of
existing design tools for this purpose. By ‘UI prototyping’, we
mean the prototyping of the interface, functionalities, screen
layouts and behaviors at the mid-fidelity level. We focus
on using popular UI design tools, such as Figma [22] and
Miro [23], to prototype UIs in WSD environments at 1:1 scale.
We have no conflict of interest with any of them.

In the rest of this paper, Section II presents related work
on methods and tools for prototyping for WSDs. Our research
approach is detailed in Section III. Section IV describes a
first user study using Figma to design for WSD at 1:1 scale.
This allowed us to identify the required features to support
design at 1:1 scale for WSDs. Section V compares existing
design tools based on these features. Section VI presents a
second user study, diving deeper into the use of another design
tool (Miro) with different WSD setups and interaction means.
Our observations are discussed in Section VII and used to
draw implications for design, and for tooling improvements.
The section also discusses the limitations of both user studies.
Finally, Section VIII holds a general conclusion.

II. RELATED WORK

Many tools and methods have been proposed to support de-
sign for WSDs. Below we discuss paper prototyping, prototype
development and mixed mockup techniques. We also cover
briefly interaction techniques used in WSD environments.

A. Paper prototyping

Paper prototyping is a popular, validated and simple method
of mocking up systems before programming [24]. It allows
designers to explore, communicate and evaluate early interface
designs with end-users or within the design team. A designer
typically plays the role of the computer to simulate the behav-
ior of the system by changing the pieces of paper shown to the
participants. Numerous studies have used paper prototyping to
design applications on a WSD (e.g., [13] [25] [26] [27]).

Bailey et al. used this method to prototype a multi-device
environments (MDE) involving personal devices (e.g., comput-
ers or tablet), and a wide screen to share data and views [25].
They observed that A4 paper lacks accuracy for large displays

due to scaling issues. Indeed, the size hampers reading text at
a distance. WSDs require sheets of paper larger than A4, and
text size should be adapted to the screen size. However, paper
prototyping does not allow checking whether the user can
quickly and easily detect where information is displayed and
whether changes in the displayed content would be noticed,
as the user can follow the facilitator’s gaze direction and
movements and see where she places the pieces of paper.

Paper prototyping can also be used to define the screen
arrangements to compose the WSD [28].

However, paper prototyping is mainly used for UI prototyp-
ing on WSDs.

B. Functional prototyping

Mid-fidelity prototype development is also a common prac-
tice [29]. Indeed, in the following papers, for example, there
are no indication on how the applications were designed, but
a developed prototype is used for the studies within them [4]
[6] [7] [14] [30] [31].

Some systems have been developed to support prototyping,
among others, for WSDs. For instance, DEBORAh, is a front-
end web-based software layer that supports the orchestration of
interactive spaces combining multiple devices and screens, in-
cluding WSDs [32]. Additionally, jBricks, a Java-based toolkit,
enables the exploratory prototyping of interaction techniques
and rapid development of post-WIMP applications for WSDs,
particularly for tiled-displays [33].

C. Mixed mockup techniques

Finally, mixed mockup techniques, e.g., Mini-studio [34],
consist in using a physical paper model of the system aug-
mented with projected content. They are mainly used to
prototype ubiquitous computing systems, but can also be
used to mock up WSDs. SketchStudio is another example,
which combines 2D devices with 3D characters, resulting in
a 2.5D animated scenario design tool for rapid prototyping
of systems involving multiple users and multiple components
or devices [35]. Such methods and tools offer the advantage
of allowing the interactions around the WSDs to be tested.
However, they are not accurate enough for a prototype of the
screen layout and content, especially in contexts where large
amounts of data and high resolution are required [17].

Overall, the prototyping method is frequently used for
designing WSD applications, but the way the design was con-
ceived is usually not described. Among the few occurrences
where the design process is documented, paper prototyping is
the most commonly used method. We did not find any studies
covering the design of a UI prototype on a WSD at 1:1 scale.

D. Interaction techniques for WSD environments

Various interaction modalities have been used with WSDs,
ranging from classic mouse and keyboard to more advanced
types of interaction leveraging touch, gaze, mid-air gestures,
proxemics, handheld and wearable devices, and tangibles [17].

Mouse and keyboard interaction is readily available in
virtually all interface design tools used in common desktop

52International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

environments. Users may work from a distance while being
seated. The physical keyboard is very convenient for text entry,
but text may lack legibility at a distance. Virtual keyboards
have also been studied in the context of mobile devices [36],
horizontal tabletops [37] and virtual environments [38]. They
can be spawned on vertical display surfaces too, but hardly
any work investigates their usability in this context. While
mouse interaction is faster and more accurate than touch [39],
the mouse cursor is easily lost and clutching may be tedious
when navigating across very large scenes.

The cursor can also be attached to other pointing devices, be
it a touchpad or a handheld device such as remote controllers,
or flysticks, or head-mounted displays through eye tracking.
Handheld display devices, such as smartphones or tablets, can
also be turned into pointing devices by attaching sensors to
them, or by using them as touchpads to interact with the WSD.

Direct touch can also be used on touch-enabled WSDs. On
the one hand, touch is an intuitive interaction modality that
exhibits high user performance and acceptance scores [40]. On
the other hand, users often have to move across the WSD, or
step up close or away from the WSD, to look at details, or get
the big picture, respectively [41]. They may also have a hard
time reaching the upper or the lower part of the WSD [42].

Overall, many advanced interaction techniques may gener-
ate fatigue or muscle strain, e.g., gorilla arm [41], when used
for a long time. They also differ significantly from widespread
mouse and keyboard interaction, in terms of accuracy, speed,
and their hedonic value [40], and may be less suited for
certain tasks such as text entry. A more detailed discussion
of these interaction techniques for WSDs can be found in the
literature [17].

In this work, we evaluate the suitability of popular interface
design tools, originally meant for the desktop, to design UIs
for WSD environments at the 1:1 scale. Most design tools
were not developed for WSD, nor optimized for advanced
interaction modalities available in WSD environments.

III. RESEARCH APPROACH

As noted by Lischke et al., when it comes to WSDs, it
“is often not possible to prototype in the original size” [16].
Unlike using a desktop computer to design UIs for WSDs,
prototyping in real size directly onto the targeted display could
reduce complexity, give a sense of scale, and ensure that the
target resolution is correctly achieved and exploited. It could
also allow designers to check that the UI is visible at all
distances and from all angles [17] [20]. Hence, our interest
in prototyping on a WSD is based on supporting the design
in real size.

A. Research questions

As part of understanding how to support the design in 1:1
scale for WSDs, we focus on three main research questions:

RQ1: Can a desktop optimized tool be used in a WSD
environment to design at 1:1 scale?

RQ2: What would be the best interaction modality during
the design at 1:1 scale on a WSD ? And what are the
main issues raised by each interaction modality?

RQ3: What are the main features needed to support the
design at 1:1 scale on a WSD ?

This research aims to extract initial guidelines for designing
at 1:1 scale on and for WSDs. To answer these questions,
we have set up two exploratory user studies and performed
a comparative analysis of existing design tools. The first user
study involved one participant who consecutively interacted
through three distinct interaction methods (a keyboard and its
embedded touchpad, direct touch on the WSD, or a connected
tablet) and with two WSDs to understand whether and how
a desktop optimized tool, Figma, could be used in a WSD
environment to design at 1:1 scale. The outcomes of the first
user study pointed us to important features, as a basis for doing
a technology review and comparative analysis, and selecting
a better tool, i.e., Miro, for the next user study. In the second
user study, we observed the use of Miro by two participants
designing at 1:1 scale on two WSDs with the same three
interaction modalities.

B. Task

In both user studies, the task consisted in using a desktop
optimized software (Figma or Miro) to reproduce a previously
developed UI [43] and adapted for both WSDs as shown in
Figure 1, more details can be found online [44] [45]. Before
the test session, the participants discovered the design tool on
a desktop computer for two hours, and the mock-up they had
to reproduce.

This UI was chosen because it comprises a variety of UI el-
ements (text, sliders, graph, a social media feed). Reproducing
an existing UI ensures that it is feasible, well adapted to the
WSD environment, and allows the observation to be focused
on the design software manipulation rather than the process
of creating a new design.

C. System

The system consisted of a touch-enabled WSD displaying
the design tool (either Figma or Miro) in a web browser
window (Google Chrome [46]) in full-screen mode.

Two WSDs were used. First, WSD-IA (curved, diameter:
3.64m, height: 2m, composed of twelve 4K screens in portrait
mode, among which eight are touch-enabled using infrared
frames. The setup also included a height-adjustable table and
a keyboard/touchpad, as shown in Figure 2.

Then, WSD-VW (flat, width: 7m, height: 2m, total resolu-
tion 13, 152× 3, 872 pixels, composed of 24 HD screens with
infrared frames enabling touch (see Figure 3). This WSD is
located in a room containing three high tables (fixed-height)
placed at each end of the WSD, with two mobile extended-
height chairs each. The room also contains a large standard
height table facing the middle of the WSD (about 3 meters
away), and the display itself includes a virtual touch keyboard
that appears at the bottom center of the WSD.

53International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Screenshot of the prototype to replicate, for more information see [43] and [44] [45].

Figure 2. WSD-IA displaying the interface used for the task.

Figure 3. WSD-VW displaying a version of the interface used for the task.

D. Observation and analysis methods

Video cameras and microphones were used to record the
sessions. For WSD-IA, three video cameras were used, one
top camera placed in the middle of the room and attached to
the roof, one in the center and attached to the top of the WSD
(in front of the entrance), and one on the back, attached at
the top of the entrance screens (the two screens, which can
be rotated); see Figure 4 and Figure 5 for clarifications. For
WSD-VW, two cameras were placed in the back, in front of
both ends of the display for the first user study. They were
completed by a third one at the middle back for the second
user study. At the end of each session, the participant was
invited to discuss and debrief with the facilitator. We analyzed
thematically the comments made by the participants, both

based on the debriefings and during the sessions themselves,
to identify encountered issues. We additionally observed the
moves and strategies the participants relied on.

IV. PROTOTYPING AT 1:1 SCALE ON WSD WITH FIGMA

During the first exploratory user study, we used Figma, a
mid-fidelity web-based prototyping tool for designing, col-
laborating, prototyping and transmitting content [22]. We
chose it for its popularity [47] [48] and its availability as
a ready-to-use web-based solution. Figma was tested on a
WSD by one designer under several experimental conditions:
two WSD settings (WSD-IA, and WSD-VW) with different
arrangements and surroundings, and three different interaction
methods to reproduce the interface: a wireless keyboard with a
touchpad, direct touch on the WSD, and a synchronized tablet.

The main research question addressed by this first user study
is: can Figma, as a desktop optimized tool, be used in a WSD
environment to design at 1:1 scale?

In other words, we want to identify the challenges and op-
portunities raised by using an existing design tool to prototype
the UI of an application built for a WSD, directly on the WSD.

A. Protocol

The participant is an expert in UI design and has partic-
ipated in the design of several UIs for WSDs, but had never
used Figma before. She was free to stop the session whenever
she wanted (e.g., when it became too difficult) or after having
finished reproducing the design. Since this first user study
aimed to verify the feasibility of using Figma under these
conditions before carrying out more in-depth studies, a single
user was deemed sufficient. Conversation guide and detailed
protocol are available in supplementary material online [44].

Figure 4 illustrates the interaction methods tested to interact
with Figma to complete the task as described in Section III:
respectively, a wireless keyboard with a touchpad, direct touch
on the WSD, and a tablet synchronized with the WSD.

B. Results

In general, the participant appreciated the ability to design
at a 1:1 scale, regardless of the interaction method and the
WSD used, with the main advantage of being able to see
in real time the final rendering on the target screen. Several
issues are related to the lack of familiarity with Figma, as the
use of widgets, components, and plugins seemed complicated,
and were not used effectively by the participant. Also, some

54International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Experimental settings: at the top, the curved WSD-IA, at the
bottom, the flat WSD-VW. The spatial relationships depicted here are

illustrative and may not correspond to real-world dimensions.

problems are due to or emphasized by the circular nature of
WSD-IA.

1) General observation about Figma: The configuration of
the Figma environment was not always suited for WSDs.
For instance, the properties of a selected object are placed on
the right-hand side of the display (see Figure 6.a), the main
menu is placed at the very top (see Figure 6.b) and dialogue
boxes open in the middle of the display. The user must also
move the cursor across the entire display or physically walk
to the desired location to modify, e.g., element properties (see
Figure 5.d), which is tiring on the long run. Below, we discuss
in more detail the issues related to each interaction method.

2) Interacting with a wireless keyboard with a touchpad:
The session lasted one hour for WSD-IA and ten minutes for
WSD-VW. On both WSDs, the participant would sometimes
have a hard time finding the cursor on the large display.

Concerning the WSD-IA, the menu and items list were
displayed on the leftmost screen (one of the two screens also
used as a door), and the selected item’s properties on the
rightmost screen (the other screen forming the side by side
door). To avoid turning her head from the extreme left to the
extreme right too often, the participant closed the doors to
look at them both at the same time. She also placed herself to
create an angle that allowed her to see the menu, the properties
of the selected object, and the work area at a glance (see
Figure 5.c). As the session was short, and all UI elements
were tightly grouped on the left, the position was acceptable.
But the user could not maintain this position while working
in the middle. In this configuration (menu on the left and

Figure 5. Observations made when interacting with Figma and
keyboard+touchpad. a) At first, the participant held the keyboard. b) Use of

a table to put down the keyboard. c) Lots of head rotations to see all the
important areas. d) WSD-IA does not allow you to cross directly from the

left screen to the right screen.

properties on the right), the participant turned her head and
body a lot, which could possibly be painful and exhausting.
At first, the participant carried the interaction device, see
Figure 5.a. After 15 minutes, she felt tired and placed it on a
table, see Figure 5.b. Another problem was the impossibility
to move the cursor directly from the WSD’s leftmost side to
its rightmost side. The participant had to move the cursor
all the way around the WSD, which is tiring, despite the
physical proximity of both sides of the WSD due to its circular
arrangement (see Figure 5.d). To avoid turning her head too
much, the participant did not follow the cursor with her eyes
when it was behind her back.

In the WSD-VW condition, the font size of the Figma
interface was problematic. The flat WSD-VW was too wide
to read text labels when standing at the opposite side of the
display. Hence, to modify a property’s value, the user had to
walk frequently across the WSD-VW to the properties area,
where she rested on a table next to it. Then she leaned on the
middle table for comfort and stayed at a certain distance from
WSD-VW to get an overview. The fatigue due to walking
around, eye strain due to the text size, and carrying the
keyboard led the user to stop the test after ten minutes. Because
the WSD-IA is twice as large as the WSD-VW in terms of
horizontal resolution, the virtual navigation felt more painful
in WSD-IA. This is also the case because the cursor and its
progress were always visible in WSD-VW, and the session
was shorter.

3) Interacting using direct touch on the WSD: The session
with WSD-IA lasted twenty minutes, and the session with
WSD-VW was interrupted after ten minutes.

In the WSD-IA condition, to manage physical fatigue (neck
strain and gorilla arm syndrome [49]), the user tried to work

55International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Observations done when interacting with Figma and touch. a) The
touch space is occupied by the Figma interface on the left (list of created

objects) and the right (properties). b) The menu is too high. c) WSD-VW’s
touch keyboard is not comfortable; the user had to crouch.

at a lower scale by zooming in on the work area without
minimizing the Figma window. Although the menu remained
too high and objects’ properties too far away, objects could be
moved with smaller movements and were better placed relative
to the user’s field of view, generating less neck pain. Hence,
the advantage of working at 1:1 scale was temporarily lost.
Only the middle eight screens of WSD-IA support touch, so
we resized the browser window used for Figma to fit within
these screens. As Figma’s interface elements (list of objects
and properties) take up space themselves at both ends of the
window, the design space was further reduced, by about one
extra screen for interface elements from both ends combined.
Hence, the total design space available to the participant
was reduced compared to the actual interface they had to
reproduce. Consequently, the alignment with the display tiles
could not be maintained, as shown in Figure 6.a. When using
touch, the participant had trouble moving an object across tiles.
The wireless keyboard was used to input text or values and
was either held by the participant or placed on the table.

On WSD-VW, the properties panel was too far away from
the work area, but unlike WSD-IA, when a property was
changed on WSD-VW, the result was not visible from the
user’s position. So, she stepped back to check, e.g., whether
the font size is large enough. The top menu was out of reach,
and WSD-VW’s virtual keyboard was not suitable for entering
more than one word due to its design (position at the bottom
and large size, see Figure 6.c). After ten minutes of use, the
participant complained from the gorilla arm syndrome.

4) Interacting on a synchronized tablet: The same Figma
project was loaded onto the tablet and onto the WSD. The UI
elements were created, moved and adjusted on the tablet.

We observed that the participant mainly looked at the tablet

Figure 7. Observations done when interacting with Figma and a tablet.
a) The participant modified the prototype on the tablet. b) Then, the

participant checked the result on the WSD. c) The participant sat on a chair.

to add UI elements, move them around and set parameters, see
Figure 7.a. Then, the participant looked at the WSD to check,
e.g., the position and size of the UI elements, the readability
of text, and colors, see Figure 7.b. A main issue was the
impossibility to select several UI elements at the same time on
the tablet, as they are superimposed. The session with WSD-
IA lasted ninety minutes, whereas the session with WSD-VW
was interrupted after twenty minutes.

On WSD-IA, the user had difficulties to position the UI
prototype on the WSD correctly. Although the additions and
changes to UI elements were synchronized between the tablet
and the WSD, the viewports were independent, so positioning
the UI had to be done from the WSD directly. This led to the
use of an extra wireless keyboard equipped with a touchpad.
This happened when the participant closed the project and
reopened it. The designed UI was centered horizontally and
vertically on the WSD. So, the participant wanted to properly
reposition the designed UI to continue the design. The partic-
ipant also used the touchpad to select a group of UI elements
to save them as a new reusable UI element. She placed the
tablet on the height-adjustable and mobile table. She felt that
WSD-IA and tablet configuration was the most comfortable.

On WSD-VW, the participant sat down and placed the tablet
on the table, see Figure 7.c. But, as the table was not well
positioned and too heavy to be moved, she preferred to hold
the tablet in her hand, which was tiresome.

C. Preliminary observations

The duration of the test sessions varied widely, from ten
to 90 minutes. The most comfortable condition seems to
be WSD-IA with a tablet and a height-adjustable and mo-
bile table. But the problem of multiple selection and cor-
rect positioning of the prototype on the WSD needs to be
solved. Overall, the main issues were: (I1) physical fatigue,
(I2) reachability of Figma elements, (I3) readability of the
Figma interface, (I4) the vast interaction surface, (I5) when
a project is reopened, objects are moved to the middle, and

56International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(I6) the partial occlusion of the WSD by Figma’s UI elements,
which is not a perfect 1:1 scale.

To tackle these issues, we outline several design solutions.
(I1) could be reduced by managing the physical environment
and providing a height-adjustable and movable table to place
the interacting device, chairs, and by supporting interaction at
a distance. (I2) could be improved by offering floating context
menus and value input fields, by opening dialogue boxes close
to the work area or by using a smaller interaction device as a
tablet or a laptop. For (I3) and (I4), the size of the design tool
interface elements should be adapted. For (I4), a bigger cursor
should be used as well as pointing facilitation techniques [50]
to reach the opposite end of the WSD. (I5) could be solved
by fixing the created objects in their positions and reloading
them in exactly the same position. To achieve 1:1 scale (I6),
the design tool interface should be hidable or movable.

Overall, issues (I2), (I3), (I5) and (I6) show that Figma may
not be adapted to prototype at 1:1 scale on WSDs, and that
another tool incorporating the outlined design solutions, might
be better suited.

V. COMPARATIVE ANALYSIS OF EXISTING DESIGN TOOLS

This first user study enabled us to identify the problems
with using Figma as a 1:1 scale design tool for WSDs. Based
on these results, we then set up a list of required features for
such a tool. Below, we first list these features and then analyze
19 different design tools, meant for UI design for computers
and smartphones, taking into account the listed features.

Based on our observations, we identified the following main
features of tools suited for designing at 1:1 scale on WSD:

• The main menu must be reachable from the work area
(not at the top or bottom) [related to I1, I2, I4].

• The properties of the selected object must be reachable
from the work area [related to I1, I2, I4].

• Pop-ups must open near the work area [related to I1, I2,
I4].

• The font size of the design tool UI elements must be large
enough (or adjustable) [related to I3].

• It must be possible to conceal or move the design tool
interface elements, i.e., menu, list of created objects, and
properties of the selected object [related to I6].

• It must be possible to interact from a synchronized tablet
[needed for our user study].

• When reopening a previous project, it must preserve the
positions of the created interface elements, as they were
previously. [related to I5]

• The workspace size must be large or adaptable to the
typically high resolution of WSDs.

Based on this features list, we analyzed 19 design tools. We
performed a search using the engine Google with the keywords
“design tool”, “mockup tool” and “UI design tool” between
July and December 2024. We collected the design tools from
direct results or from online articles about such tools [48] [51].
We then eliminated the tools that did not support the creation
of mock-ups, and the ones that could not be tested and used
for free. In the end, we selected 19 tools, which were analyzed

against the listed features. Many tools set fixed positions for
their menus, and for object properties panels. None of the tools
in the selection enabled users to conceal or move the design
tool’s interface elements.

As our WSDs run on a Linux operating system, we also
had to narrow down our list to multiplatform tools, which
indirectly led us to mainly consider web-based solutions.

Table II lists the design tools and our analysis of their
characteristics against the desirable features. Concerning the
maximum surface size of the workspace, this information
was rather complex and at times impossible to find for some
design tools, so some figures listed in the table might not be
accurate. As most of the examined tools provide a web-based
version, thus giving access to the zoom functionality of the
web browser, we did not check the font size of the design
tool’s interface.

Based on the features they offer, we pre-selected three multi-
platform design tools (Bubble, inVision, and Miro) to test them
more in-depth on one WSD (WSD-IA), with the three interac-
tion methods used in the user study, to ensure their usability for
the second user study. With inVision, we ran into issues when
using touch on our WSD, so we had to reject it. Additionally,
we noticed that the solution was discontinued shortly after our
tests. As for Bubble, we experienced some synchronization
latency when using the tablet, which is why we discarded
it as well. We therefore chose Miro as design tool, because
it satisfied most of the requirements, including running in a
web browser, showing object properties in a context menu,
reopening a project at the same position, retractable interface
by using the preview mode, and offering the option to open
the same project on a tablet as on the WSD.

VI. PROTOTYPING AT 1:1 SCALE ON WSD WITH MIRO

Based on the findings from the first user study and the
feature matrix, we ran a second user study with some modifi-
cations in the protocol compared to the first study, as explained
below.

The research questions are adapted from the first study.
RQ1: Can an existing design tool, that was conceived for
desktops, be used in a WSD environment to design at 1:1
scale? And RQ2: What are the main guidelines to support
design at 1:1 scale in a WSD environment?

A. Protocol

Miro was tested as a mockup tool for WSDs by two
designers under several conditions: two WSD settings (WSD-
IA, and WSD-VW), and three different interaction methods:
(1) a wireless keyboard with a touchpad, (2) touch on the
WSD completed by a wireless keyboard for entering textual
and numeric values, and (3) a synchronized tablet.

Sessions were limited to one hour. But, participants were
free to stop the session earlier, if they felt too tired, or
uncomfortable, or if they completed the task.

The two participants were respectively an expert in UI
design (p2) and in visualization design (p1). They both partic-
ipated in the design of several UIs for WSDs, although (p2) is

57International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TA
B

L
E

I.
M

ai
n

is
su

es
an

d
po

ss
ib

le
so

lu
tio

ns
.

Is
su

es
K

ey
bo

ar
d/

to
uc

hp
ad

To
uc

h
Ta

bl
et

Po
ss

ib
le

so
lu

tio
ns

W
SD

-I
A

W
SD

-V
W

W
SD

-I
A

W
SD

-V
W

W
SD

-I
A

W
SD

-V
W

I1
Ph

ys
ic

al
fa

tig
ue

Y
es

Y
es

Y
es

Y
es

N
o

Y
es

A
he

ig
ht

-a
dj

us
ta

bl
e

m
ov

ab
le

ta
bl

e
on

w
hi

ch
to

pl
ac

e
th

e
in

te
ra

ct
io

n
de

vi
ce

,a
ch

ai
r

fo
r

se
ss

io
ns

lo
ng

er
th

an
90

m
in

ut
es

.
In

te
ra

ct
in

g
at

a
di

st
an

ce
.

fr
eq

ue
nt

he
ad

an
d

to
rs

o
ro

ta
tio

ns
ha

nd
-h

el
d,

m
uc

h
w

al
ki

ng
M

en
u

to
o

hi
gh

,
m

uc
h

w
al

ki
ng

M
en

u
to

o
hi

gh
,

m
uc

h
w

al
ki

ng
,t

ou
ch

ke
yb

oa
rd

to
o

lo
w

pl
ac

ed
on

a
ta

bl
e

ha
nd

-h
el

d

I2
Fi

gm
a’

s
el

em
en

ts
re

ac
ha

bi
lit

y
Y

es
Y

es
Y

es
Y

es
N

o
N

o
Fl

oa
tin

g
co

nt
ex

t
m

en
us

an
d

va
lu

e
in

pu
t

fie
ld

s
ne

ar
th

e
w

or
ki

ng
zo

ne
,a

llo
w

th
e

pa
rt

ic
ip

an
t

to
m

ov
e

ac
ro

ss
th

e
di

sp
la

y
w

ith
ou

t
sc

ro
lli

ng
,

op
en

di
al

og
ue

bo
xe

s
ne

ar
th

e
w

or
ki

ng
zo

ne
,

an
d

us
e

a
sm

al
le

r
in

te
ra

ct
io

n
de

vi
ce

.
Pr

op
er

tie
s

to
o

fa
r

fr
om

th
e

w
or

ki
ng

zo
ne

Pr
op

er
tie

s
to

o
fa

r
fr

om
th

e
w

or
ki

ng
zo

ne

Pr
op

er
tie

s
to

o
fa

r
fr

om
th

e
w

or
ki

ng
zo

ne

Pr
op

er
tie

s
to

o
fa

r
fr

om
th

e
w

or
ki

ng
zo

ne

I3
R

ea
da

bi
lit

y
N

o
Y

es
N

o
Y

es
N

o
N

o
A

da
pt

th
e

si
ze

of
th

e
Fi

gm
a

el
em

en
ts

,
us

e
a

cu
rv

ed
W

SD
in

st
ea

d.
U

I
el

em
en

t
no

t
vi

si
bl

e
w

he
n

m
od

if
yi

ng
its

pa
ra

m
et

er
s.

Fi
gm

a
in

te
rf

ac
e

no
t

re
ad

ab
le

.

U
I

el
em

en
t

no
t

vi
si

bl
e

w
he

n
m

od
if

yi
ng

its
pa

ra
m

et
er

s

I4
H

ug
e

in
te

ra
ct

io
n

su
rf

ac
e

Y
es

Y
es

N
o

N
o

N
o

N
o

A
da

pt
th

e
si

ze
of

th
e

Fi
gm

a
el

em
en

ts
,

us
e

a
cu

rv
ed

W
SD

in
st

ea
d.

B
ig

ge
r

cu
rs

or
,p

oi
nt

er
ac

ce
le

ra
tio

n
to

re
ac

h
th

e
op

po
si

te
si

de
of

th
e

di
sp

la
y.

It
ta

ke
s

a
lo

ng
tim

e
to

re
ac

h
th

e
ex

tr
em

iti
es

.

It
ta

ke
s

a
lo

ng
tim

e
to

re
ac

h
th

e
ex

tr
em

iti
es

.

I5
N

ot
fix

ed
po

si
tio

n
of

U
I

el
em

en
ts

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Fi
x

th
e

U
I

el
em

en
ts

in
th

ei
r

po
si

tio
n

an
d

re
st

or
e

th
ei

r
po

si
tio

n
af

te
r

re
lo

ad
in

g
th

e
pr

oj
ec

t.
T

he
Fi

gm
a

de
si

gn
sp

ac
e

sh
ou

ld
m

at
ch

th
e

ta
rg

et
ed

W
SD

.
W

he
n

re
op

en
in

g
th

e
pr

oj
ec

t.

I6
1:

1
sc

al
e

no
t

pe
rf

ec
t

N
o

N
o

Y
es

N
o

N
o

N
o

Po
ss

ib
ili

ty
to

co
nc

ea
l

or
m

ov
e

th
e

Fi
gm

a
in

te
rf

ac
e

el
em

en
ts

su
ch

as
th

e
m

en
us

.
Pa

rt
of

th
e

ne
ce

ss
ar

y
de

si
gn

su
rf

ac
e

m
as

ke
d

by
Fi

gm
a

el
em

en
ts

.

58International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TA
B

L
E

II
.F

ea
tu

re
s

m
at

ri
x

of
th

e
U

I
de

si
gn

to
ol

s.
C

el
ls

in
gr

ay
hi

gh
lig

ht
in

st
an

ce
s

w
he

re
fe

at
ur

es
or

re
qu

ir
em

en
ts

w
e

id
en

tifi
ed

ar
e

su
pp

or
te

d
by

th
e

co
rr

es
po

nd
in

g
de

si
gn

to
ol

.N
A

:
no

t
ap

pl
ic

ab
le

.*
N

o
so

ur
ce

fo
r

in
V

is
io

n
as

th
e

de
si

gn
to

ol
w

as
st

op
pe

d
af

te
r

ou
r

re
vi

ew
.A

do
be

X
D

is
no

w
in

m
ai

nt
en

an
ce

m
od

e.
**

E
.g

.,
de

le
te

.

N
am

e
M

ax
su

rf
ac

e
si

ze
Su

pp
or

te
d

pl
at

fo
rm

s
M

ai
n

m
en

u
po

si
tio

n
O

bj
ec

t
pr

op
er

tie
s

po
si

tio
n

D
ia

lo
g

bo
xe

s
po

si
tio

n
R

eo
pe

ns
at

th
e

sa
m

e
po

si
tio

n
R

et
ra

ct
ab

le
in

te
rf

ac
e

Sy
nc

hr
on

iz
at

io
n

w
ith

a
ta

bl
et

Se
le

ct
ed

A
do

be
X

D
*

[5
2]

50
,0

00
x5

0,
00

0
px

m
ac

O
S,

W
in

do
w

s,
A

nd
ro

id
,i

O
S,

br
ow

se
rs

(C
hr

om
e,

Fi
re

fo
x,

E
dg

e,
Sa

fa
ri

)

fix
ed

on
th

e
to

p
an

d
le

ft
fix

ed
on

th
e

ri
gh

t
m

id
dl

e
un

kn
ow

n
un

kn
ow

n
un

kn
ow

n
no

A
xu

re
R

P
[5

3]
20

,0
00

px
W

in
do

w
s,

m
ac

O
S,

A
nd

ro
id

,i
O

S
fix

ed
on

th
e

to
p

fix
ed

on
th

e
ri

gh
t

m
id

dl
e

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

no

B
al

sa
m

iq
[5

4]
20

,0
00

x2
0,

00
0

px
W

in
do

w
s,

m
ac

O
S,

br
ow

se
rs

fix
ed

on
th

e
to

p
fix

ed
on

th
e

ri
gh

t
m

id
dl

e
ye

s
pa

rt
ia

lly
+

pr
ev

ie
w

m
od

e
po

ss
ib

le
w

ith
th

e
cl

ou
d

ve
rs

io
n

no

B
ub

bl
e

[5
5]

m
ax

w
id

th
5,

00
0

px
br

o w
se

rs
fix

ed
on

th
e

le
ft

flo
at

in
g

an
d

m
ov

ab
le

un
kn

ow
n

no
pa

rt
ia

lly
+

pr
ev

ie
w

m
od

e

Po
ss

ib
le

w
ith

th
e

op
en

in
g

of
th

e
sa

m
e

pr
oj

ec
t,

bu
t

la
g

ye
s

C
an

va
[5

6]
80

00
x

31
25

px
br

o w
se

rs
,W

in
do

w
s,

m
ac

O
S,

iO
S,

A
nd

ro
id

fix
ed

on
th

e
le

ft
fix

ed
on

th
e

to
p

so
m

e
ac

tio
ns

at
ta

ch
ed

to
th

e
se

le
ct

ed
ob

je
ct

**
)

m
id

dl
e

no
pa

rt
ia

lly
+

pr
ev

ie
w

m
od

e
Po

ss
ib

le
w

ith
th

e
cl

ou
d

ve
rs

io
n

no

E
xc

al
id

ra
w

[5
7]

un
kn

ow
n

br
o w

se
rs

fix
ed

on
th

e
to

p
fix

ed
on

th
e

le
ft

un
kn

ow
n

ye
s

pa
rt

ia
lly

us
in

g
co

lla
bo

ra
tio

n
fe

at
ur

e
no

Fi
gm

a
[2

2]
no

lim
it

br
o w

se
rs

fix
ed

on
th

e
to

p
fix

ed
on

th
e

ri
gh

t
m

id
dl

e
no

pa
rt

ia
lly

+
pr

ev
ie

w
m

od
e

Po
ss

ib
le

w
ith

th
e

op
en

in
g

of
th

e
sa

m
e

pr
oj

ec
t

or
us

in
g

co
lla

bo
ra

tio
n

fe
at

ur
e

no

Fr
am

er
[5

8]
m

ax
w

id
th

12
80

px
br

o w
se

rs
,m

ac
O

S,
W

in
do

w
s

fix
ed

on
th

e
to

p
an

d
le

ft
fix

ed
on

th
e

ri
gh

t
m

id
dl

e
no

pr
e v

ie
w

m
od

e
Po

ss
ib

le
w

ith
th

e
cl

ou
d

ve
rs

io
n,

no

In
V

is
io

n*
un

kn
ow

n
br

o w
se

rs
fix

ed
on

th
e

bo
tto

m
m

id
dl

e
at

ta
ch

ed
to

th
e

se
le

ct
ed

ob
je

ct
to

p
le

ft
no

un
kn

ow
n

Po
ss

ib
le

w
ith

th
e

op
en

in
g

of
th

e
sa

m
e

pr
oj

ec
t,

ye
s

Ju
st

In
M

in
d

[5
9]

un
kn

ow
n

W
in

do
w

s,
m

ac
O

S
fix

ed
on

th
e

to
p

fix
ed

on
th

e
ri

gh
t

m
id

dl
e

un
kn

ow
n

un
kn

ow
n

us
in

g
co

lla
bo

ra
tio

n
fe

at
ur

e
no

M
ir

o
[2

3]
un

kn
ow

n
br

o w
se

rs
,i

O
S,

A
nd

ro
id

,m
ac

O
S,

W
in

do
w

s
fix

ed
on

th
e

le
ft

at
ta

ch
ed

to
th

e
se

le
ct

ed
ob

je
ct

m
id

dl
e

ye
s

pr
e v

ie
w

m
od

e

Po
ss

ib
le

w
ith

th
e

op
en

in
g

of
th

e
sa

m
e

pr
oj

ec
t,

or
us

in
g

co
lla

bo
ra

tio
n

fe
at

ur
e

ye
s

M
oc

kF
lo

w
[6

0]
un

kn
ow

n
br

ow
se

r,
m

ac
O

S,
W

in
do

w
s

fix
ed

on
th

e
le

ft
fix

ed
on

th
e

le
ft

un
kn

ow
n

no
no

un
kn

ow
n

no

M
oc

kp
lu

s
[6

1]
no

lim
it

br
ow

se
rs

,A
nd

ro
id

,
iO

S,
W

in
do

w
s,

m
ac

O
S

fix
ed

on
th

e
to

p
an

d
le

ft
fix

ed
on

th
e

ri
gh

t
m

id
dl

e
ye

s
pr

ev
ie

w
m

od
e

us
in

g
co

lla
bo

ra
tio

n
fe

at
ur

e
(o

nl
y

vi
su

al
iz

at
io

n,
no

m
od

ifi
ca

tio
n)

no

Pe
np

ot
[6

2]
no

lim
it

br
ow

se
rs

fix
ed

on
th

e
to

p
fix

ed
on

th
e

ri
gh

t
m

id
dl

e
ye

s
ye

s
+

pr
ev

ie
w

m
od

e
us

in
g

co
lla

bo
ra

tio
n

fe
at

ur
e

no

Pr
ot

o.
io

[6
3]

un
kn

ow
n

br
ow

se
rs

(C
hr

om
e,

Sa
fa

ri
,F

ir
ef

ox
)

fix
ed

on
th

e
ri

gh
t

fix
ed

on
th

e
ri

gh
t

so
m

e
ac

tio
ns

at
ta

ch
ed

to
th

e
se

le
ct

ed
ob

je
ct

m
id

dl
e

no
pr

ev
ie

w
m

od
e

un
kn

ow
n

no

Pr
ot

oP
ie

[6
4]

un
kn

ow
n

W
in

do
w

s
fix

ed
on

th
e

to
p

fix
ed

on
th

e
ri

gh
t

m
id

dl
e

un
kn

ow
n

un
kn

ow
n

un
kn

ow
n

no
Sk

et
ch

[6
5]

un
kn

ow
n

m
ac

O
S

fix
ed

on
th

e
to

p
fix

ed
on

th
e

ri
gh

t
un

kn
ow

n
un

kn
ow

n
un

kn
ow

n
un

kn
ow

n
no

U
X

Pi
n

[6
6]

25
00

0x
25

00
0

px
br

ow
se

rs
,m

ac
O

S,
W

in
do

w
s

fix
ed

on
th

e
le

ft
fix

ed
on

th
e

ri
gh

t
m

id
dl

e
ye

s
pr

ev
ie

w
m

od
e

Po
ss

ib
le

w
ith

th
e

op
en

in
g

of
th

e
sa

m
e

pr
oj

ec
t,

bu
t

la
g

no

W
eb

flo
w

[6
7]

m
ax

w
id

th
10

,0
00

px
br

ow
se

rs
fix

ed
on

th
e

le
ft

fix
ed

on
th

e
ri

gh
t

m
id

dl
e

no
pr

ev
ie

w
m

od
e

un
kn

ow
n

no

59International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Experimental settings for the second study: on the top the curved
WSD-IA, on the bottom the flat WSD-VW. The spatial relationships

depicted in this figure are illustrative and may not correspond to real-world
dimensions.

more experienced in UI design per se. They both had already
used Miro beforehand as a collaborative mind mapping tool,
but not for UI design, with p2 who was competent using Miro
and p1 self-declaring as more novice.

Like in the first study, the system used for this second user
study consists of a touch-enabled WSD displaying the design
tool, Miro in this case, through the Chrome web browser. The
zoom level in the browser was set to 200%, for the main
menu items (located on the left and vertically centered) to be
wide enough to be usable. We used the same two WSDs as
previously: WSD-IA (curved) and WSD-VW (flat).

Learning from the first user study, some adaptations were
made on both WSDs. As for WSD-IA, additional infrared
touch frames were put in place, increasing the number of
touch enabled screens to eleven. As text input with the virtual
keyboard on WSD-VW was quite cumbersome, and to ensure
a fair comparison between the conditions between both WSDs,
participants were also provided with a physical keyboard for
the touch condition, but its use was limited to text input.
We have also provided a height-adjustable movable table with
WSD-VW, to allow users to put down the interaction device
anywhere in the room (see Figure 8).

The task consisted in using Miro to replicate the same
UI as in the first study (see Figure 1). The participants first
discovered Miro on a desktop computer for two hours, with the
goal of reproducing another small UI similar to the main one in

TABLE III. Order of test conditions for the second user study using Miro.

Condition ID WSD Interaction method
Participant 1 (p1)
IA-Keyboard-p1 WSD-IA Keyboard
IA-Tablet-p1 WSD-IA Tablet
IA-Touch-p1 WSD-IA Touch
VW-Touch-p1 WSD-VW Touch
VW-Keyboard-p1 WSD-VW Keyboard
VW-Tablet-p1 WSD-VW Tablet
Participant 2 (p2)
IA-Tablet-p2 WSD-IA Tablet
IA-Touch-p2 WSD-IA Touch
IA-Keyboard-p2 WSD-IA Keyboard
VW-Keyboard-p2 WSD-VW Keyboard
VW-Touch-p2 WSD-VW Touch
VW-Tablet-p2 WSD-VW Tablet

terms of components to be drawn. Detailed task, protocol, and
discussion guide are available in supplementary material [45].

We used similar interaction methods as before, i.e., a
wireless keyboard with a touchpad, touch on the WSD with
a keyboard, and a tablet synchronized with the WSD (see
Figure 8). We changed the order in which participants used the
interaction methods, as shown in Table III. For logistic reasons,
the tests were run on WSD-IA first, and then on WSD-VW.

At the end of each session, the facilitator debriefed with the
participants to discuss their feedback and suggestions for im-
provement. The debriefing collected spontaneous open-ended
feedback first, and then leveraged sentence completion [68]
regarding first impression, the utility, usability, and user ex-
perience of the test condition, as well as its capacity to meet
the needs and desired improvements. See the conversion guide
and user study guide provided in supplementary material [45].

B. Results

Designing in real size was appreciated by participants, it
enhances the understanding of object dimensions, placement,
and the use of space (“the model on a large scale gives more
precise impression of the objects’ size, of their position and
the use of space.” p1, “It is great to see the result directly in
real size on the targeted display.” p2).

1) General observations:
a) General observation about Miro: In Miro, the main

menu that allows to create objects has a fixed position on
the left side of the workspace and is centered vertically. The
context menu for a selected object is displayed in the vicinity
of the object, as shown in Figure 9. Nobody complained about
the position of the two menus. The context menu allowed to
modify properties and perform actions on the selected object,
such as deleting or duplicating it, while the main menu on
the middle-left side allowed the creation of objects (“It is
convenient that a part of the functionalities [object properties]
are placed in the working zone.” p2). The only exception to
the above is for p2 in condition touch on WSD-IA (“It’s not
working well.” p2, “It’s not comfortable.” p2). We however
note that the mock-up to reproduce mainly used the leftmost
parts of the WSD. Had UI elements from the mock-up been
placed in a more central position (or even towards the right
side of the WSD), it is likely that the position of the main menu

60International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. 1) shows the left menu used to create objects, 2) is the menu used
to set some parameters for the workspace or go back to the list of projects

in Miro, and 3) is the context menu of the selected object.

would have been more of an issue. The lack of complaints on
the menu placement could also be due to the fact that the
mock-up only contained a moderate number of objects that
the participants must create. Another explanation could come
from a strategy used by both participants to mainly rely on
duplicating an existing object then completely modifying its
properties, rather than creating a new object using the menu.
This behavior could also be a reaction to the problematic
placement of the menu. The context menu was used a lot, even
though it sometimes stopped working for no apparent reason.
The top menu, which allows users to set some parameters of
the workspace, was only used to change the background color
of the workspace.

The most critical aspect of Miro noted by both participants
is that it does not provide a rich objects library. There are for
example no chart elements (“The available objects are very
basic, so everything must be laboriously drawn by oneself.”
p1). Both participants complained that the minimum font size
is blocked at 10. It was observed that, when an object was
created (or duplicated) partially outside the current viewport
(the portion of the workspace that is visible on the WSD),
then Miro adapted the view to include that and all the objects
(“The zoom level changes when I copy/paste something out of
the view, to put everything in view.” p2). This disturbed the
participants. During the session on WSD-VW with p1 and the
touch condition, a modal popup window opened in the middle
of the WSD, blocking all interactions. It took p1 a whole
minute to notice it, which was frustrating. Both users liked
the ease of changing the background color of the workspace.

b) Participants’ strategy: The participants often used a
strategy consisting in subdividing the mock-up in panels or
zones, using a lot of copy and paste actions, and working on
main structural elements before tackling the details, for all
conditions. With both the touch and the keyboard conditions,
p1 started by creating objects at the center level, to interact at
comfortable height. He then panned the mock-up to move the

objects up. P2 also used this strategy but only when interacting
with touch (“It is practical to be able to pan the mock-up,
because I was able to work in the middle of the screen at the
beginning, and then move everything up.” p2).

c) Task duration: One-hour sessions were judged accept-
able, but chairs were deemed mandatory for longer sessions.

2) Interacting with a wireless keyboard equipped with a
touchpad: In WSD-IA, p1 left the keyboard on the table
and turned his head and torso to see what he was doing,
particularly when he created the last panel of the mock-up,
which was behind his back, see Figure 10.a. Once, he turned
around the table without moving it. In WSD-VW, p1 always
left the keyboard on the table including when he moved (five
times) to the extreme right to change the zoom level from the
zoom menu (at the opposite end of the WSD, in the bottom
right corner) or to create the last panel of the mock-up. In this
case, p1 rolled the table until he was facing the zoom menu or
the new work area (see Figure 10.b). P2 noted that she moved
more using the keyboard with WSD-VW than with WSD-IA.
In WSD-IA, p2 remained at the table and turned it to face the
work area (see Figure 10.g and h). P2 mainly leaned over the
table (see Figure 10.d), but she often held the keyboard on her
arm during the last half of the session. P2 kept the keyboard
in her hands most of the time when doing modifications
like creating an object, moving or resizing it, changing its
properties or zooming and panning. To enter text, p2 mostly
put the keyboard on the table. She showed some signs of
physical fatigue halfway through the session (movements with
the neck, massages of the neck, see Figure 10.e. In WSD-VW,
p2 moved the table with the keyboard on it to face the panel
she was working on, and halfway through the session, sat down
for 15 minutes (see Figure 10.f). But p2 also often stood up
while holding the keyboard in her hands. Occasionally, p2
stepped back to get an overview.

In WSD-IA, p1 started by creating the left panel (Tasks),
then he created the title and subtitle of each panel. He looked
for some chart objects or chart icons. As he did not find any,
he instead went on to focus on creating the sliders. In WSD-
VW, p1 adopted another strategy. He first created one big
blue rectangle to serve as background for all panels. Then, he
created the other objects on top of it. This choice generated
difficulties later on, when trying to select objects without
selecting the background shape. He created the titles in the
middle of the WSD, then panned the workspace to place them
at the correct height. He built the interface panel by panel
from the left to the right. He sometimes zoomed in to work
on details (e.g., icons). He had some trouble grouping and
ungrouping objects. In WSD-IA, p2 started to design objects
directly where they were supposed to be placed. After creating
the titles, p2 designed panel by panel from left to right, before
coming back to the charts and sliders to add some details. At
the end, she added blue boxes to create the background of each
panel. In WSD-VW, p2 created the objects at a lower position
than their final placement, then panned the workspace to adjust
the height. After first creating the titles, she then designed the
remaining objects panel by panel from left to right.

61International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Using Miro with keyboard+touchpad. a) P1 turns his torso to
look behind in WSD-IA. b) P1 moves the table with the keyboard on in
WSD-VW. c) P2 carries the keyboard in her hands in WSD-VW. d) P2

leans on the table and tilts the keyboard with her hands in WSD-IA. e) P2
massages her neck in WSD-IA. f) P2 sits down in WSD-VW. g) and h) p2

turns the table to face the work area.

P2 used keyboard shortcuts a lot, to delete, copy, paste,
but also to create new shapes, text boxes, or zoom in and
out. P2 and p1 used keyboard arrow keys to place objects.
This facilitated a precise placement of objects (“I tried to be
accurate with the position of the objects from the paper mock-
up, taking into account the position relative to the various
screens of the wall.” p1). It also allowed participants to be
more precise in the layout of the mock-up itself relative to
the workspace. (“With the keyboard, positioning the scene
correctly is easier.” p1). The keyboard was also appreciated
for entering text. P2 also found it easier to draw graphs curves
using the keyboard touchpad than with the tablet or in the
touch condition.

The participants disliked the touchpad because it lacked
precision (“It was OK with the touchpad, but for smaller
things it would be better with a mouse.” p2). P1 complained
about triggering actions inadvertently, such as an unintended
pinch leading to a change of zoom, but unwanted panning, and
selecting/deselecting actions also occurred (“Of all the modal-
ities tested, the keyboard was the most frustrating one, due to
the touchpad’s extreme sensitivity. As a result, this modality is
difficult to use alone, it would be better to complement it with
other modalities.” p1). That’s why participants asked for an
option to change the zoom level independently of the panning.
P1 and p2 in general prefer to use a mouse instead of the
touchpad. It however remains unclear how a mouse would be
dealt with when a participant walks around with the interactive
device in hand, since a mouse might be difficult to use without
being placed on the table. P2 also used some shortcuts to
avoid using the touchpad, such as those enabling the creation
of a new shape or a new text box at the cursor’s position
(“But it’s not nice with the touchpad, so I tried to avoid using
it, and used shortcuts instead.” p2). The participants were
uncomfortable when inputting text (“The table height was too
low, which hurt my wrist. I tried to raise it, but it was already

at the maximum height. In the end, I carried the keyboard to
be more mobile, more flexible and to avoid wrist pain.” p2)
The workspace moved a lot inadvertently for both participants,
who wished they could lock the zooming and panning.

3) Interacting using direct touch on the WSD: P1 preferred
not to move the table. He mainly left the paper mock-up and
the keyboard on the table (“I didn’t move the table, I preferred
to have the papers in my hand in front of the display when
I really need them. I didn’t want to be cluttered with the
table.” p1). P2 preferred to move the table closer to the WSD
to let the paper mock-up on it and to have quick access to
the keyboard when needed, while maintaining access to the
left menu on the WSD. She often moved the table to follow
her process of working from left to right, but also sometimes
pushed the table out of her way (see Figure 11.b). We also
observed that both participants stepped back from time to time
to get an overview (both participants did so for WSD-VW and
only p2 for WSD-IA; “We can’t check the exact position of
the created objects; to do this we need to move back.” p2).
They both knelt down a few times in WSD-VW to interact
with the zoom menu, and p1 also did so to quickly modify
some objects (“I had to kneel down, that was more physically
demanding than with other modalities.” p1, see Figure 11 g
and h). Touch was the modality requiring the most movement.
Some physical fatigue arose, particularly in WSD-VW for p2
where she worked closer to the WSD (“It hurts my neck when
I am so close to the display and I look up. And it is warmer
when we are close to the screens.” p2).

We also observed that p1 and p2 first created the top
objects of the mock-up at arm’s height (vertically centered on
the WSD), then moved the workspace upwards to correctly
place the different elements “I moved [panned] the designed
interface so that it was at my height.” p1, see Figure 11 a, b
and c). On WSD-VW, both participants made use of the zoom
in and out capabilities several times to design the smallest
objects and then return to the initial view (see Figure 11 e
then f). P2 noted that it was tiring to work at the top or the
bottom of the WSD, especially when using the zoom widget
at the bottom right (see Figure 11.g). They both created the
titles first and then worked panel by panel. This eased the
interactions and decreased the difficulty of working on such a
huge surface by staying in a limited area and decreasing the
amount of physical movements (“I designed panel by panel,
so I had the feeling of working only locally.” p1).

A notable difference between WSD-IA and WSD-VW is
that the participants moved back more often and further back,
to get a bigger picture with WSD-VW than with WSD-IA
(“I needed to move back to have a global view.” p1, when
interacting on WSD-VW). It was also noted by p2 that touch
on WSD-VW was more tiring than on WSD-IA. This could be
explained by the fact that in WSD-VW, the zoom widget was
far from the users when they stood in the main working area.
To use it, they were forced to kneel down and press buttons,
which is uncomfortable. However, they used the zoom widget
more often on WSD-VW than on WSD-IA (only one time on
WSD-IA, by p2), which might be due to the issues encountered

62International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Using Miro with touch. In a) b) and c) participants create the
objects at the WSD center. e) shows p1 zooming in and panning to design
details, and then in f) repositioning the workspace correctly. In a) and f) p1
leaves the table in the middle. In b) p2 puts the table closer. d), g) and h)

show moments when the participants interact too low or too high.

with touch-based zooming and panning actions, which were
sometimes too fast and sometimes laggy (“It is more tiring
than with WSD-IA because of the zoom button at the bottom
right.” p2). Overall, both participants had the feeling that touch
worked better on WSD-VW than on WSD-IA.

The touch modality helps the most with the sense of
space. It is also more instinctive and rapidly allows to place
the created objects near their target location, even if the
positioning is rarely immediately perfect (“For some actions
it is nice to do them directly on the display, e.g., when I add a
text box, I can place it directly where I want.” p2). The feeling
of working directly on the interface was liked by participants
(“We can change directly on the display.” p2).

Many issues appeared with touch on both WSDs. The sensi-
tivity of the touch-based gestures was not adapted; sometimes
it was too sensitive, sometimes not responsive enough. The
technology used to recognize touch events was questioned
(“The touch needs to be improved.” p1). Indeed, participants
wondered whether the unexpected zooms, pans, and deselec-
tions/selections were triggered by pre-touch when a finger,
sheet of paper or sleeve inadvertently entered the infrared
detection zone of the touch frames (e.g., pointing a finger
while thinking “I wonder if it is due to a finger entering the
detection zone of the infrared frame.” p1, “being very close to
the display is sometimes enough to be detected as a touch.”
p1, “It was disturbing when my pointing finger was close to
the surface, because I was thinking before acting and then a
touch was detected.” p1). Both participants had trouble placing
and resizing objects, particularly for the first object with this
modality (“I still have some issues with the touch behavior,
notably the resizing of the objects and text fields.” p1). This
was particularly the case when objects were tiny (“When the
manipulated objects are too small, it is impossible or very
hard to modify them, like with the sliders or the curves.” p2).
Furthermore, grasping tiny objects such as the handles used for
resizing objects is complex and sometimes even impossible (p1
& p2). Modifying tiny objects therefore requires zooming in,
and it then becomes difficult to readjust to the right zooming

Figure 12. Bezel issue on WSD-IA (a, c and d), and on WSD WSD-VW (b).

level and to position the mock-up in the workspace afterwards
(“When objects are very small, like the one composing the
video camera icon, it was complicated to position them. So, I
zoomed in. Then, I used the zoom menu to go back to a 100%
zoom level.” p2). Hence, the participants asked for an option
to restore to the initial view, or at least to be able to go back
to a given fixed view of the workspace.

Positioning the objects on different layers (z-index) was also
problematic. Ensuring that each object was in the right layer
was sometimes tricky. But, the main issue was that, when
participants wanted to select an object in the foreground, a
background object was often selected instead (“When we are
drawing objects composed of simple forms, it is complicated
to specify what should be in the front/background.” p1).

The amount of unexpected zooming, panning, and dese-
lecting/selecting actions hampered work progress. In reaction,
both participants had to frequently zoom and pan. They asked
for the possibility to perfectly re-center the mock-up and resize
the workspace based on the WSD dimensions (“I need a button
to rescale the scene.” p1).

Screen bezels between the tiles composing the WSDs made
the touch interaction harder. It was difficult to drag an el-
ement across screens because the bezel in between would
interrupt the gesture (“Objects need to be large enough to
be moved across screens. Smaller bezels between two screens
would improve the touch reliability.” p1). Sometimes, the
bezel occluded partially the options in the context menu (see
Figure 12). Participants worked around it by first moving
the selected object to ensure that the whole context menu
was visible, then repositioned the object in the right position.
Bezel-related issues were more raised by the participants with
WSD-IA than with WSD-VW, likely because they are wider
for that WSD.

Drawing straight lines was not possible using touch (p1 &
p2 “Drawing a straight line is complicated with touch because
of finger tremor.” p1).

While typing with the keyboard was appreciated, using an
additional device poses a classic parking problem or requires
the user to carry it around (“The physical keyboard is better
than the virtual keyboard on the tablet, and I was able to input

63International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

more text. But the fact that the keyboard is placed on the table
is not comfortable. Why not searching for a solution to have
the keyboard closer without having to hold it in the hands,
like attaching it to the left arm?” p2).

4) Interacting on a synchronized tablet: Both participants
moved very little during their sessions with the tablet. In WSD-
IA, p1 and p2 stayed at the table and mostly did not move it.
They both held the tablet during about half of the session, but
p1 did so in the first part (see Figure 13.b), while p2 rather
did that in the second half. They both changed their holding
strategy because of the pain they felt in their arm (p1, see
Figure 13.e) or neck (p2). They both showed signs of physical
fatigue in the second half of the session (see Figure 13.d). P1
started the WSD-IA session with the tablet in his hand, then
put the tablet on the table, complaining about the weight of
the tablet. After a while, since the position at the table was
not comfortable either, p1 took the tablet back in his hand.
For WSD-VW, p1 left the tablet on the table throughout the
session. None of the participants moved the table extensively,
and they did always face the area they were working on. For
instance, p1 created the rightmost panel on WSD-VW while
staying at the table that was placed at the left of the WSD,
as shown on Figure 13.b. P1 also sometimes held the tablet
to move objects (e.g., title and subtitle of the rightmost panel)
from a screen in his back to a target position he was looking
at, without gazing at the objects during their movement. When
the tablet was placed on the table, they both put their other
hand (the one they were not using for interaction) on the
table (as shown in Figure 13.a and g), except for p2 when
she was entering text and therefore needed both hands (see
Figure 13.f). P2 changed the tablet orientation from landscape
to portrait in both WSD environments, for the whole second
half of the session for WSD-IA and during 15 minutes in
the beginning of the second half of the session for WSD-VW,
before switching back to landscape in that case. P2 often tilted
the tablet.During the WSD-VW session, p2 sat down on a table
for the first fifteen minutes of the session (see Figure 13.c),
then on a chair until the end of the session (see Figure 13.h).
With WSD-VW, they both moved a little to check results on
the WSD, leaving the tablet on the table. They both looked
at the tablet for the creation and modification of objects, and
then regularly checked the results on the WSD. As for the
placement of objects, they partially looked at the tablet, mainly
when the titles had already been created (as they then had
a reference), but also looked at the WSD, although the lag
between updates on the tablet and their effect on the WSD
impeded these checks. They both opted to directly position
the objects precisely on the WSD. They both also worked
with the tablet by zooming in on part of the working area.

The most interesting aspect of this modality is that the
viewports of the tablet and that of the WSD are dissociated.
This allows the user to zoom in considerably on the tablet
while keeping the view on the WSD unchanged. This was
noted as the main advantage of the tablet modality by both
participants (“Dissociating the viewport of the tablet and that
of the wall, especially for the zoom and pan” was pointed out

Figure 13. Using Miro with a tablet. a) and g) participants placed the tablet
on the table and their non-interactive hand, b) p1 holds the tablet in hands,
c) and h) shows p2 sitting down on a table and on a chair, d) and e) shows
that p1 is uncomfortable and stretches f) shows p2 entering some text with

two hands with the tablet placed on the table, in b) the yellow rectangle
shows the object manipulated by p1 that is in his back.

as the reason that makes the system easy to use by p1, “The
decoupling between zoom and pan on the tablet and on the
wall is interesting. As the tablet is tiny, I needed to zoom a
lot.” p1 “The workspace on WSD-VW never moved, this is
really comfortable.” p2).

This zoom in also helped to place elements more precisely
(as touch is more reliable on the tablet than on the WSD)
(“With zoom [on the tablet], it becomes possible to position
smaller elements.” p2). The ability to zoom in considerably
cancels out the fat finger effect observed with the touch
modality (p1) [69]. Creating small objects was experienced
differently by each participant. For p1, the ability to zoom
on the tablet without affecting the view on the WSD enabled
him to work on the smaller objects and their details. However,
p2 still found the tablet inadequate to design tiny objects (“I
avoided working on the very small details with the tablet, it
was not adapted.” p2)

P2 appreciated a lot the tablet condition, particularly on
WSD-VW (“It was with the tablet that I was able to do the
most. It works best.” p2).

The most negative aspect regarding the use of the tablet
was the delay between actions performed on the tablet and
their effect becoming visible on the WSD (p1 & p2, “The
tablet seemed slow, it didn’t respond right away.” p2, “There
is a delay between moving something on the tablet and
seeing it move on the WSD.” p2). P1 additionally observed
disconnections on the tablet at times.

Both participants found the tablet rather heavy, which made
it difficult to carry it around. They therefore put it on the
table, but the ergonomics of the table were not good enough,
which led to pain in their wrist, neck, back and shoulders.
The pain levels reported by the participants were more intense
with WSD-VW. We note that the table was not exactly the
same as that of WSD-IA, which could explain the increase
in complaints (“The tablet is heavy to carry. So, carrying it
in my hands didn’t suit me. So, I put it on the table. But in
this position, my shoulder and neck muscles were hurting. I
should have raised the table up, but I didn’t think about it.”

64International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

p1, “I had a bit of pain in my wrist due to the position while
interacting, especially while entering text.” p2).

Positioning the objects precisely with the tablet was com-
plicated (“You can’t place [the objects] as precisely as you
would like.” p1). Grouping objects was not easy either, using
touch input on the small surface of the tablet. The guiding and
snapping lines to help with aligning objects were visible only
when interacting on the tablet. P1 would have preferred to see
them on the WSD as well.

The working surface on the tablet is small, especially when
the virtual keyboard is opened (“But it is very small: the visible
surface is very small, and the virtual keyboard takes a lot of the
available space.” p2). For this reason, p2 changed the tablet’s
orientation from landscape to portrait, to see the workspace
better when the virtual keyboard was opened.

Participants deemed drag and drop difficult on the tablet, so
was multiple selection. The drag and drop of an object was
in fact accelerated depending on the distance on the tablet.
However, as the surface is small, the acceleration quickly
becomes too pronounced, which disturbed p1 (“When I moved
an object, it seemed like the speed of moving was changing
depending on the distance.” p1).

It was also noted by p2 that the available colors on the WSD
and the tablet seemed slightly different, making the selection
of the right color harder (“It was harder for me to find the right
colors. Maybe it’s because they are not exactly the same on
the tablet and on WSD-VW, or perhaps they are not perceived
the same way.” p2).

Last but not least, both participants did not like to type
text with the tablet; they preferred the physical keyboard. The
predictive text input of the tablet’s virtual keyboard was not
working well. Indeed, after p1 copied a text box, deleted the
text in the new text box, and started to input new text, the
predictive text input proposed a word starting with the first
letter of the previous text (“It’s a weird behavior, and it poses
a problem with the strategy I used for copying/pasting and then
modifying.” p1, “Typing is more painful than with a keyboard.
But with a more efficient automatic text completion system, it
would be faster. But, here, it is not efficient enough. When I
duplicated a text box and then deleted its text to enter new
text, it seemed that the system was keeping the first letter in
mind, although it was deleted, as it was still considered by the
text completion system.” p1).

To improve the use of the tablet, both participants suggested
using a stylus for more precision, and a keyboard, mainly to
facilitate text entry (“A stylus to better move the small elements
and a physical keyboard.” p2). They also suggested using a
wider tablet and would have liked a more ergonomic table.

5) Suggested improvements: Participants proposed different
features and options to improve the 1:1 scale design on a WSD.

• an option to lock and unlock zoom on WSD (p1 & p2);
• an option to lock and unlock panning on WSD (p1 &

p2);
• a button to center & zoom the design within the WSD

viewport (p1 & p2);
• an enriched objects’ library (p1 & p2);

• an improved touch detection system (p1 & p2);
• more flexibility regarding the font size (p1 & p2);
• the ability to move the context menu to work around

occlusions by the bezel (p1 & p2);
• freehand drawing with an AI-based conversion of hand

drawings into standard UI elements (“It would be inter-
esting to be able to draw by hand, to make sketches.”
p1, “Hand drawing with an AI that recognizes drawings
and normalizes drawn shapes.” p1, “Some AI assistance,
which gets what I’m doing and enables me to go faster.”
p1);

• speech recognition to dictate text and for simple com-
mands (“As well as using some vocal commands, for
instance to duplicate an object or change the color” p1);

• limiting the number of sub-menus, particularly in the
context menu, to 2 or 3 at most (p1);

• limiting pop-ups as much as possible; those that cannot
be avoided should not appear in the middle-center part
of the screen, but instead appear in the work area. (p1);

• a smart feature that recognizes series of actions that are
repeated, to ask the user whether and how many times to
repeat them (“a smart function that, for example, if we
repeat the same gesture [action] several times, then the
system asks if we should repeat it again and how many
times, e.g., for the labeled ticks along sliders.” p1);

• a wearable keyboard (p2);
• supporting mid-air gestures (“And maybe find a solution

to move less [than with touch], like using mid-air pointing
instead of touch, to support working from a distance.” p2)

• adding specific actions for each tile composing the WSD,
such as changing that screen’s background (“It would
be interesting to be able to change the background for
each screen” p2), that would require to declare the tiling
configuration of the WSD.

VII. DISCUSSION

In comparison to the first user study, the sessions of the
second one lasted longer (the full hour in all cases) and
participants managed to advance much further in the creation
of the mock-up. Hence, we can say that with Miro, participants
could work more efficiently, and this tool can be considered
as better adapted for the design in 1:1 scale on WSDs than
Figma. Our observations have shown that this improvement
was mainly due to the main menu being placed in the middle
part on the left side, and the context menu directly next to the
selected object that allows to select properties. User feedback
further revealed that the context menus were appreciated for
offering quick access to common actions (e.g., duplicate,
delete, change the z-index, modify object properties). The most
liked functionalities were the ability to duplicate objects, to
make multiple selections, to position objects in different layers,
and to modify the background color. As compared to the first
user study conducted with Figma and its right-anchored menu,
the physical fatigue was considerably reduced.

Despite this general improvement over Figma, the second
user study also showed that some issues still remain with Miro,

65International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

such as the position of the zoom widget placed in the bottom
right, which was disliked by all participants.

In addition, the second user study has shown that the
interaction modality and the WSD configuration has impacts
onto the experience of the user, which we will discuss further
in the following sections.

A. Benefits and issues with each modality

All three interaction modalities used in the user studies
were deemed familiar by both p1 and p2, which made them
easier to interact with the WSDs (“It resembles the interaction
modalities that we know on the desktop. It embraces the
great metaphors we are accustomed to.” p1, “It uses standard
interaction methods.” p2). However, we found that in each of
the conditions, participants faced issues and appreciated other
features. Based on our observations, we categorized them into
pros and cons, described below and summarized in Table IV.

P1 preferred the touch modality for the sense of acting
directly on the WSD, then placed the tablet as second choice,
with the keyboard last (“My favorite modality is the touch, al-
though I experienced some glitches that caused problems.” p1,
“With the keyboard, positioning the objects is more precise and
entering text is easier, but with the tablet I have better control
on the zoom level on the display, and no unwanted zoom.” p1).
P2 preferred the tablet, then ranked the keyboard second owing
to the ability to use shortcuts, and ranked the touch modality
last. Touch was the most tiring interaction modality for both
participants, because it required more movement. Concerning
the keyboard, participants would have liked to use it with a
mouse rather than a touchpad. As for the tablet, participants
would have preferred a larger tablet, and would have liked to
use a stylus as well as a physical keyboard.

When an interaction device was used in the given condition,
p1 generally preferred to leave it on the table. When movement
was necessary, he preferred to move the table, e.g., when
accessing the zoom menu at the right bottom on WSD-VW
(“I preferred not to carry the keyboard in hand for comfort. I
preferred to move the table, that was less painful.” p1). In such
situations, p2 preferred instead to carry the device around for
more flexibility and to avoid wrist pain linked to entering text
at an uncomfortable angle (“I carried the keyboard with me
in order to be more mobile, more flexible and to avoid wrist
pain.” p2, “Having the tablet on the table was eventually an
uncomfortable position for the neck, so, in the end, I preferred
to hold the tablet in my hand.” p2). Ultimately, both users
complained of physical fatigue and that the positioning of
the interaction devices was a pain-inducing issue. Interaction
devices also divided the participants’ attention between the
device and the WSD, typically when entering text (“[I] divided
my attention between the display and the keyboard.” p1).

Our results also show the main issues related to each interac-
tion modality. In the keyboard + touchpad setting, the touchpad
was too sensitive, which resulted in erratic movements of the
workspace and created frustration. Also, typing text induced
wrist pain due to the uncomfortable typing position, but this
may be solved with a tilting table. Direct touch on the WSD

induces physical fatigue and pain in the arm and neck. It
lacks precision, particularly in the manipulation of tiny objects,
and requires a lot of zoom and pan interactions. Some issues
may be related to the touch hardware we are using, as it
lacked robustness according to the participants. Finally, the
tablet weight induces pain in the arm and neck, that could be
alleviated by a tilting table, the working surface is too small,
and a fat finger effect was observed, the long-range drag and
drop is difficult, and lastly, there is a synchronization latency
between the tablet and the WSD.

Overall, the participants would have preferred to have
the ability to choose and switch between several interaction
methods throughout the design session.

B. Difference between both WSDs

Our observations also indicate some differences between
the two WSD settings. First, bezel issues were raised more
frequently with WSD-IA than WSD-VW, likely because they
are wider on WSD-IA, even if they are more numerous on
WSD-VW.

The position of the zoom widget was disliked by partic-
ipants on WSD-VW, although they did not comment on it
on WSD-IA. This is probably due to the fact that it was
displayed in the back of the participants on WSD-IA, and
went unnoticed. Only p2 used these options on WSD-IA and
only once, with the keyboard modality.

The physical ergonomics play an important role and must
be handled with care. The height-adjustable and movable
table in WSD-VW was liked and used, even if it was not
ergonomic enough. Indeed, the participants were quite tall
and the maximum height of the table in WSD-VW was
insufficient for them. P2 adapted the table height in WSD-IA
for more comfort. Participants wished they could tilt the table,
especially with the keyboard and the tablet conditions to avoid
wrist, shoulder, neck and back pain. P2 sometimes sat down in
WSD-VW (“I was not too tired, but maybe it was because I sat
down.” p2 when using the keyboard on WSD-VW). But, none
of the participants sat in WSD-IA, likely because available
chairs were behind the screens, i.e., outside the participants’
field of view. It was noted by p2 that being able to sit down
in WSD-VW was less tiring when using the keyboard and the
tablet, and offered better positioning for entering text.

Finally, the space around WSD-VW was appreciated (“It
was nicer with [WSD-VW] than with [WSD-IA] because there
was more space, and I sat down. I was able to arrange my
desk better.” p2) and led to a better user experience, likely
because participants realized they could use a chair and sit
down.

C. Implications for design

Based on our results from the two user studies, we can
propose several design guidelines for creating a WSD design
tool:

• Main actions should be reachable from the work area
(e.g., creation of a new object, selected object properties,
deletion, layering management).

66International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. Pros and cons with each interaction modality used to design at scale 1:1 on a WSD.

Keyboard & Touchpad Touch Tablet
Benefits - Precise positioning (using arrow keys)

- Easier text entering
- Use of shortcuts
- Lighter than a tablet

- Better sense of space
- Instinctive, direct, and immediate

- Dissociated viewports of tablet and WSD,
allowing two distinct views,
- Easier work from a distance, reducing physical
fatigue as it is possible to sit down
- Easier work on tiny objects

Issues - Touchpad not appreciated
- Not comfortable and wrist pain
- Workspace moves a lot
- Unintended action triggering

- Physical fatigue
- Arm and neck pain
- Not so robust
- Unintended action triggering
- Not so precise (tiny objects cannot be done)
- Requires a lot of zoom and pan

- Arm and neck pain
- Weight of the tablet
- Fat finger effect
- Lag between the two views
- Working surface is small
- Long-range drag and drop is difficult
- Virtual keyboard not appreciated

• Dialogue boxes should be avoided, or opened near the
work area.

• All design tool elements should be legible from near and
far, and actionable with the used modality.

• It should be possible to use the entire WSD surface for
design and that the design tool elements do not get in the
way, e.g., by making the design tool menus retractable, or
movable. All context menus should be movable to avoid
the bezels.

• A distinct device with a screen, like a tablet, should
provide a second view for zooming in and carrying out
design actions.

• It should be possible to lock the viewport of the
workspace, with independent settings for zoom and pan
actions.

• A possibility for resetting the viewport to a defined setting
should be provided, as reopening the design at the same
position.

• The system should support very large workspaces (gi-
gapixel resolution).

• It should be possible to change the background color.
• It should be possible to duplicate (multiple) objects.
• Expert interactions, e.g., shortcuts, should be supported.
• There should be an enriched objects’ library with ad-

vanced widgets, graphs, and icons to choose from.

Overall, regarding the different interaction methods, and
based on our results, the best approach seems to be to provide
a mix of modalities, including touch interaction for direct
manipulation of objects on the WSD, a distinct device with
a dissociated view (e.g., tablet), and a physical keyboard as
efficient means to enter text.

Regarding the design of the WSD itself, it is better to
reduce as much as possible the bezels between the display
tiles. It is also important to ensure the visibility of the cursor at
all times, and to facilitate long-range interactions, e.g., through
pointing facilitation techniques [50].

Flat and circular displays have their pros and cons. Circular
displays reduce the amplitude and the amount of movement
required, text is easier to read from everywhere, but there is
always a part of the screen at the back that can be invisible
or forgotten, and there is less space to add furniture to make
the interaction more comfortable. Flat displays, i.e., the most
common form of WSDs, require much physical navigation.

The user must move a lot to see the content on the other side
of the screen and to get an overview. But there is more space
around the display, which makes it easier to adapt it for a
better user experience, for instance, by adding furniture.

To improve the user experience regarding the space around
the WSD, we propose to provide: a height-adjustable mobile
and tilting table to park interaction devices, and chairs for
users to rest.

D. Limitations

Concerning the user studies, our findings come with several
limitations. First, the task was limited to the reproduction of an
existing UI prototype for a WSD environment, and no creative
part was involved. In addition, the user studies involved only
three participants who were all unfamiliar with the design tools
used. The advantage here, however, was that they had no prior
habits, e.g., using specific shortcuts, and were not frustrated
by not being able to work as quickly as an expert would on a
familiar software.

In the second user study, a clear learning effect was ob-
served between the first (played on WSD-IA) and last sessions
(played on WSD-VW). Indeed, participants were not experts
at using Miro, despite having used it for other purposes than
interface design. They discovered some features and faster
ways of performing some actions during the sessions. This
makes it difficult to compare the completion levels between
them.

Finally, it must be mentioned that we encountered (unex-
plained) bugs with the display of the context menu in Miro,
and that bezels would sometimes occlude menu options. Also,
the mock-up covered mainly the left part of the display. We
expect more issues to arise when users need to create objects
on the right side of the display using touch (particularly for flat
WSD such as WSD-VW) or the keyboard interaction methods.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented two user studies and a compara-
tive analysis investigating the suitability of existing UI design
tools to design at 1:1 scale on WSDs using three different
interaction methods: touch, a keyboard with a touchpad, and a
tablet. Our main takeaways are that (i) prototyping at 1:1 scale
and being able to see live the final rendering in real time is
appreciated, (ii) tablet-based interaction proved to be the most

67International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

comfortable, (iii) each interaction method has its benefits and
drawbacks; using a mix of modalities is promising, (iv) the
spatial positioning of interaction elements on the screen, as
well as the design of the physical environment, is of utmost
importance to reduce physical fatigue and support efficient
work, (v) among the nineteen desktop-optimized design tools
analyzed, none satisfies all the criteria, but Miro is the most
suitable.

So, to answer our research questions, a desktop optimized
tool cannot be used as-is to design at 1:1 scale in a WSD
environment. To improve the design of such a tool, we pro-
pose 12 design recommendations indicating how UI elements
should be placed, and which features need to be provided,
see Section VII-C. Regarding interaction modalities, the best
approach for this type of design currently seems to be the
synchronized tablet, but the other modalities also provide some
unique benefits. A mix of interaction methods seems promising
and is yet to be tested.

However, these studies involved few users and are focussed
on the reproduction of a UI design. To validate the proposed
guidelines, further experiments are needed.

More specifically, future work needs to further explore how
1:1 scale design can be supported by focussing on creating
a new design rather than reproducing an existing one. As
design is often a collaborative task, future research also needs
to investigate how to manage collaboration during design
sessions at 1:1 scale on WSDs. Additional questions are
how modalities can be mixed and support the transitioning
between multiple interaction methods in the same session. The
studies from this paper enabled us to better understand the
requirements for technical systems and the related problems
and opportunities when using them to design for WSDs. In a
longer perspective, this work is done as part of a design science
methodology [70], ultimately aiming to create a design tool
that is suitable for WSDs. The results presented in this paper
are part of the first step, the relevance cycle, and will enable
us to identify the user requirements.

IX. ACKNOWLEDGMENTS

We thank all user study participants.

REFERENCES

[1] L. Schwartz, V. Maquil, and M. Ghoniem, “Designing for and on
wall-sized displays: a preliminary study with FIGMA,” in CENTRIC
2024: The Seventeenth International Conference on Advances in Human-
oriented and Personalized Mechanisms, Technologies, and Services.
IARIA, 2024, pp. 41–44.

[2] C. Parker, M. Tomitsch, N. Davies, N. Valkanova, and J. Kay, “Foun-
dations for designing public interactive displays that provide value to
users,” in Proceedings of the 2020 CHI Conference on Human Factors
in Computing Systems, 2020, pp. 1–12.

[3] M. Finke, A. Tang, R. Leung, and M. Blackstock, “Lessons learned:
Game design for large public displays,” in Proceedings of the 3rd
International Conference on DIMEA Digital Interactive Media in
Entertainment and Arts, ser. DIMEA ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 26–33. [Online].
Available: https://doi.org/10.1145/1413634.1413644

[4] A. Prouzeau, A. Bezerianos, and O. Chapuis, “Towards road traffic
management with forecasting on wall displays,” in Proceedings of the
ACM ISS International Conference on Interactive Surfaces and Spaces.
ACM, 2016, pp. 119–128.

[5] W. Buxton, G. Fitzmaurice, R. Balakrishnan, and G. Kurtenbach, “Large
displays in automotive design,” IEEE Computer Graphics and Applica-
tions, vol. 20, no. 4, pp. 68–75, 2000.

[6] C. Liu, O. Chapuis, M. Beaudouin-Lafon, and E. Lecolinet, “Shared
interaction on a wall-sized display in a data manipulation task,”
in Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems, ser. CHI ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 2075–2086. [Online]. Available:
https://doi.org/10.1145/2858036.2858039

[7] D. Wigdor, H. Jiang, C. Forlines, M. Borkin, and C. Shen,
“WeSpace: The design development and deployment of a walk-up
and share multi-surface visual collaboration system,” in Proceedings
of the 2009 CHI Conference on Human Factors in Computing
Systems, ser. CHI ’09. New York, NY, USA: Association for
Computing Machinery, 2009, p. 1237–1246. [Online]. Available:
https://doi.org/10.1145/1518701.1518886

[8] F. Rajabiyazdi, J. Walny, C. Mah, J. Brosz, and S. Carpendale,
“Understanding researchers’ use of a large, high-resolution display
across disciplines,” in Proceedings of the 2015 International Conference
ITS on Interactive Tabletops &; Surfaces. New York, NY, USA:
Association for Computing Machinery, 2015, p. 107–116. [Online].
Available: https://doi.org/10.1145/2817721.2817735

[9] E. Pietriga, F. Del Campo, A. Ibsen, R. Primet, C. Appert et al.,
“Exploratory visualization of astronomical data on ultra-high-resolution
wall displays,” in Software and Cyberinfrastructure for Astronomy IV,
vol. 9913. SPIE, 2016, pp. 344–358.

[10] J. Simonsen, H. Karasti, and M. Hertzum, “Infrastructuring and partic-
ipatory design: Exploring infrastructural inversion as analytic, empiri-
cal and generative,” Computer Supported Cooperative Work (CSCW),
vol. 29, no. 1, pp. 115–151, 2020.

[11] J. Rambourg, H. Gaspard-Boulinc, S. Conversy, and M. Garbey,
“Welcome onboard: An interactive large surface designed for teamwork
and flexibility in surgical flow management,” in Proceedings of the
2018 ACM International Conference ISS on Interactive Surfaces
and Spaces, ser. ISS ’18. New York, NY, USA: Association
for Computing Machinery, 2018, p. 5–17. [Online]. Available:
https://doi.org/10.1145/3279778.3279804

[12] M. M. Thomas, T. Kannampallil, J. Abraham, and G. E. Marai, “Echo:
A large display interactive visualization of ICU data for effective
care handoffs,” in 2017 IEEE Workshop VAHC on Visual Analytics in
Healthcare, Phoenix, USA, 2017, pp. 47–54.

[13] V. Doshi, S. Tuteja, K. Bharadwaj, D. Tantillo, T. Marrinan et al.,
“Stickyschedule: An interactive multi-user application for conference
scheduling on large-scale shared displays,” in Proceedings of the 6th
ACM PerDis International Symposium on Pervasive Displays, ser. PerDis
’17. New York, NY, USA: Association for Computing Machinery,
2017. [Online]. Available: https://doi.org/10.1145/3078810.3078817

[14] J. Wall and M. Bertoni, “The decision arena: A model-centric interac-
tive workspace for product-service system design,” in Proceedings of
NordDesign 2020. Design Society, 2020, pp. 1–10.

[15] S. Kubicki, A. Guerriero, L. Schwartz, E. Daher, and B. Idris,
“Assessment of synchronous interactive devices for BIM project
coordination: Prospective ergonomics approach,” Automation in
Construction, vol. 101, pp. 160–178, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0926580517304284

[16] L. Lischke, L. Janietz, A. Beham, H. Bohnacker, U. Schendzielorz et al.,
“Challenges in designing interfaces for large displays: The practitioners’
point of view,” in Proceedings of the 11th NordiCHI Nordic Conference
on Human-Computer Interaction. ACM, 2020, pp. 1–6.

[17] I. Belkacem, C. Tominski, N. Médoc, S. Knudsen, R. Dachselt et al.,
“Interactive visualization on large high-resolution displays: A survey,”
in Computer Graphics Forum. Wiley Online Library, 2022, p. e15001.

[18] L. Chen, H.-N. Liang, J. Wang, Y. Qu, and Y. Yue, “On the use of
large interactive displays to support collaborative engagement and visual
exploratory tasks,” Sensors, vol. 21, no. 24, p. 8403, 2021.

[19] C. Ardito, P. Buono, M. F. Costabile, and G. Desolda, “Interaction with
large displays: A survey,” ACM Computing Surveys (CSUR), vol. 47,
no. 3, pp. 1–38, 2015.

[20] L. Schwartz, V. Maquil, and M. Ghoniem, “The challenges of designing
for large interactive displays,” in IHM23 Adjunct. ACM, 2023, pp. 1–6.

[21] M. Sinaei Hamed, P. Kwan, M. Klich, J. Aurisano, and F. Rajabiyazdi,
“The elephant in the room: Expert experiences designing, developing
and evaluating data visualizations on large displays,” Proceedings of the

68International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACM on Human-Computer Interaction, vol. 8, no. ISS, pp. 301–329,
2024.

[22] Figma. FIGMA design. Accessed: 2025.05.06. [Online]. Available:
https://www.figma.com/design/

[23] Miro. Welcome to the innovation workspace. Accessed: 2025.05.06.
[Online]. Available: https://miro.com/

[24] C. Snyder, Paper prototyping: The fast and easy way to design and
refine user interfaces. Morgan Kaufmann, 2003.

[25] B. Bailey, J. Biehl, D. Cook, and H. Metcalf, “Adapting paper proto-
typing for designing user interfaces for multiple display environments,”
Personal and Ubiquitous Computing, vol. 12, pp. 269–277, 2008.

[26] I. Avellino, C. Fleury, W. E. Mackay, and M. Beaudouin-Lafon, “Cam-
ray: Camera arrays support remote collaboration on wall-sized displays,”
in Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. ACM, 2017, pp. 6718–6729.

[27] D. Fallman, M. Kruzeniski, and M. Andersson, “Designing for a
collaborative industrial environment: the case of the ABB powerwall,”
in Proceedings of the 2005 conference on DUX Designing for User
eXperience, 2005, pp. 41–es.

[28] L. Lischke, S. Mayer, K. Wolf, N. Henze, H. Reiterer et al., “Screen
arrangements and interaction areas for large display work places,”
in Proceedings of the 5th ACM PerDis International Symposium on
Pervasive Displays, 2016, pp. 228–234.

[29] M. Chegini, S. Lin, D. J. Lehmann, K. Andrews, and T. Schreck,
“Interaction concepts for collaborative visual analysis of scatterplots on
large vertically-mounted high-resolution multi-touch displays,” in Forum
Media Technology, 2017, pp. 90–96.

[30] R. Langner, U. Kister, and R. Dachselt, “Multiple coordinated views at
large displays for multiple users: Empirical findings on user behavior,
movements, and distances,” IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 1, pp. 608–618, 2018.

[31] A. Bezerianos, P. Dragicevic, and R. Balakrishnan, “Mnemonic render-
ing: an image-based approach for exposing hidden changes in dynamic
displays,” in Proceedings of the 19th ACM symposium UIST on User
Interface Software and Technology, 2006, pp. 159–168.

[32] L. Vandenabeele, H. Afkari, J. Hermen, L. Deladiennée, C. Moll
et al., “DeBORAh: A web-based cross-device orchestration layer,” in
Proceedings of the 2022 International Conference AVI on Advanced
Visual Interfaces, 2022, pp. 1–3.

[33] E. Pietriga, S. Huot, M. Nancel, and R. Primet, “Rapid development
of user interfaces on cluster-driven wall displays with jbricks,” in
Proceedings of the ACM EICS Symposium on Engineering Interactive
Computing Systems, 2011, pp. 185–190.

[34] H.-J. Kim, J.-W. Kim, and T.-J. Nam, “Ministudio: Designers’ tool for
prototyping ubicomp space with interactive miniature,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems.
ACM, 2016, pp. 213–224.

[35] H.-J. Kim, C. M. Kim, and T.-J. Nam, “Sketchstudio: Experience proto-
typing with 2.5-dimensional animated design scenarios,” in Proceedings
of the 2018 DIS Designing Interactive Systems Conference. ACM,
2018, pp. 831–843.

[36] I. S. MacKenzie and R. W. Soukoreff, “Text entry for mobile computing:
Models and methods,theory and practice,” Human–Computer
Interaction, vol. 17, no. 2-3, pp. 147–198, 2002. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/07370024.2002.9667313

[37] U. Hinrichs, M. Hancock, S. Carpendale, and C. Collins, “Examination
of text-entry methods for tabletop displays,” in Second Annual IEEE
International Workshop TABLETOP on Horizontal Interactive Human-
Computer Systems, 2007, pp. 105–112.

[38] T. J. Dube and A. S. Arif, “Text entry in virtual reality: A comprehensive
review of the literature,” in Conference HCII on Human-Computer
Interaction. Recognition and Interaction Technologies, M. Kurosu, Ed.
Cham: Springer International Publishing, 2019, pp. 419–437.

[39] M. R. Jakobsen and K. Hornbæk, “Negotiating for space? collaborative
work using a wall display with mouse and touch input,” in
Proceedings of the CHI Conference on Human Factors in Computing
Systems, ser. CHI ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 2050–2061. [Online]. Available:
https://doi.org/10.1145/2858036.2858158

[40] F. Heidrich, M. Ziefle, C. Röcker, and J. Borchers, “Interacting with
smart walls: a multi-dimensional analysis of input technologies for
augmented environments,” in Proceedings of the 2nd AH Augmented
Human International Conference, ser. AH ’11. New York, NY,

USA: Association for Computing Machinery, 2011. [Online]. Available:
https://doi.org/10.1145/1959826.1959827

[41] M. R. Jakobsen, Y. Jansen, S. Boring, and K. Hornbæk, “Should I stay
or should I go? selecting between touch and mid-air gestures for large-
display interaction,” in Conference INTERACT on Human-Computer
Interaction, J. Abascal, S. Barbosa, M. Fetter, T. Gross, P. Palanque,
and M. Winckler, Eds. Cham: Springer International Publishing, 2015,
pp. 455–473.

[42] A. Prouzeau, A. Bezerianos, and O. Chapuis, “Evaluating multi-user
selection for exploring graph topology on wall-displays,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 23, no. 8, pp.
1936–1951, 2017.

[43] V. Maquil, D. Anastasiou, H. Afkari, A. Coppens, J. Hermen et al.,
“Establishing awareness through pointing gestures during collaborative
decision-making in a wall-display environment,” in Extended Abstracts
of the 2023 CHI Conference on Human Factors in Computing Systems.
ACM, 2023, pp. 1–7.

[44] L. Schwartz, M. Ghoniem, V. Maquil, A. Coppens, and J. Hermen,
“Designing at 1:1 scale on wall-sized displays using existing ui design
tools - annex 1,” 2025.

[45] ——, “Designing at 1:1 scale on wall-sized displays using existing ui
design tools - annex 2,” 2025.

[46] Google. The browser built to be yours. Accessed: 2025.05.06. [Online].
Available: https://www.google.com/intl/en/chrome/

[47] A. C. Figliolia, F. E. Sandnes, and F. O. Medola, “Experiences using
three app prototyping tools with different levels of fidelity from a product
design student’s perspective,” in International Conference ICITL on
Innovative Technologies and Learning. Springer, 2020, pp. 557–566.

[48] Uxtools.co. UI design. Accessed: 2025.05.06. [Online]. Available:
https://uxtools.co/survey/2023/ui-design/

[49] J. T. Hansberger, C. Peng, S. L. Mathis, V. Areyur Shanthakumar, S. C.
Meacham et al., “Dispelling the gorilla arm syndrome: the viability of
prolonged gesture interactions,” in 9th International Conference VAMR
on Virtual, Augmented and Mixed Reality. Springer, 2017, pp. 505–520.

[50] R. Balakrishnan, ““Beating” fitts’ law: virtual enhancements for
pointing facilitation,” International Journal of Human-Computer
Studies, vol. 61, no. 6, pp. 857–874, 2004. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S107158190400103X

[51] S. Phillora. (2024) 23 UX/UI design tools for better product
design and UX. Accessed: 2025.05.06. [Online]. Available: https:
//maze.co/collections/ux-ui-design/tools/

[52] Adobe. (2024) Get started with ADOBE XD. Accessed: 2025.05.06.
[Online]. Available: https://helpx.adobe.com/xd/get-started.html

[53] Axure. AXURE RP 11. Accessed: 2025.05.06. [Online]. Available:
https://www.axure.com/

[54] Balsamiq. The effortless wireframing tool built for your big ideas.
Accessed: 2025.05.06. [Online]. Available: https://balsamiq.com/

[55] Bubble. The full-stack, no-code app builder for everyone. Accessed:
2025.05.06. [Online]. Available: https://bubble.io/

[56] Canva. What will you design today? Accessed: 2025.01.30. [Online].
Available: https://www.canva.com

[57] Excalidraw. Excalidra. Accessed: 2025.05.06. [Online]. Available:
https://excalidraw.com/

[58] Framer. The web builder for stunning sites. Accessed: 2025.05.06.
[Online]. Available: https://www.framer.com

[59] Justinmind. Interaction design and prototyping tool for web and
mobile apps. Accessed: 2025.05.06. [Online]. Available: https:
//www.justinmind.com

[60] MockFlow. Think. wireframe. brainstorm. with mockflow. Accessed:
2025.05.06. [Online]. Available: https://mockflow.com/

[61] MockPlus. Sign in to mockplus. Accessed: 2025.05.06. [Online].
Available: https://rp.mockplus.com/

[62] Penpot. Design and code beautiful products. together. Accessed:
2025.05.06. [Online]. Available: https://penpot.app/

[63] Proto.io. Prototyping for all. Accessed: 2025.05.06. [Online]. Available:
https://proto.io/

[64] Protopie. #1 advanced prototyping tool for dynamic & multimodal
interactions. Accessed: 2025.05.06. [Online]. Available: https://www.
protopie.io/

[65] Sketch. Designers, welcome home. Accessed: 2025.05.06. [Online].
Available: https://www.sketch.com

[66] UXpin. Faster prototyping with AI component creation. Accessed:
2025.05.06. [Online]. Available: https://app.uxpin.com

69International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[67] WebFlow. Your site should do more than look good. Accessed:
2025.05.06. [Online]. Available: https://webflow.com/

[68] C. Lallemand and G. Gronier, Méthodes de design UX: 30 méthodes
fondamentales pour concevoir et évaluer les systèmes interactifs. Edi-
tions Eyrolles, 2015, original document in French, English title ”UX
Design Methods: 30 Fundamental Methods for Designing and Evaluating
Interactive Systems”.

[69] S. Voida, M. Tobiasz, J. Stromer, P. Isenberg, and S. Carpendale,
“Getting practical with interactive tabletop displays: designing for dense
data,” fat fingers,” diverse interactions, and face-to-face collaboration,”
in Proceedings of the ACM International ITS Conference on Interactive
Tabletops and Surfaces, 2009, pp. 109–116.

[70] A. R. Hevner, “A three cycle view of design science research,” Scandi-
navian Journal of Information Systems, vol. 19, no. 2, p. 4, 2007.

70International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Comparing Closed-Source and Open-Source Code Static Measures

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

luigi.lavazza@uninsubria.it

Abstract—Most software engineering empirical studies are
based on the analysis of open-source code. The reason is that
open-source code is readily available, while usually software
development organizations do not give access to their code, not
even when the purpose is research and the code itself will not be
disclosed. As a consequence, the corpus of empirical knowledge
is related almost exclusively to open-source software. This poses
a quite important question: do the conclusions we draw from the
analysis of open-source code apply to closed-source code as well?
In this paper, a comparison of open-source and closed-source
code is performed, to provide some preliminary answers to the
question. Specifically, the goal of the paper is to evaluate whether
static code measures from open-source code are similar to those
obtained from closed-source code. To this end, an empirical
study was performed, involving closed-source code from two
organizations and open-source code from a few different projects.
The most popular static code measures were collected using a
commercial tool, and compared. The study shows that open-
source code measures appear similar to the measures obtained
from industrial closed-source code. However, we must note that
the study reported here involved just a few industrial projects’
measures. Therefore, replications of the work presented here
would be very useful.

Keywords-software code measures; static code measures; open-
source code; closed-source code.

I. INTRODUCTION

Software development organizations make their code avail-
able to researchers very rarely. This is due to their need
for preserving the competitive advantage deriving from code
ownership. As a consequence, the great majority of the empir-
ical studies involving source code analyze open-source code,
which is freely available. The conclusions reached by these
studies are expected to apply to all code, including industrial
closed-source code. However, the generalizability of studies
based on open-source software relies on the assumption that
closed-source software is “similar” to open-source software.
Specifically, it is expected that the measures of open-source
code are representative of closed-source software as well.

This paper describes an empirical study that aims at verify-
ing if and to what extent code measures of open- and closed-
source projects are similar. To this end, we measured a set
of industrial closed-source projects and a set of open-source
projects and compared the resulting measures. While in a
previous paper [1] we considered only method-level measures
of Java code, in this paper we extend the analysis to class-level
measures.

Based on our results, there are no major differences
among the measures collected from industrial and open-source
projects. The study reported here has the merit to provide

some objective evidence that studying open-source projects
as representative of closed-source projects is sound.

In this study, the investigation is limited to static code
measures for Java projects. Specifically, we consider the code
metrics that are most frequently used in the research literature
and the software industry, which can be easily obtained via
any state-of-the-art tool.

The paper is structured as follows. Section II describes the
static code measures investigated in this study. Section III
describes the empirical study; results are given in Sections IV
and V for method and class measures, respectively Section VI
discusses the results obtained by the study. Section VII dis-
cusses the threats to the validity of the study. Section VIII
accounts for related work. Finally, in Section IX some con-
clusions are drawn, and future work is outlined.

II. CODE MEASURES

Since the first high-level programming languages were
introduced, several measures were proposed, to represent the
possibly relevant characteristics of code [2]. For instance, the
size of a software module is usually measured in terms of
Lines Of Code (LOC), while McCabe Complexity (also known
as Cyclomatic Complexity) [3] was proposed to represent the
“complexity” of code, with the idea that high levels of com-
plexity characterize code that is difficult to test and maintain.
The object-oriented measures by Chidamber and Kemerer [4]
were proposed to recognize poor software design. For instance,
modules with high levels of coupling are supposed to be
associated with difficult maintenance.

We have considered some of the most popular method-level
measures (listed in Table I) and class-level measures (listed
in Table II). All the measures mentioned in Tables I and II
were collected via the SourceMeter tool [5]. Interested readers
can find additional information concerning the definition and
meaning of the selected metrics in the documentation of
SourceMeter.

Halstead proposed several code metrics [6], based on the to-
tal number of occurrences of operators N1, the total number of
occurrences of operands N2, the number of distinct operators
η1 and the number of distinct operands η2. SourceMeter does
not provide the individual measures of N1, N2, η1 and η2;
instead, it provides Halstead Program Length (HPL), which is
defined as HPL = N1+N2, and Halstead Program Vocabulary
(HPV), which is defined as HPV = η1 + η2. Halstead Volume
(HVOL) is defined as HVOL = (N1 + N2) ∗ log2(η1 + η2);
Halstead Calculated Program Length (HCPL) is defined as

71International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
METHOD MEASURES COLLECTED VIA SOURCEMETER.

Metric name Abbreviation
Lines of Code LOC
Logical Lines of Code LLOC
Halstead Program Length HPL
Halstead Program Vocabulary HPV
Halstead Calculated Program Length HCPL
Halstead Volume HVOL
Maintainability Index (Original version) MI
McCabe’s Cyclomatic Complexity McCC

HCPL = η1 ∗ log2(η1) + η2 ∗ log2(η2). McCabe’s complexity
(McCC) is used to indicate the complexity of a program, being
the number of linearly independent paths through a program’s
source code [3]. The Maintainability Index (MI) [7] is defined
as MI = 171− 5.2 ∗ ln(HV OL)− 0.23 ∗ (McCC)− 16.2 ∗
ln(LLOC), where LLOC is the number of Logical LOC, i.e.,
the number of non-empty and non-comment code lines.

At the class level, we considered size metrics and the
metrics proposed by Chidamber and Kemerer [4].

TABLE II
CLASS MEASURES COLLECTED VIA SOURCEMETER.

Metric name Abbreviation
Lines of Code LOC
Logical Lines of Code LLOC
Coupling between Objects CBO
Response for a Class RFC
Weighted Methods per Class WMC
Lack of Cohesion in Methods LCOM5
Depth of Inheritance DIT
Number of Children NOC

Besides LOC and LLOC, which have the same meaning and
definition as the corresponding metrics used for methods, the
other class-level metrics are briefly described below [8].

WMC (Weighted methods per class) was defined as the sum
of the complexities of its methods. As a measure of complexity
SourceMeter assigns 1 to each method, hence WMC is equal
to the number of methods in the class.

CBO (Coupling between object classes) represents the num-
ber of classes coupled to a given class (efferent couplings
and afferent couplings) through method calls, field accesses,
inheritance, arguments, return types, and exceptions.

RFC (Response for a Class) measures the number of differ-
ent methods that can be executed when a method is invoked
for that object.

LCOM (Lack of cohesion in methods) measures the lack
of cohesion and computes into how many coherent classes
the class could be split. The original definition of LCOM [4]
was criticized because it depended on the number of methods
in the considered class. A few alternative definitions were
given. We use the one supported by SourceMeter, which is
computed by taking a non-directed graph, where the nodes
are the implemented local methods of the class and there is
an edge between the two nodes if and only if a common (local
or inherited) attribute or abstract method is used or a method
invokes another. The value of the metric is the number of

connected components in the graph not counting those, which
contain only constructors, destructors, getters, or setters.

DIT (Depth of Inheritance Tree) provides for each class a
measure of the inheritance levels from the hierarchy top class.
In Java, where all classes inherit Object, the minimum value
of DIT is 1.

NOC (Number of Children) measures the number of imme-
diate descendants of the class.

III. THE EMPIRICAL STUDY

The empirical study involved closed-source and open-source
Java programs. This code was measured, and the collected data
were analyzed via well established statistical methods. The
dataset is described in Section III-A, while the measurement
and analysis methods are described in Section III-B. The
results we obtained are reported in Sections IV and V.

A. The Dataset

As already mentioned, obtaining source code from software
industries is not easy. Therefore, the closed-source code ana-
lyzed within the study is a convenience sample: it is the code
that we were able to obtain from industrial developers. The
open-source code analyzed within the study is the open-source
code used within or together with the analyzed industrial
projects. This guarantees a sort of “homogeneity” of code with
respect to the required quality.

The open-source projects that supplied the code for the
study are: Log4J [9], JCaptcha [10], Pdfbox [11], Jasper-
Reports (abbreviated JReports where necessary) [12], Hiber-
nate [13].

Because of confidentiality reasons, the names of the in-
dustrial projects that supplied the code to be measured are
not given: these projects are named Industrial1, Industrial2,
Industrial3 (abbreviated Ind1, Ind2 and Ind3 where necessary).
Ind1 and Ind2 are client and contract management systems
from a large service company, Ind3 is the back-end of a web
application. All of the industrial projects aimed to develop
software supporting the main business of the owner companies,
i.e., none of the considered projects delivered a product to
be sold on the market. Also, all projects were developed by
external software houses on behalf of the owner companies.
Because of confidentiality reasons, the code and the raw
measures are not available.

Table III gives some descriptive statistics of the considered
projects.

TABLE III
DESCRIPTIVE STATISTICS OF THE DATASETS.

Number LOC LOC per file
of files total mean sd median range

Ind1 1507 202299 134 268 91 [1–6851]
Ind2 280 56419 201 286 93 [3–2336]
Ind3 1323 250193 189 307 100 [6–3644]
Log4J 1067 126354 118 121 80 [20–1357]
JCaptcha 248 25292 102 99 75 [16–691]
Pdfbox 1215 252158 208 251 125 [21–2966]
JReports 3177 533008 168 285 89 [27–4398]
Hibernate 2392 236527 99 127 63 [9–2146]

72International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table III provides, for each analyzed project, the number
of files, the total number of LOC, and the mean, standard
deviation, median and range of the LOC per file.

B. The Method
The first phase of the study consisted in measuring the code.

We used SourceMeter [5] to obtain the measures.
When analyzing the measures concerning methods, we

decided to exclude from the study all the methods having
unitary McCabe complexity, i.e., the methods that contain no
decision points, since those methods would bias the results. In
fact, these methods are quite numerous (since they include all
the setters and getters) and very small (the excluded methods
have mean and median LOC in the [3,6] range).

After removing the methods having unitary McCabe com-
plexity, we got the dataset whose descriptive statistics are
given in Table IV.

TABLE IV
DESCRIPTIVE STATISTICS OF THE DATASETS’ METHODS, AFTER

REMOVING METHODS WITH UNITARY MCCABE COMPLEXITY.

Num. LOC LOC per method
methods total mean sd median range

Ind1 1342 32654 24 38 15 [3, 626]
Ind2 703 17099 24 25 16 [3, 197]
Ind3 3339 127170 38 61 21 [3, 1272]
Log4J 1729 29948 17 17 12 [3, 176]
JCaptcha 362 6386 18 15 13 [3, 100]
Pdfbox 3738 92679 25 26 16 [3, 380]
JReports 6815 180104 26 31 17 [3, 453]
Hibernate 2746 46505 17 15 12 [3, 221]

Table V gives the descriptive statistics of the datasets with
respect to classes.

TABLE V
DESCRIPTIVE STATISTICS OF THE DATASETS’ CLASSES.

Num. LOC LOC per class
classes total mean sd median range

Ind1 1159 151726 131 293 65 [7, 6735]
Ind2 247 48261 195 273 88 [3, 2268]
Ind3 1389 222711 160 292 75 [2, 3639]
Log4J 1210 85242 70 93 39 [1, 1218]
JCaptcha 240 17941 75 93 50 [2, 648]
Pdfbox 1408 206029 146 225 72 [2, 2894]
JReports 2895 371364 128 262 55 [3, 4088]
Hibernate 2832 166082 59 95 32 [2, 2039]

Finally, we compared the collected measures. To this end,
we provide a visual representation of the data via boxplots
that describe the distributions, the mean and the median of
the measures collected from each project. We also performed
statistical analysis:

1) We performed a Kruskal-Wallis test for all the con-
sidered metrics, since the conditions for performing
ANOVA tests did not hold. As a result, we obtained
that, for all metrics, projects are not all equivalent with
respect to the considered measure.

2) To explore in detail the differences among projects, we
performed Wilcoxon rank sum tests for all project pairs,
for all the considered metrics.

3) When a Wilcoxon rank sum test excluded that the
measures are equivalent, we evaluated the effect size via
Hedge’s g.

In all the performed analysis, we considered the results
significant at the usual α = 0.05 level.

IV. RESULTS OF METHOD-LEVEL MEASUREMENTS

This section reports the data collected from methods,
grouped according to the type of property being measured.

A. Size Measures

Boxplots of LOC measures are given in Figure 1: for the
sake of readability, Figure 1 provides also a view without
outliers. The mean values are represented as blue diamonds.

Figure 1. Boxplots of size (measured in LoC) distributions, with (top) and
without (bottom) outliers.

The results of the Wilcoxon rank sum tests and Hedges’s
g evaluations concerning LOC are given in Table VI. Specifi-
cally, a cell includes symbol ‘=’ if the Wilcoxon rank sum test
could not exclude that the considered measures are equivalent;
otherwise, a cell includes one of the symbols ‘n,’ ‘s,’ ‘m’ for
negligible, small and medium effect size, respectively (in no
case a large effect size was found).

73International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR METHODS’

LOC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n s s n n n s
Ind2 n – s s s = n s
Ind3 s s – s s s s s
Log4J s s s – n s s n
JCaptcha n s s n – s s n
Pdfbox n = s s s – n s
JReports n n s s s n – s
Hibernate s s s n n s s –

Figure 2. Boxplots of size (measured in LLoC) distributions, with (top) and
without (bottom) outliers.

Boxplots of LLOC measures are given in Figure 2.
The results of the Wilcoxon rank sum tests and Hedges’s g

evaluations for LLOC measures are given in Table VII.

B. Complexity

Boxplots of McCabe cyclomatic complexity measures are
given in Figure 3. For the sake of readability, Figure 4 provides
the same data, excluding outliers.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Table VIII.

TABLE VII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR LLOC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n s s s n n s
Ind2 n – s s s n n s
Ind3 s s – s s s s s
Log4J s s s – n s s =
JCaptcha s s s n – s s n
Pdfbox n n s s s – n s
JReports n n s s s n – s
Hibernate s s s = n s s –

Figure 3. Boxplots of McCabe cyclomatic complexity distributions.

C. Maintainability

Maintainability is measured via the Maintainability Index
(MI) [7].

Boxplots of MI measures are given in Figure 5. For the
sake of readability, Figure 6 provides the same data, excluding
outliers.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Table IX.

Figure 4. Boxplots of McCabe cyclomatic complexity distributions. Outliers
omitted.

74International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VIII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR MCCABE

COMPLEXITY.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n n s s n = s
Ind2 n – s s s = n s
Ind3 n s – s s s s s
Log4J s s s – n n n s
JCaptcha s s s n – s s n
Pdfbox n = s n s – n s
JReports = n s n s n – s
Hibernate s s s s n s s –

Figure 5. Boxplots of Maintainability Index MI distributions.

D. Halstead Measures

Halstead identified measurable properties of software in
analogy with the measurable properties of matter [6]. Among
these properties is the volume, measured via the Halstead
Volume (HVOL). Boxplots of HVOL measures are given in
Figure 7. For the sake of readability, Figure 8 provides the
same data, excluding outliers. The results of the Wilcoxon rank

Figure 6. Boxplots of Maintainability Index MI distributions. Outliers
omitted.

TABLE IX
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR THE

MAINTAINABILITY INDEX (MI).

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – s n m m s s m
Ind2 s – n s m n n m
Ind3 n n – m m s s m
Log4J m s m – n s s n
JCaptcha m m m n – s s =
Pdfbox s n s s s – n s
JReports s n s s s n – s
Hibernate m m m n = s s –

sum tests and Hedges’s g evaluations are given in Table X.

Figure 7. Halstead volume distributions.

Figure 8. Halstead volume distributions. Outliers omitted.

Boxplots of Halstead Calculated Program Length (HCPL)
measures are given in Figure 9. For the sake of readability, Fig-
ure 10 provides the same data, excluding outliers. The results
of the Wilcoxon rank sum tests and Hedges’s g evaluations
are given in Table XI.

75International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE X
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR THE

HALSTEAD VOLUME.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – = n s s s s s
Ind2 = – s s s s s m
Ind3 n s – s s s s s
Log4J s s s – n n = s
JCaptcha s s s n – n n n
Pdfbox s s s n n – n s
JReports s s s = n n – s
Hibernate s m s s n s s –

Figure 9. Halstead computed program length distributions.

V. RESULTS OF CLASS-LEVEL MEASUREMENTS

This section reports the data collected from classes, grouped
according to the type of property being measured.

A. Size Measures

Boxplots of LOC and LLOC measures are given in Fig-
ure 11.

Figure 10. Halstead computed program length distributions. Outliers omitted.

TABLE XI
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR THE

HALSTEAD COMPUTED PROGRAM LENGTH.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – = s s s s s m
Ind2 = – s s s s s m
Ind3 s s – s s s s m
Log4J s s s – n = n s
JCaptcha s s s n – n n n
Pdfbox s s s = n – n s
JReports s s s n n n – s
Hibernate m m m s n s s –

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations are given in Tables XII and XIII.

TABLE XII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR CLASS LOC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n s s n n n s
Ind2 n – s s s = n s
Ind3 s s – s s s s s
Log4J s s s – n s s n
JCaptcha n s s n – s s n
Pdfbox n = s s s – n s
JReports n n s s s n – s
Hibernate s s s n n s s –

TABLE XIII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR CLASS

LLOC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n s s s n n s
Ind2 n – s s s n n s
Ind3 s s – s s s s s
Log4J s s s – n s s =
JCaptcha s s s n – s s n
Pdfbox n n s s s – n s
JReports n n s s s n – s
Hibernate s s s = n s s –

B. Coupling Measures
Boxplots of CBO measures are given in Figures 12 and 13.
The results of the Wilcoxon rank sum tests and Hedges’s g

evaluations concerning CBO measures are given in Table XIV.

TABLE XIV
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR CBO.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n s n n s s s
Ind2 n – s n n n s n
Ind3 s s – s s s n s
Log4J n n s – n s s n
JCaptcha n n s n – s s s
Pdfbox s n s s s – n n
JReports s s n s s n – s
Hibernate s n s n s n s –

C. Response for a Class
Boxplots of RFC measures are given in Figures 14 and 15.
The results of the Wilcoxon rank sum tests and Hedges’s g

evaluations concerning RFC measures are given in Table XV.

D. Results for WMC
Boxplots of WMC measures are given in Figures 16 and 17.
The results of the Wilcoxon rank sum tests and Hedges’s

g evaluations concerning WMC measures are given in Ta-
ble XVI.

76International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Boxplots of LoC (left) and LLOC (right) distributions, with (top) and without (bottom) outliers.

Figure 12. Boxplots of CBO distributions.

E. Results for Class Cohesion
Class cohesion was measured via the LCOM5 metric.

Boxplots of LCOM5 measures are given in Figures 18 and 19.

Figure 13. Boxplots of CBO distributions. Outliers omitted.

The results of the Wilcoxon rank sum tests and Hedges’s
g evaluations concerning LCOM5 measures are given in

77International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Boxplots of RFC distributions.

Figure 15. Boxplots of RFC distributions. Outliers omitted.

Table XVII.

F. Results for the Depth of Inheritance

Boxplots of DIT measures are given in Figures 20 and 21.
The results of the Wilcoxon rank sum tests and Hedges’s

g evaluations concerning DIT measures are given in Ta-
ble XVIII.

G. Results for the Number of Children

Boxplots of NOC measures are given in Figures 22 and 23.

TABLE XV
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR RFC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – s s n n n n n
Ind2 s – n l m m s l
Ind3 s n – s s s s m
Log4J n l s – = s s n
JCaptcha n m s = – s s n
Pdfbox n m s s s – n s
JReports n s s s s n – s
Hibernate n l m n n s s –

Figure 16. Boxplots of WMC distributions.

Figure 17. Boxplots of WMC distributions. Outliers omitted.

The results of the Wilcoxon rank sum tests and Hedges’s g
evaluations concerning NOC measures are given in Table XIX.

VI. DISCUSSION

Figure 1 shows that the set of chosen projects are quite
homogeneous with respect to size, all projects having the
great majority of methods no longer than 200 LOC. This
homogeneity is confirmed by the effect size evaluations given

TABLE XVI
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR WMC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – s s n n n n s
Ind2 s – = l m s s l
Ind3 s = – s s s s m
Log4J n l s – = s s n
JCaptcha n m s = – s s n
Pdfbox n s s s s – n s
JReports n s s s s n – s
Hibernate s l m n n s s –

78International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. Boxplots of LCOM5 distributions.

Figure 19. Boxplots of LCOM5 distributions. Outliers omitted.

in Tables VI and XII: only negligible and small effect sizes
were found, both at the method and class level.

Similarly, the great majority of methods have McCabe
complexity not greater than 5 for all projects, with the only
exception of Industrial3 (see Figure 4). However, also in
project Industrial3, only outliers have alarmingly high McCabe
complexity. As for LOC, the effect size is at most small,
indicating substantial equivalence of the projects’ complexity
measures.

TABLE XVII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR LCOM5.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n n n n n n n
Ind2 n – n n n n n n
Ind3 n n – n n n = s
Log4J n n n – s s n s
JCaptcha n n n s – n n n
Pdfbox n n n s n – n n
JReports n n = n n n – s
Hibernate n n s s n n s –

Figure 20. Boxplots of DIT distributions.

Figure 21. Boxplots of DIT distributions. Outliers omitted.

Concerning the Maintainability Index, Figure 5 shows that
Industrial1 and Industrial3 are the only projects that include
methods with negative MI; specifically, Industrial3 has several
methods with negative MI, some with alarmingly low values.
So, even though the situation excluding outliers (Figure 6)
seems to indicate a rather homogeneous situation, industrial
projects appear to be less maintainable then open-source
projects in several cases: according to Table IX, in 8 out of
15 comparisons involving a closed-source and an open-source

TABLE XVIII
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR DIT.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – s n n m s m n
Ind2 s – s s l m l s
Ind3 n s – n m s m n
Log4J n s n – s n m n
JCaptcha m l m s – s s m
Pdfbox s m s n s – s s
JReports m l m m s s – m
Hibernate n s n n m s m –

79International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 22. Boxplots of NOC distributions.

Figure 23. Boxplots of NOC distributions. Outliers omitted.

project, the effect size was medium. Instead, comparisons in-
volving only open-source projects and comparisons involving
only closed-source projects revealed at most small effect size.

Finally, we can see that all projects are fairly homogeneous
with respect to Halstead volume (Figures 7 and 8 and Table X).
Similar considerations apply for Halstead Computed Program
Length (HCPL), with medium effect size differentiating indus-
trial projects only with respect to Hibernate (Table XI).

In conclusion, we can observe that the analyzed open-source

TABLE XIX
WILCOXON RANK SUM TEST AND HEDGES’S G RESULTS FOR NOC.

Ind1 Ind2 Ind3 Log4J JCaptcha Pdfbox JReports Hibernate
Ind1 – n n n n n = n
Ind2 n – n n s n n n
Ind3 n n – n n n n n
Log4J n n n – n n n n
JCaptcha n s n n – n n n
Pdfbox n n n n n – n n
JReports = n n n n n – n
Hibernate n n n n n n n –

and closed-source code appear sufficiently similar, as far as
method-level metrics are concerned.

Halstead volume and program length appear homogeneous
through open-source and closed source programs (Tables X
and X), with the exception of Hibernate, which appears
“smaller” than the closed-source industrial programs.

Concerning coupling (CBO) and cohesion (LCOM5), no
difference could be spot between open-source and closed-
source programs.

RFC and WMC appear larger in Ind2 and Ind3, with
medium effect size in just a few cases (Tables XV and XVI).

Finally, the situation appear quite homogeneous also when
inheritance-related metrics (DIT and NOC) are concerned.
There are several medium effect size values in Table XVIII
concerning DIT, but we have to consider that all the DIT values
are small: as shown in Figure 21, the great majority of classes
has DIT not grater than 2. Only Ind2 seems to make very
little usage of inheritance (its values of both DIT and NOC
are definitely small).

Overall, neither for classes nor for methods there are re-
markable differences between open-source and closed-source
programs.

VII. THREATS TO VALIDITY

Concerning the application of traditional measures, we used
a state-of-the-art tool (SourceMeter), which is widely used and
mature, therefore we do not see any threat on this side.

A risk with the type of work presented here is that the code
that companies are willing to provide to researchers might
differ from the code they would not provide. This is possibly
due to the desire to “hide” low-quality code. In our case,
it is not so: the closed-source code being measured is the
complete code being used to build production applications and
is representative of the companies’ software in general.

Concerning the external validity of the study, as with most
Software Engineering empirical studies, we cannot claim that
the obtained results are generalizable. Specifically, the limited
number of considered projects calls for replications of this
study, involving more industrial closed-source code projects.

VIII. RELATED WORK

Open-source projects have been compared with closed-
source ones multiple times, but usually with respect to external
perceivable qualities. In fact, many of the published papers
aimed at answering questions like “Should I use this open-
source software product or this closed-source one?” These pa-
pers considered issues like reliability, speed and effectiveness
of defect removal, evolution, security, etc.

Bachmann and Bernstein [14] surveyed five open source
projects and one closed source project to evaluate the quality
and characteristics of data from bug tracking databases and
version control system log files. Among other things, they
discovered a poor quality in the link rate between bugs and
commits.

The debate on the security of open-source software com-
pared to that of closed-source software have produced several

80International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

studies. This is due not only to the relevance of the problem,
but also to the fact that security issues concerning closed-
source software are publicly available, even when the source
code is not.

Schryen and Kadura [15] analyzed and compared published
vulnerabilities of eight open-source software and nine closed-
source software packages. They provided an empirical analysis
of vulnerabilities in terms of mean time between vulnerability
disclosures, the development of disclosure over time, and the
severity of vulnerabilities.

Schryen [16] also investigated empirically the patching
behavior of software vendors/communities of widely deployed
open-source and closed-source software packages. He found
that it is not the particular software development style that
determines patching behavior, but rather the policy of the
particular software vendor.

Paulson et al. [17] compared open- and closed-source
projects to investigate the hypotheses that open-source soft-
ware grows more quickly, that creativity is more prevalent
in open-source software, that open-source projects succeed
because of their simplicity, that defects are found and fixed
more rapidly in open-source projects.

As opposed to the papers mentioned above, here a fairly sys-
tematic comparison of code measures is proposed. Previously,
MacCormack et al. compared the structure of an open-source
system (Linux) an a closed-source system (Mozilla) [18]. With
respect to our work, they evaluated just one code property
(modularity) for a single pair of products.

A comparison based on code metrics involving multiple
open-source and closed-source projects [19] was performed
from a different point of view and using different techniques:
the authors modified the Least Absolute Deviations technique
where, instead of comparing metrics data to an ideal distri-
bution, metrics from two programs are compared directly to
each other via a data binning technique.

IX. CONCLUSIONS

Open-source projects provide the code used in many em-
pirical studies. The applicability of the results of these studies
to software projects in general, i.e., including closed-source
projects, would be questionable, if open-source code were not
representative of closed-source code as well.

To address this issue, a comparison of open-source and
closed-source code was performed. Specifically, static code
measures from five open-source projects were compared to
those obtained from three closed-source projects. The study—
which addressed only Java code—shows that some of the most
well-known static code measures appear similar in open-source
and in industrial closed-source products.

However, we recall that the study reported here involved
just a few industrial projects’ measures, because getting access
to industrial code is not easy. Hence, the presented analysis
should be regarded as a preliminary results, which needs
replications before it can be considered valid in general.

REFERENCES

[1] L. Lavazza, “A comparison of closed-source and open-source code static
measures,” in ICSEA 2024-The Nineteenth International Conference on
Software Engineering Advances. IARIA, 2024, pp. 1–6.

[2] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC press, 2014.

[3] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308–320.

[4] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, 1994,
pp. 476–493.

[5] “SourceMeter,” https://www.sourcemeter.com/, [retrieved August, 2024].
[6] M. H. Halstead, Elements of software science. Elsevier North-Holland,

1977.
[7] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Development and

application of an automated source code maintainability index,” Journal
of Software Maintenance: Research and Practice, vol. 9, no. 3, 1997,
pp. 127–159.

[8] Diomidis Spinellis, “ckjm – A Tool for Calculating Chidamber and Ke-
merer Java Metrics,” https://www.spinellis.gr/sw/ckjm/doc/indexw.html.

[9] “Log4j.”
[10] “Jcaptcha,” https://jcaptcha.sourceforge.net/.
[11] “Apache pdfbox,” https://pdfbox.apache.org/.
[12] “Jasperreports.”
[13] “Hibernate,” https://hibernate.org/.
[14] A. Bachmann and A. Bernstein, “Software process data quality and

characteristics: a historical view on open and closed source projects,”
in Proceedings of the Joint int. ERCIM workshops on Principles of
software evolution (IWPSE) and software evolution (Evol) workshops,
2009, pp. 119–128.

[15] G. Schryen, “Security of open source and closed source software:
An empirical comparison of published vulnerabilities,” AMCIS 2009
Proceedings, 2009, p. 387.

[16] ——, “A comprehensive and comparative analysis of the patching
behavior of open source and closed source software vendors,” in 2009
Fifth International Conference on IT Security Incident Management and
IT Forensics. IEEE, 2009, pp. 153–168.

[17] J. W. Paulson, G. Succi, and A. Eberlein, “An empirical study of
open-source and closed-source software products,” IEEE transactions
on software engineering, vol. 30, no. 4, 2004, pp. 246–256.

[18] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,” Management Science, vol. 52, no. 7, 2006, pp. 1015–
1030.

[19] B. Robinson and P. Francis, “Improving industrial adoption of software
engineering research: a comparison of open and closed source software,”
in Proceedings of the 2010 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, 2010, pp. 1–10.

81International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VR-GitEvo+CI/CD: Visualizing the Evolution of Git Repositories
and CI/CD Pipelines in Virtual Reality

Roy Oberhauser[0000-0002-7606-8226]
Computer Science Dept.

Aalen University
Aalen, Germany

 e-mail: roy.oberhauser@hs-aalen.de

Abstract – Source code, together with its dependencies, is
constantly under change pressure, and hence the codebase,
typically stored and managed in a Git repository, evolves.
Similarly, the associated DevOps CI/CD (Continuous
Integration and Continuous Delivery) pipelines (automated
processes or workflows), which automate the preparation and
delivery of software artifacts, must adapt and evolve. However,
visualization of the evolution of both the codebase and the
associated CI/CD pipelines remains a challenge and hinders
comprehension, analysis, and collaboration among DevOps
stakeholders. To address this, our solution concept VR-
GitEvo+CI/CD contributes an immersive visualization of
codebases, dependencies, and CI/CD pipelines in Virtual Reality
(VR). Our prototype realization shows its feasibility, while a
case-based evaluation provides insights into its capabilities for
supporting comprehension and analysis of the state and
evolution of codebases and CI/CD pipelines.

Keywords – Git; DevOps; virtual reality; visualization;
software engineering; continuous integration; continuous
delivery; CI/CD pipelines; code evolution; automation workflows.

I. INTRODUCTION
This paper extends our VR-DevOps paper [1], focusing on

visualizing the evolution of both Git source code repositories
and CI/CD (Continuous Integration and Continuous Delivery)
pipelines [2] (a.k.a. DevOps pipelines); it incorporates VR
visualization of Git repository evolution and extends our
DevOps integration and capabilities.

“Everything moves on and nothing is at rest” is ascribed
by Plato to Heraclitus [3] and reformulated by others in
various ways; it essentially expresses that change or
dynamicity is the only constant in our world. And yet many if
not all of the restraints to change anchored in the physical
world are absent in the digital world that software inhabits. As
posited by F.P. Brooks Jr., software incurs essential
difficulties or challenges that relate to its essence (inherent in
its nature): complexity, conformity, changeability, and
invisibility [4]. Software is essentially infinitely changeable,
highly complex, exacting in conformance, and invisible. For
developers, the invisibility of software obscures the
underlying dependencies and complexity. This, in turn,
hinders its comprehension, analysis, and management during
the rapid evolution of both the codebase and the associated
CI/CD pipeline, which automates the transformation of code
into delivered (invokable) artifacts.

As to the degree of opaque dependencies, a 2024 industry
analysis [5] of over 20,000 enterprise applications found they

had 180 component dependencies on average (10% had over
400), with modern commercial software consisting of up to
90% Open-Source Software (OSS) components. As to change
and evolution frequency, 6.6 trillion downloads were expected
for 2024 across 7M OSS projects or components that
encompass over 60M releases (on average 16 releases per
OSS project annually) [5]. Already back in 2012, Google was
said to have an average deployment frequency of 5,500 times
a day [6][7], while Amazon was at 23,000 a day on average
[6]. While we cannot extrapolate to today’s rates for these IT
behemoths, a 2021 survey of 1200 professionals indicated
elite performers (26%) were deploying on demand multiple
times a day [8]. The complex and obscure dependencies and
rapid evolution of code and pipelines make comprehension
challenging.

DevOps [9][10] is a methodology that combines
development (Dev) and operations (Ops) with automation to
improve the quality and speed of software deliveries. While
there is no universally agreed to definition, key principles
include Continuous Integration (CI), Continuous Delivery
(CD), shared ownership, workflow automation, and rapid
feedback. Both the code and tool integration and automation
that DevOps addresses has become indispensable to modern
software development. It has been reported that 83% of
developers surveyed reported being involved in DevOps-
related activities [11]. Lately, Security (Sec) has often been
included in DevOps, denoted at the stage where it is primarily
considered, e.g., DevSecOps [12]. Despite the popularity of
DevOps, no modeling language nor visualization standard
currently exists for CI/CD pipelines; each platform and
vendor has their own, and it can thus be difficult for non-
developers to grasp - and hence collaborate regarding - the
current state of pipeline runs, and the processes involved in
software development, testing, and delivery.

With the increasing demand for software functionality,
large number of source code files are stored and managed in
code repositories using Version Control Systems (VCS) like
Git. GitHub has over 420M repositories with over 100M users
[13]. A repository can become very large and continually
evolve. For instance, in 2015 the Google monorepo shared by
25K developers contained 2B Lines of Code (LOC) across 9M
source files having a history of 35M commits with 40K
commits each workday [14], while the Linux kernel code
repository contains over 40M LOC [15] across 60K files. For
repositories, especially at such a scale, the dynamism of the
changes as the codebase evolves can challenge
comprehension and analysis.

82International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Current visualization tools for Git repositories and CI/CD
pipelines face inherent visualization limitations. While The
potential of Virtual Reality (VR) to address both visual
scalability and dynamic evolution has as yet been
insufficiently explored. VR offers a mediated visual digital
environment created and then experienced as telepresence by
the perceiver. In contrast to a 2-dimensional (2D) space, VR
enables an unlimited immersive space for visualizing and
analyzing models and their interrelationships simultaneously
in a 3D spatial structure viewable from different perspectives.
In their systematic review of the DevOps field, Khan et al.
[16] identified a lack of collaboration and communication
among stakeholders as the primary critical challenge.
Towards addressing this collaboration challenge, our
contribution leverages VR towards enabling more intuitive
DevOps visualization and interaction capabilities for
comprehending and analyzing CI/CD pipelines, thereby
supporting enhanced collaboration and communication
among a larger spectrum of stakeholders. A further challenge
is the finding by Giamattei et al. [17] that the landscape for
DevOps tools is extremely fragmented, meaning stakeholders
access various custom webpages or logs. Hence, a further goal
of our solution concept is unifying the visualization and
information access across heterogeneous Git and CI/CD tools.

In our prior VR work, VR-Git [18] and VR-GitCity [19]
focused on Git support in VR with a vertical commit plane or
city metaphor respectively, whereas VR-DevOps [1] focused
on VR support for depicting pipelines. This paper contributes
our solution concept VR-GitEvo+CI/CD, which provides an
immersive visualization in VR of the state and evolution of
both codebases, dependencies, and cross-platform CI/CD
pipelines. Our prototype realization shows its feasibility, and
a case-based evaluation provides insights into its potential
towards supporting comprehension, analysis, and
collaboration among DevOps stakeholders.

This paper is organized as follows: the next section
discusses related work. Section III presents our solution
concept. Section IV describes our realization, followed by an
evaluation in Section V. Finally, a conclusion is drawn.

II. RELATED WORK
Work on VR-based visualization of Git includes our own

prior work VR-Git [18] and VR-GitCity [19]: VR-Git uses
consecutive vertical commit planes on a hyperplane to
represent commits, whereas VR-GitCity uses a city metaphor
to convey code sizes across files. Bjørklund [20], who used a
directed acyclic graph visualization in VR using the Unreal
Engine, with a backend using NodeJS, Mongoose, and
ExpressJS, with SQLite used to store data. GitHub Skyline
[21] provides a VR Ready 3D contribution graph as an
animated skyline that can be annotated. VRGit by Zhang et al.
[22] depicts the non-linear version history via a history graph
anchored to the user’s arm, where each node is a 3D miniature
of that version highlighting changed objects.

As to non-VR based Git visualization, Git-Truck [23]
hierarchical visualizations (i.e., Treemaps, Circle packing) to
represent files nested in folders, with code metrics mapped to
size and color; GitTruck@Duck [24] extends this further for
filtering polymetric views scoped to time intervals. Gource

[25] and CodeFlower [26] use an animated tree with
directories as branches and files as leaves. Githru, [27] enables
interactive scalable exploration of large Git commit graphs
using graph reconstruction, clustering, and context-preserving
squash merge. Evo-Clocks [28] represents repository
evolution with each node history depicted as a separate disk
clock. RepoVis [29] offers a comprehensive visual overview
and search facilities using a 2D JavaScript-based web
application and Ruby-based backend with a CouchDB. Githru
[30] utilizes graph reconstruction, clustering, and context-
preserving squash merge to abstract a large-scale commit
graph, providing an interactive summary view of the
development history. VisGi [31] utilizes tagging to aggregate
commits for a coarse group graph, and Sunburst Tree Layout
diagrams to visualize group contents. It is interesting to note
that the paper states “showing all groups at once overloads the
available display space, making any two-dimensional
visualization cluttered and uninformative. The use of an
interactive model is important for clean and focused
visualizations.” UrbanIt [32] utilizes an iPad to support
mobile Git visualization aspects, such as an evolution view.
Besides the web-based visualization interfaces of Git cloud
providers, various desktop Git tools, such as Sourcetree and
Gitkracken, provide typical 2D branch visualizations.

Regarding VR-based DevOps-related work, VIAProMa
[33] provides a visual immersive analytics framework for
project management. DevOpsUseXR is mentioned in the
paper as an eXtended Reality (XR) approach for incorporating
end users to allow them to directly provide feedback in Mixed
Reality (MR) regarding their experience when using a specific
MR app. In contrast, our solution concept is independent of
the software type being built in the pipeline, and is purely
virtual, remaining consistent, app-independent, and focusing
on visualizing and collaborating with regard to the DevOps
pipeline. The systematic review of DevOps tools by Giamattei
et al. [17] does not mention any VR, XR, or MR tools.

Non-VR based DevOps work includes DevOpsML [34], a
platform modeling language and conceptual framework for
modeling and configuring DevOps engineering processes and
platforms. DevOpsUse [35] expands DevOps to collaborate
more closely with end users. The authors also state that there
is in general a research gap in applying information
visualization to software engineering data, and that this needs
further investigation. This concurs with our view, as we were
not able to find much VR or non-VR work related to DevOps
visualization. Zampetti et al. [2] analyzed the pipeline
evolution of 4,644 projects in 8 programming languages using
Travis-CI, creating a taxonomy of 34 CI/CD pipeline
restructuring actions and metric extractor of 16 indicators of
how a pipeline evolves.

In contrast to the above work, VR-GitEvo+CI/CD focuses
on immersively visualizing the dynamic evolution of both the
codebase in Git repositories and heterogeneous CI/CD
pipelines.

III. SOLUTION CONCEPT
Our solution approach leverages VR for visualizing the

evolution of codebases and CI/CD pipelines via models that
can be immersively explored and experienced in 3D.

83International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Grounding in VR-Related Research
Our rationale for integrating VR into our solution concept

stems from existing VR research in fields we consider relevant
to modeling, analysis, and collaboration, several of which are
summarized here. Akpan and Shanker [36] in their systematic
meta-analysis demonstrate that VR and 3D provide marked
advantages in discrete event modeling, including model
development, analysis, and Verification and Validation
(V&V), with common findings pointing to the positive impact
of 3D/VR model analysis and V&V. Across 23 studies on 3D
analysis, 95% found 3D more effective and conducive to
enhanced analysis compared to 2D, notably when assessing
model behavior or conducting what-if scenarios; there was
broad agreement that 3D/VR effectively communicates
results to decision-makers with clarity and conviction; 74% of
19 papers concluded that 3D/VR significantly enhances model
development tasks, benefiting team support, and sharpening
precision and clarity. In exploring VR applicability for
analytical tasks within an information architecture, Narasimha
et al. [37] conducted a card sorting collaboration study. Their
findings indicated VR matched or exceeded in-person card
sorting for certain variables, surpassing both traditional and
video-based settings. Qualitative insights on awareness
suggested that during collaboration, participants maintained
awareness of tasks, people, and the environment, mimicking
in-person interactions, with positive perceptions of VR. These
findings indicate that VR facilitates a sense of presence and
collaboration akin to face-to-face settings. Fonnet and Prie's
[38] survey of Immersive Analytics (IA) reviewed 177 papers
and found that for complex graph and spatial data, IA offers
advantages over non-IA methods, though for multi-
dimensional data, benefits vary with the task. They highlight
that while IA supports the exploration of extensive data
environments, the underutilization of context-aware
navigation techniques is problematic, despite their importance
to users. Müller et al. [39] compared VR vs. 2D for a software
analysis task, finding no significant decrease for VR in
comprehension and analysis time. While interaction time was
less efficient, VR improved the user experience, was more
motivating, less demanding, more inventive/innovative, and
more clearly structured.

Consequently, we infer that an immersive, context-rich
VR experience holds significant promise for comprehensively
depicting 3D models while enhancing comprehension,
awareness, analysis, and the inclusion of and collaboration
with stakeholders.

B. Prior VR-Related Research
Our VR-GitEvo+CI/CD solution concept is highlighted in

blue relative to our other VR solutions in Figure 1. It is based
on our generalized VR Modeling Framework (VR-MF),
detailed in [40], which provides a VR-based domain-
independent hypermodeling framework addressing four
aspects requiring special attention when modeling in VR:
visualization, navigation, interaction, and data
retrieval/integration.

Our VR-based solutions specific to the SE and Systems
Engineering (SysE) areas include: VR-DevOps [1], which this
paper extends; VR-Git [18] and VR-GitCity [19] visualize Git

repositories; VR-SDLC (Software Development LifeCycle)
[41] visualizes lifecycle activities and artefacts in software
and systems development; VR-SBOM [42] for Software Bill
of Materials and Supply Chain visualization; VR-ISA [43] for
visualizing an Informed Software Architecture; VR-V&V
(Verification and Validation) [36], for visualizing aspects
related to quality assurance; VR-TestCoverage [45] for
visualizing in VR which tests cover what test target artefacts;
VR-UML [46] supports visualizing UML models; and VR-
SysML [47] supports Systems Modeling Language (SysML)
models.

In the Enterprise Architecture (EA) and Business Process
(BP) space (EA & BP), we developed VR-EA [48] to support
mapping EA models to VR, including both ArchiMate as well
as BPMN via VR-BPMN [39]; VR-EAT [49] adds enterprise
repository integration (Atlas and IT blueprint integration);
VR-EA+TCK [50] adds knowledge and content integration;
VR-EvoEA+BP [51] adds EA evolution and Business Process
animation; while VR-ProcessMine [52] supports process
mining in VR. Since DevOps (or DevSecOps or DevOpsUse)
can be viewed as inter-disciplinary, for software organizations
we view both the EA and BP areas as potentially applicable
for VR-GitEvo+CI/CD to support synergies, more holistic
insights, and enhanced collaboration across the enterprise and
organizational space.

Figure 1. Conceptual map of our various published VR solution concepts
with VR-GitEvo+CI/CD highlighted in blue.

C. Visualization in VR
A pipeline is represented as a horizontal pipeline

hyperplane, holding vertical semi-transparent colored boxes
called run planes (see Figure 2), which are ordered
chronologically left to right. A run plane represents a pipeline
run, which is colored based on status (green=success,
yellow=in progress, red=error, grey= aborted). Hyperplanes
also enable inter-project pipeline differentiation for larger
portfolio scenarios involving multiple pipelines. The bottom
of each run plane encloses a directed graph of sequential
stages (cubes) of the pipeline between a start (black sphere)
and an end (black sphere), while vertically stacked smaller
cubes linked with lines above each stage show the internal
steps within a stage. A cube with black borders is used to
represent the entire run, and is all that is shown when a run is
collapsed (e.g., to reduce visual clutter); on its front various
details are depicted (ID, run duration, circular percentage of
stages with status). The visualization form remains consistent
across DevOps tools.

Pipeline hyperplane

84International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. A nexus portraying artifact dependencies in a Git repository.

A Git code repository is depicted as a 3D graph, whereby
the spherical nodes, representing artifacts (files), are placed on
the surface of a 3D nexus sphere and edges connecting the
nodes represent dependencies, as shown in Figure 3. Such a
3D nexus is spatially compact for navigating to and between
nodes with the inside showing all dependencies. A 3D radial
tree layout depicts child nodes as hierarchically-layered
dependencies; here, all child nodes and their dependencies
extend radially outwards from the nexus, leaving only the
highest-level (parent or independent) artifacts in the nexus
(reducing the number of nodes within the nexus), as shown in
Figure 4. This permits dependency groupings and levels to be
more easily followed. A separate Lines of Code (LOC) nexus
is used to depict the relative sizes of source code files, as this
graph structure represents a containing folders tree hierarchy
rather than code dependencies; the node size corresponds to
the LOC in that file for a selected commit. This boundary box

for depicting LOC can stand for any metric of interest and
could easily be switched to any other. We used LOC to
exemplify this, since all text files have this relevant metric.

Figure 4. Child dependencies extracted as 3D radial tree from nexus.

D. Navigation in VR
Two navigation modes are incorporated in our solution:

default gliding controls for fly-through VR, while teleporting
instantly places the camera at a selected position via a
selection on the VR-Tablet. Teleporting is potentially
disconcerting, but may reduce the likelihood of VR sickness.

E. Interaction in VR
User-element interaction is supported primarily through

VR controllers and a VR-Tablet. The VR-Tablet is used to
provide detailed context-specific element information.
Accordion visual elements permit more detailed information
to be offered when desired. It includes a virtual keyboard for
text entry via laser pointer key selection. On a hyperplane
corner, an anchor sphere affordance (labeled with its pipeline
ID) supports moving, hiding (collapsing), or showing
(expanding) hyperplanes, as shown in the bottom left of
Figure 2.

Figure 2. Hyperplane (annotated) of SprintBootExamaple Jenkins pipeline showing vertical colored run planes on a pipeline hyperplane.

85International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. REALIZATION
The logical architecture for our prototype realization is

shown in Figure 5. In our realization, the VR visualization
aspects were implemented using Unity. It is supported by a
Data Hub implemented in Python that integrates various Git
and CI/CD data sources and stores them in JSON. All
integrations with DevOps tools use their Web APIs via our
tool-specific Adapters in our Data Hub for data conversion
into our internal JSON format. MongoDB (locally or remotely
using Atlas) is used for storage and is accessed via the
MongoDB .NET/C# Driver from Unity or PyMongo from
Python. To demonstrate the CI/CD tool/platform
independence (i.e., heterogeneity) of our solution concept, it
integrates with a local Jenkins [53] pipeline running in
Docker, exemplifying a private cloud CI/CD server, as well as
remote Semaphore [54] and Drone [55] CI servers to
exemplify public cloud CI/CD tool integration using Web
APIs.

Figure 5. VR-GitEvo+CI/CD logical architecture.

The GitPython library is used to extract Git commit data:
commit hash, author, timestamp, message, changed files, and
changed files and metrics (insertions, deletions, lines). For Git
commits, within the nexus, nodes outlined in red indicate new
files while turquoise indicates changed files. Dependencies
within JavaScript projects were extracted using the Node.js
package manager “npm ls --all” command. For the 3D radial
tree visualization, the various depth layers are colored to help
differentiate them (yellow, light green, dark green, turquoise,
blue, purple, pink, etc.). In the nexus layout, to highlight files
affected by a commit, red indicates added and turquoise
updated. In the LOC boundary box, black nodes are
directories and files are red.

A CD pipeline is an automated expression of the process
for preparing software for delivery. A Jenkins pipeline is a set
of Jenkins plugins with a set of instructions specified in a text-
based Jenkins file using Groovy syntax. It can be written in a
scripted or declarative syntax, and typically defines the entire
build process, including building, testing, and delivery.
Concepts involved can include agents (executors), nodes
(machines), stages (subset of tasks), and steps (a single task).
Both Semaphore and Drone pipelines are described via a
YAML syntax. We created our own common generic JSON
format to store pipeline information, see Figure 6. A pipeline
instance refers to a run. The refresh rates can be configured
for Data Hub state retrieval from Unity and for each Adapter’s
Web APIs calls.

Figure 6. Snippet of VR-GitEvo+CI/CD common run representation in
JSON.

V. EVALUATION
For the evaluation of our solution concept, we refer to

design science method and principles [56], in particular a
viable artifact, problem relevance, and design evaluation
(utility, quality, efficacy). A scenario-based case study is used
in evaluating the Git and CI/CD pipeline aspects separately to
address these particular stakeholder concerns (for various
stakeholders, not just developers):

1) Status scenario: focuses primarily on conveying
status information, so that stakeholders can readily
determine the current state,

2) Analysis scenario: focuses primarily on supporting
analysis and investigation tasks via the provisioning
of information towards understanding essential
features, relations, constituent elements, issue
identification, issue resolution, etc., and

3) Evolution scenario: focuses primarily on supporting
comprehension of the evolution of the underlying
structure (Git repository or CI/CD pipeline) via the
provisioning of time-based change information to
support comprehension regarding structural
differences.

A. Git Code Repositories
1) Evaluation Setup

A very simple Vite-based HelloWorld Node.js app was
used for the evaluation, the metrics shown in Figure 7. The
app includes 477 Node modules that consist of 18K files and
1.8M LOC. Since one is often oblivious to all included
modules, perhaps explicitly including some, which in turn
include multiple others, we utilize Node.js to demonstrate the
VR-GitEvo+CI/CD concept, in particular the 3D hierarchical
radial tree, since such modules exhibit a much deeper
dependency hierarchy then what is explicitly specified via
inclusion. If modules or their dependencies are not of interest,
then these can be hidden.

3D Environment

Laser Pointer
via Controller

Selec5on
Menu

Structure
Visualiza5on

3D Object
Selec5on

ScriptsAssets

Unity

CI/CD Pipelines
Local (Docker)

Data Hub

MongoDB
.NET/C# Driver

PyMongo

MongoDB

Python
Adapters

Jenkins
Remote

Drone…

Semaphore

GitPython

Local/Remote
Repo

Git

86International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Git vite project language, directory, and file metrics.

2) Git Status Scenario
To determine the state of the Git repository, the LOC

nexus on the right shows the files that are included in the
project, the edges between them showing the relation between
the containing directory and that file, with node size indicating
relative LOC size, as shown on the right in Figure 8. In the
boundary box on the left, the dependencies are shown between
files and modules are shown, making apparent the many
(often hidden) dependencies between included modules.

Figure 8. Git Dependency nexus (left) and LOC nexus (right).

To view details about the state of a specific commit, the
Commit Tab on the VR-Tablet is shown in Figure 9. It
provides commit status information as to the repository,
specific commit info, author, date, total files and lines
changed, and a scrollable list of the files making up the
commit, which with an accordion can be expanded to show
additional metrics of lines inserted, lines deleted, and total
LOC size. The Dependencies Nexus on the top left shows
highlighted nodes, red for files added and turquoise for files
updated by this commit.

Figure 9. VR-Tablet: Git Commit Tab: Details.

The Dependencies Tab on the VR-Tablet is shown in
Figure 10. It lists the explicit (first degree) included modules,
and, using the accordion, one can drill down and, in turn,
determine the included modules of each of these.

Figure 10. VR-Tablet: Git Dependencies Tab: General status.

The Settings Tab on the VR-Tablet is shown in Figure 11.
With it, the repository, the boundary box layout, and the depth
limit can be specified. For a different repository (vite-
project2), the sliders max layer limit and number of commits
available are adjusted accordingly, as shown in Figure 12.

87International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. VR-Tablet: Git Settings Tab: selected repo, layout, and layer
limit option status.

Figure 12. VR-Tablet: Git Settings Tab: selecting another repo adjusts
commits available.

3) Git Analysis Scenario
To support analysis of Git repositories, multiple options

are offered. By default, the Dependency Nexus shows all
dependencies to make one aware of the entire set of
dependencies, as shown in Figure 13.

Figure 13. Git: Nexus: closeup of dependencies before node selection.

When a single node is selected, non-related dependencies
and nodes are ghosted (to minimize visual clutter) and help
focus on its specific dependencies, as shown in Figure 14.
Moreover, the Deps Tab switches to Selected and offers
specific information on that node and its dependencies. A
view from further out shows the highlighted selected nodes
and the ghosted can still be faintly seen, as depicted in Figure
15.

Figure 14. Git: Nexus: selecting a node leaves tree of dependencies and
toggles ghosting of rest; VR-Tablet offers detailed information.

Figure 15. Git: Nexus: selected dependencies and rest of nexus ghosted.

Contingent on the depth of the dependencies, it may be
beneficial to view the dependencies hierarchically and
limiting the layers, as shown with our 3D radial tree layout
(Circle in VR-Tablet) with the slider set to 2 layers of depth,
as shown in Figure 16.

88International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. Git: 3D Radial Tree (Circle) layout with depth limit 2.

In contrast, with the setting to its maximum depth (reaches
9 for this repo at a certain commit date) is shown in Figure 17.
These dependencies can be hierarchically navigated, with
certain nodes having n-m incoming and outgoing
dependencies.

Figure 17. Git: 3D Radial (Circle) with depth limit 9.

Furthermore, to assist with analysis, a subset of
dependencies can be highlighted (ghosting other nodes and
dependencies) by selecting a specific node of interest, as
exemplified with the jest node in Figure 18.

Figure 18. Git: Radial Layout: selecting node shows dependencies and
toggles ghosting of rest.

A subset of dependencies can be highlighted (ghosting
other nodes and dependencies) by selecting a specific node of
interest, as exemplified with the jest node in Figure 18. This
can also be done by selecting an element of interest via the
VR-Tablet. The full set of dependencies can also be viewed
and navigated in the VR-Tablet, as shown Figure 19.

Figure 19. VR-Tablet: Git Dependencies Tab: Selected Dependencies.

89International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

If one wishes to analyze the size of the files (or any other
metric of interest if it were implemented), one can select a
node of interest in the nexus in the LOC boundary box and the
corresponding data is then shown in the VR-Tablet, as seen in
Figure 20. The relation of a file (red node) to its containing
directory (black nodes) is shown via edges within the nexus,
while the relative size is conveyed via the sphere size, as
shown in Figure 21.

Figure 20. VR-Tablet: Git Files Tab: Files contained in selected src folder.

Figure 21. Git: Lines of Code nexus.

4) Git Evolution Scenario
For the evolution scenario, changes and time are of interest

to the stakeholders. For this, the VR-Tablet offers on the
Home Tab a list of all commits with the commit messages,
author, date, and a slider showing the total number of
commits, as shown in Figure 22. By moving this slider, the
contents in the boundary boxes are redrawn to show the state
at that evolution point and the changes to the repo by that
commit, as shown in Figure 23. Hence, by sliding the slider,
the history of changes of these nexuses are redrawn and thus
animated and changes are dynamically apparent. Similarly,
the changes to dependencies can be viewed as a 3D radial tree
and time-adjusted, as shown in Figure 24.

Figure 22. VR-Tablet: Home Tab: Git commit messages

Figure 23. Git: Nexus: new (red) and updated (turquoise) nodes in commit.

90International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 24. Git: 3D radial: dependencies as 3D radial tidy trees.

The detailed changes to dependencies can also be viewed
in the VR-Tablet in the Deps Tab under Changes providing
further details, as shown in Figure 25. If more interested in
File changes, then in the VR-Tablet in the Files Tab under
Changes further details are provided there, including changes
to metrics, as shown in Figure 26.

Figure 25. VR-Tablet: Git Dependencies Tab: Changes.

Figure 26. VR-Tablet: Git Files Tab: Changes.

B. CI/CD Pipelines
To demonstrate the heterogeneity of the solution, various

screenshots of runs from Jenkins, Semaphore, or Drone are
used interchangeably.

1) Evaluation Setup
For Jenkins, the SpringBoot PetClinic example pipeline

[57] includes 39 Java files and 1335 Lines of Code (LOC). For
pipeline error illustration purposes, an additional step with an
artificial error was inserted into the SpringBoot example in a
second version of the CI/CD pipeline, as shown in the listing
in Figure 27. For Semaphore, the Android App example
pipeline includes 13 Kotlin files and 287 LOC, as shown in
the listing in Figure 28.

Figure 27. SpringBoot PetClinic Jenkins pipeline in Groovy (snippet).

2) CI/CD Pipeline Status Scenario
In 2D, dashboards are typically available for assessing a

selected CI/CD pipeline instance state, yet each tool has its
own unique interface, as exemplified for the Jenkins tool in
Figure 29. The equivalent for Semaphore is shown in Figure
30. In our VR-GitEvo+CI/CD, a unified interface for
heterogeneous CI/CD pipelines is provided, such that a
stakeholder can readily comprehend and assess the current
status and state of multiple pipeline runs. Any particular run
may execute different steps and stages (e.g., due to an abort,
error, option, etc.). Fully collapsed run planes provide a high-
level overview, with black-lined cubes representing any
pipeline instance and conveying details, as shown in Figure 34
and Figure 35.

91International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 28. Semaphore Android App pipeline in YAML format

Figure 29. Jenkins tool web screenshot.

Figure 30. Semaphore tool web screenshot.

3) CI/CD Pipeline Analysis Scenario
VR-GitEvo+CI/CD supports analysis of issues via

immersive visual patterns and contrasts, visually revealing
differences in the detailed steps executions, as shown for the
Android App in Figure 31. Here, each run plane represents a
pipeline run, which is colored based on status (green=success,
yellow=in progress, red=error, grey= aborted). The contrasts
with a YAML (YAML Ain't Markup Language) pipeline
definition, which contains many details that are difficult for
certain stakeholders to grasp, while lacking status info, as in
Figure 28. Alternatively, a web-based graphical status may be
offered, yet lack comprehensive details for analysis, as seen in
Figure 29 and Figure 30.

Figure 31. Immersive analysis via visual colored run comparison of
stage/step status (for Semaphore pipeline).

Furthermore, to assist with analysis tasks, the VR-Tablet
supports information retrieval, including additional context-
specific metadata and error messages about a particular block
as seen Figure 32.

Figure 32. VR-Tablet shows contextual element details: metadata and
instructions/description.

92International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The pipeline stage or step task instructions can be viewed,
as shown in Figure 35.

Figure 35. VR-Tablet shows contextual element details: instructions or
description.

Raw pipeline log information is available, as shown in
Figure 36.

Figure 36. VR-Tablet offers raw file access to log.

Figure 33. Pipeline run status for a set of Semaphore pipeline runs showing expanded step details and an aborted process in grey on the far right.

Figure 34. Collapsed Semaphore runs on a pipeline hyperplane with stages expanded (and steps collapsed) for a selected run.

93International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The raw pipeline code specification can also be viewed
directly in the VR-Tablet, as seen in Figure 37.

Figure 37. VR-Tablet offers raw file access to pipeline definition.

This consolidation of information in the VR-Tablet, in
conjunction with visual context in VR, could improve the
utility and efficacy of analysis tasks, especially when
considering increasing pipeline complexity, pipeline versions,
and large scale-out of runs.

4) CI/CD Pipeline Evolution Scenario
To support pipeline evolution scenarios, changes and time

are factors for stakeholder. To view versioning changes to
stages or steps, an immersive visual differentiation of runs can
be performed by choosing a perspective and alignment, as
shown for the PetClinic pipeline in Figure 38.
Comprehending the pipeline structure and any delta via its
Groovy file would be more difficult for non-developer
stakeholders. Visual depiction and differentiation can help
support the inclusion of non-tech-savvy stakeholders,
improving the speed of assessments and the quality of analysis
tasks via the inclusion of diverse stakeholders.

Figure 38. Immersive analysis of pipeline evolution via visual alignment of
stage/steps (for Jenkins pipeline).

Moreover, any issues with pipelines over time can be
readily viewed via the status of all instances. Run status details
can be individually collapsed or expanded as desired for the
analysis, vertically (Figure 33) and horizontally (Figure 34).
The status of “All Builds” is shown in Figure 39. Via the VR-
Tablet timeline slider, a specific pipeline instance can be
selected. This is shown for a specific failure case in Figure 40.
The equivalent for a successful case is shown in Figure 41.

Figure 39. Timeline slider can be used to selectively view the history of all
pipeline instances.

Figure 40. Timeline slider can be used to select a single execution.

Figure 41. Timeline slider can be used to select a single.

94International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Discussion
The scenario-based case study using our prototype

realization showed the ability of the GitEvo+CI/CD solution
concept to address DevOps stakeholders concerns regarding
both Git codebase repositories and CI/CD pipelines. These
scenarios included a status scenario, analysis scenario, and
evolution scenario. The use of VR supports a collaborative,
immersive experience without visual limitations, enabling it
to scale across large projects and multiple projects
concurrently with a relatively intuitive and simple
homogeneous interface to diverse local and remote Git
repository providers and CI/CD providers.

VI. CONCLUSION
Visualizing the evolution of both Git codebases and

CI/CD pipelines remains a challenge and hinders
comprehension, analysis, and collaboration among DevOps
stakeholders. VR-GitEvo+CI/CD offers an immersive
visualization solution concept for codebases, their
dependencies, and CI/CD pipelines in VR. The realization
prototype showed its feasibility, while the case-based
evaluation showed its potential to support comprehension in
typical scenarios such as status, analysis, and evolution. The
solution concept is DevOps tool-independent, hiding the
differences that the fragmented DevOps tool landscape might
present to non-tech-savvy stakeholders. It thus provides a way
towards broader inclusion of various DevOps stakeholders,
and can thus support greater collaboration and communication
to address a significant challenge facing DevOps.

For future work, we see the potential for more holistic
DevOps insights via a deeper integration with our other
existing VR solutions. Additional future work includes:
support for GitOps, Infrastructure as Code, VR-native
developer support, collaboration and annotation capabilities,
and a comprehensive industrial empirical study.

ACKNOWLEDGMENT
The authors would like to thank Pascal Rene May,

Maximilian Stricker, and Maximilian Zeger for his assistance
with the design, implementation, and evaluation.

REFERENCES
[1] R. Oberhauser, “VR-DevOps: Visualizing and Interacting with

DevOps Pipelines in Virtual Reality,” In: Proc. 19th
International Conference on Software Engineering Advances,
pp. 43-48, 2024.

[2] F. Zampetti, S. Geremia, G. Bavota, and M. Di Penta, “CI/CD
pipelines evolution and restructuring: A qualitative and
quantitative study,” In: 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), IEEE, 2021,
pp. 471-482.

[3] J. M. Robinson, “An introduction to early Greek philosophy:
The chief fragments and ancient testimony, with connecting
commentary,” Advanced Reasoning Forum, p. 90, Fragment
5.14, 2021.

[4] F. P. Brooks, Jr., The Mythical Man-Month, Boston, MA:
Addison-Wesley Longman Publ. Co., Inc., 1995.

[5] Sonatype, “State of the Software Supply Chain,” 2024,
https://sonatype.com/hubfs/SSCR-2024/SSCR_2024-FINAL-
optimized.pdf 2025.05.10

[6] IT Revolution, “DevOps Guide: Selected Resources to Start
Your Journey,” The IT Revolution, 2015. [Online]. Available
from: https://web.archive.org/web/20211010072856/http://
images.itrevolution.com/documents/ITRev_DevOps_Guide_5
_2015.pdf 2025.05.10

[7] J. Micco, “Tools for continuous integration at google scale,”
Google Tech Talk, Google Inc., 2012.

[8] DevOps Research and Assessment (DORA) Team, “Accelerate
State of DevOps report,” 2021. [Online]. Available from:
https://services.google.com/fh/files/misc/state-of-devops-
2021.pdf 2025.05.10

[9] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, "DevOps,"
in IEEE Software, vol. 33, no. 3, pp. 94-100, May-June 2016.

[10] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s
Perspective, Addison-Wesley Professional, 2015.

[11] L. Dodd and B. Noll, “State of CI/CD Report 2024: The
Evolution of Software Delivery Performance,” SlashData and
the Continuous Delivery Foundation, 2024.

[12] GitLab, “A Maturing DevSecOps Landscape,” 2021. [Online].
Available from: https://about.gitlab.com/images/developer-
survey/gitlab-devsecops-2021-survey-results.pdf 2025.05.10

[13] J. D'Souza, “GitHub Statistics by Developers, Git Pushes and
Facts” [Online]. Available from:
https://web.archive.org/web/20250226132029/https://www.co
olest-gadgets.com/github-statistics/ 2025.05.10

[14] R. Potvin and J. Levenberg, “Why Google stores billions of
lines of code in a single repository,” In: Communications of the
ACM, 59(7), pp.78-87, 2016. https://doi.org/10.1145/2854146

[15] M. Tyson, “Linux kernel source expands beyond 40 million
lines – it has doubled in size in a decade,” Tom's Hardware,
January 26, 2025. [Online]. Available from:
https://www.tomshardware.com/software/linux/linux-kernel-
source-expands-beyond-40-million-lines-it-has-doubled-in-
size-in-a-decade 2025.05.10

[16] M. S. Khan, A. W. Khan, F. Khan, M. A. Khan, and T. K.
Whangbo, "Critical Challenges to Adopt DevOps Culture in
Software Organizations: A Systematic Review," in IEEE
Access, vol. 10, pp. 14339-14349, 2022.

[17] L. Giamattei et al., “Monitoring tools for DevOps and
microservices: A systematic grey literature review,” Journal of
Systems and Software, vol. 208, 2024, p.111906.

[18] R. Oberhauser, "VR-Git: Git Repository Visualization and
Immersion in Virtual Reality," 17th International Conference
on Software Engineering Advances (ICSEA 2022), IARIA,
2022, pp. 9-14.

[19] R. Oberhauser, “VR-GitCity: Immersively Visualizing Git
Repository Evolution Using a City Metaphor in Virtual
Reality,” International Journal on Advances in Software, 16 (3
& 4), 2023, pp. 141-150.

[20] H. Bjørklund, “Visualisation of Git in Virtual Reality,”
Master’s thesis, NTNU, 2017.

[21] GitHub Skyline [Online]. Available from:
https://skyline.github.com 2025.05.10

[22] L. Zhang, A. Agrawal, S. Oney, and A. Guo, “VRGit: A
Version Control System for Collaborative Content Creation in
Virtual Reality,” In: Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI '23), ACM,
Article 36, 2023, pp. 1–14.
https://doi.org/10.1145/3544548.3581136

[23] K. Højelse, T. Kilbak, J. Røssum, E. Jäpelt, L. Merino, and M.
Lungu, "Git-Truck: Hierarchy-Oriented Visualization of Git
Repository Evolution," 2022 Working Conference on Software
Visualization (VISSOFT), Limassol, Cyprus, 2022, pp. 131-
140, doi: 10.1109/VISSOFT55257.2022.00021.

[24] A. Hoff, T. H. Kilbak, L. Merino, and M. Lungu,
"GitTruck@Duck - Interactive Time Range Selection in
Hierarchy-Oriented Polymetric Visualization of Git Repository

95International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Evolution," 2024 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2024, pp. 853-857, doi:
10.1109/ICSME58944.2024.00090.

[25] https://gource.io, last accessed 2025.05.10
[26] CodeFlower [Online]. Available from:

https://github.com/fzaninotto/CodeFlower 2025.05.10
[27] Y. Kim et al., “Githru: Visual Analytics for Understanding

Software Development History Through Git Metadata
Analysis,” IEEE Transactions on Visualization and Computer
Graphics, vol. 27, 2021.

[28] C. V. Alexandru, S. Proksch, P. Behnamghader, and H. C. Gall,
“Evo-Clocks: Software Evolution at a Glance,” in 2019
Working Conference on Software Visualization (VISSOFT).
IEEE, 2019.

[29] J. Feiner and K. Andrews, “Repovis: Visual overviews and
full-text search in software repositories,” In: 2018 IEEE
Working Conference on Software Visualization (VISSOFT),
IEEE, 2018, pp. 1-11.

[30] Y. Kim et al., “Githru: Visual analytics for understanding
software development history through git metadata analysis,”
IEEE Transactions on Visualization and Computer Graphics,
27(2), IEEE, 2020, pp.656-666.

[31] S. Elsen, “VisGi: Visualizing git branches,” In IEEE Working
Conf. on Software Visualization, IEEE, 2013, pp. 1-4.

[32] A. Ciani, R. Minelli, A. Mocci, and M. Lanza, “UrbanIt:
Visualizing repositories everywhere,” In 2015 IEEE
International Conference on Software Maintenance and
Evolution (ICSME), IEEE, 2015, pp. 324-326.

[33] B. Hensen and R. Klamma, “VIAProMa: An Agile Project
Management Framework for Mixed Reality,” In: Augmented
Reality, Virtual Reality, and Computer Graphics (AVR 2021),
LNCS, vol 12980, Springer, Cham, 2021, pp. 254-272.

[34] A. Colantoni, L. Berardinelli, and M. Wimmer, “DevopsML:
Towards modeling devops processes and platforms,” In: 23rd
ACM/IEEE International Conference Model Driven
Engineering Languages and Systems: Companion Proc., ACM,
2020, pp. 1-10.

[35] I. Koren, “DevOpsUse: A Community-Oriented Methodology
for Societal Software Engineering,” In: Ernst Denert Award for
Software Engineering 2020, Springer, 2022, pp. 143-165.

[36] I. J. Akpan and M. Shanker, "The confirmed realities and myths
about the benefits and costs of 3D visualization and virtual
reality in discrete event modeling and simulation: A descriptive
meta-analysis of evidence from research and practice,"
Computers & Industrial Engineering, vol. 112, pp. 197-211,
2017.

[37] S. Narasimha, E. Dixon, J. W. Bertrand, and K. C. Madathil,
"An empirical study to investigate the efficacy of collaborative
immersive virtual reality systems for designing information
architecture of software systems," Applied Ergonomics, vol.
80, pp. 175-186, 2019.

[38] A. Fonnet and Y. Prie, "Survey of immersive analytics," IEEE
Transactions on Visualization and Computer Graphics, vol. 27,
no. 3, pp. 2101-2122, 2019.

[39] R. Müller, P. Kovacs, J. Schilbach, and D. Zeckzer, "How to
master challenges in experimental evaluation of 2D versus 3D
software visualizations," In: 2014 IEEE VIS International
Workshop on 3Dvis (3Dvis), IEEE, 2014, pp. 33-36.

[40] R. Oberhauser, C. Pogolski, and A. Matic, "VR-BPMN:
Visualizing BPMN models in Virtual Reality," In: Shishkov,
B. (ed.) Business Modeling and Software Design (BMSD
2018), LNBIP, vol. 319, Springer, 2018, pp. 83–97,
https://doi.org/10.1007/978-3-319-94214-8_6.

[41] R. Oberhauser, "VR-SDLC: A Context-Enhanced Life Cycle
Visualization of Software-or-Systems Development in Virtual
Reality," In: Business Modeling and Software Design (BMSD

2024), LNBIP, vol 523, Springer, Cham, 2024, pp. 112-129,
https://doi.org/10.1007/978-3-031-64073-5_8.

[42] R. Oberhauser, "VR-SBOM: Visualization of Software Bill of
Materials and Software Supply Chains in Virtual Reality," In:
Business Modeling and Software Design (BMSD 2025),
LNBIP, Springer, Cham, 2025.

[43] R. Oberhauser, “VR-ISA: Immersively Visualizing Informed
Software Architectures Using Viewpoints Based on Virtual
Reality," In: International Journal on Advances in Software,
Vol. 17, No. 3 & 4, pp. 282-300, IARIA, ISSN: 1942-2628.

[44] R. Oberhauser, “VR-V&V: Immersive Verification and
Validation Support for Traceability Exemplified with ReqIF,
ArchiMate, and Test Coverage,” International Journal on
Advances in Systems and Measurements, 16 (3 & 4), 2023, pp.
103-115.

[45] R. Oberhauser, “VR-TestCoverage: Test Coverage
Visualization and Immersion in Virtual Reality,” In: Proc.
Fourteenth International Conference on Advances in System
Testing and Validation Lifecycle (VALID 2022), IARIA,
2022, pp. 1-6.

[46] R. Oberhauser, “VR-UML: The unified modeling language in
virtual reality – an immersive modeling experience,”
International Symposium on Business Modeling and Software
Design (BMSD 2021), Springer, Cham, 2021, pp. 40-58,
doi.org/10.1007/978-3-030-79976-2_3

[47] R. Oberhauser, “VR-SysML: SysML Model Visualization and
Immersion in Virtual Reality,” International Conference of
Modern Systems Engineering Solutions (MODERN
SYSTEMS 2022), IARIA, 2022, pp. 59-64.

[48] R. Oberhauser and C. Pogolski, "VR-EA: Virtual Reality
Visualization of Enterprise Architecture Models with
ArchiMate and BPMN," In: Business Modeling and Software
Design (BMSD 2019), LNBIP, vol. 356, Springer, Cham,
2019, pp. 170-187, https://doi.org/10.1007/978-3-030-24854-
3_11.

[49] R. Oberhauser, P. Sousa, and F. Michel, "VR-EAT:
Visualization of Enterprise Architecture Tool Diagrams in
Virtual Reality," In: Business Modeling and Software Design
(BMSD 2020), LNBIP, vol 391, Springer, 2020, pp. 221-239.
https://doi.org/10.1007/978-3-030-52306-0_14.

[50] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EA+TCK:
Visualizing Enterprise Architecture, Content, and Knowledge
in Virtual Reality," In: Business Modeling and Software
Design (BMSD 2022), LNBIP, vol 453, Springer, 2022, pp.
122-140. https://doi.org/10.1007/978-3-031-11510-3_8.

[51] R. Oberhauser, M. Baehre, and P. Sousa, "VR-EvoEA+BP:
Using Virtual Reality to Visualize Enterprise Context
Dynamics Related to Enterprise Evolution and Business
Processes," In: Business Modeling and Software Design
(BMSD 2023), LNBIP, vol 483, Springer, 2023, pp. 110-128,
https://doi.org/10.1007/978-3-031-36757-1_7.

[52] R. Oberhauser, "VR-ProcessMine: Immersive Process Mining
Visualization and Analysis in Virtual Reality," Fourteenth
International Conf. on Information, Process, and Knowledge
Management (eKNOW 2022), IARIA, 2022, pp. 29-36.

[53] https://www.jenkins.io, last accessed 2025.05.10
[54] https://semaphore.io, last accessed 2025.05.10
[55] https://www.drone.io, last accessed 2025.05.10
[56] A.R. Hevner, S.T. March, J. Park, and S. Ram, “Design science

in information systems research,” MIS Quarterly, 28(1), 2004,
pp. 75-105.

[57] B. Wilson. Jenkins Pipeline Tutorial For Beginners. [Online].
Available from: https://devopscube.com/jenkins-pipeline-as-
code/ 2025.05.10

[58] GitHub. Semaphore demo CI/CD pipeline for Android.
[Online]. Available from: https://github.com/Semaphore-
demos/semaphore-demo-android/ 2025.05.

96International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Scalable Software Distribution for HPC-Systems with Software Pools Using MPI and
File Systems in User Space

Jakob Dieterle
GWDG

Göttingen, Germany
e-mail: jakob.dieterle@gwdg.de

Hendrik Nolte
GWDG

Göttingen, Germany
e-mail: hendrik.nolte@gwdg.de

Julian Kunkel
Department of Computer Science

Georg-August-Universität Göttingen
Göttingen, Germany

e-mail: julian.kunkel@gwdg.de

Abstract—Despite the increasing computing power of high-
performance computing (HPC) systems, complex tasks on large-
scale clusters can still be hindered by significant waiting times
when loading large software packages and dependencies. These
delays are often caused by network bandwidth bottlenecks, which
can severely impact application performance. To address this
challenge, this paper presents a new way of distributing software in
HPC systems. Our software pools can hold whole software stacks
in a single file, while our implemented tools can distribute software
pools efficiently to large clusters while reducing bandwidth usage
to a minimum. Software pools offer additional advantages, such
as portability, reproducibility, and security, while seamlessly
integrating into existing environments using Lmod.

Keywords-file distribution; optimized reading; containerization.

I. INTRODUCTION

This paper extends our previous work on scalable software
distribution for high performance computing systems with MPI-
based file systems in user space, which introduced a design
for a file system with the main goal to reduce bandwidth
usage when reading large files [1]. While the original paper
showed promising results, the presented file system had some
limitations that were caused by the general design approach
to tackle the given problem. Thus, this paper presents the
new concept of software pools, instead of iterating on the
work from the previous paper. Software pools are designed
to improve performance while distributing software in high
performance computing (HPC) environments, by reducing
complex software stacks into compact image files. This
allows the usage of collective communication, instead of one-
sided communication used in the previous paper, potentially
improving the performance and reducing complexity. This paper
also provides new benchmarking results, which are compared
to the results of the previous paper.

The challenge of distributing large files in HPC environments
is becoming more important, as the increase in demand for
computing power in data centers is unbroken. This is especially
true, with the recent surge of artificial intelligence and the
popularization of large language models. Because of the
slowdown of Moore’s law, HPC systems have to keep up
with the demand by increasing the total number of cores and
nodes inside the systems [2]. However, the increasing level of
parallelization also leads to a greater demand for networking
bandwidth inside HPC systems. Distributing data, container
files, or software packages to hundreds or thousands of nodes

for a single job can lead to long waiting times before any
processing can even begin [3], [4].

We believe that the distribution of large files to many nodes
could be organized more efficiently by using tools such as the
Message Passing Interface (MPI) and Filesystem in Userspace
(FUSE) [5]. In our previous paper [1], we presented a design
for a file system in user space that uses MPI to distribute
data between nodes on demand while the nodes access the
file. This version of our file system used MPI’s MPI_Get
method to directly access memory on other nodes, and was
thus called the One-Sided-Reading (OSR) file system. While
this approach reduced bandwidth usage to a minimum and
showed promising scaling in our performance test, it had some
technical limitations, and the performance was not competitive
against optimized file systems. The biggest limitation of the
previous design was the on-demand communication approach.
The overhead introduced by FUSE and MPI were the biggest
performance factors, and both are related to the number of total
read calls to the file system. The amount of individual read
operations on a file is only influenced by the size of the blocks
with which the application is accessing the file. We cannot
control the block size the application is working with, so the
room for improvement is relatively limited. The implementation
of the file system also lacked some basic functionality that
would be needed for real-world applications. Including those
features would have increased complexity and possibly reduced
performance as well.

In this paper, we want to investigate a different approach to
the problem. Instead of distributing data on demand, files will
be efficiently distributed before the user application accesses
them. We will present our concept of software pools, which
are image files containing whole directory trees which can be
easily distributed and mounted anywhere. Multiple tools are
implemented to build, distribute, and mount software pools.
Those tools are benchmarked to evaluate their performance
and viability for real-world applications and to compare this
approach to the design introduced in our previous paper.

The main contributions of this work are:

• Presenting the concept of software pools
• Implementing tools that enable the utilization of software

pools in HPC environments
• Benchmarking these tools and comparing them to previous

designs

97International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

def my_open (p a t h) :
f i l e _ h a n d l e r = open (p a t h)

f i l e _ b u f f e r = MPI_Win_a l loca te
(f i l e _ h a n d l e r . s i z e , c h a r)

m e t a _ b u f f e r = i n t [f i l e _ h a n d l e r . s i z e]

m e t a _ b u f f e r = c a l c u l a t e _ d i s t r i b u t i o n
(f i l e _ h a n d l e r . s i z e , w o r l d _ s i z e)

o f f s e t , s i z e = c a l c u l a t e _ m y _ r a n g e
(f i l e _ h a n d l e r . s i z e , my_rank)

d a t a = r e a d (o f f s e t , s i z e)
f i l e _ b u f f e r [o f f s e t : o f f e t + s i z e] = d a t a

re turn f i l e _ h a n d l e r

Figure 1. Pseudo code for open method.

def my_read (f i l e _ h a n d l e r , o f f s e t , s i z e) :

i f (i n _ b u f f e r (o f f s e t , s i z e)) :
re turn f i l e _ b u f f e r [o f f s e t : o f f s e t + s i z e]

t a r g e t s = g e t _ t a r g e t s (o f f s e t , s i z e)
f o r t a r g e t in t a r g e t s :

t _ o f f s e t , t _ s i z e = c a c l u l a t e _ t a r g e t _ r a n g e
(m e t a _ b u f f e r , o f f s e t , s i z e)

d a t a = MPI_Get (t _ o f f s e t , t _ s i z e , t a r g e t)
f i l e _ b u f f e r [t _ o f f s e t : t _ o f f s e t + t _ s i z e] = d a t a

m e t a _ b u f f e r [o f f s e t : o f f s e t + s i z e] = my_rank

re turn f i l e _ b u f f e r [o f f s e t : o f f s e t + s i z e]

Figure 2. Pseudo code for read method.

The remainder of the paper is organized as follows: Section
II presents related work and used technology. Section III
presents the concept of software pools and related tools.
Section IV outlines the methods used for for benchmarking
the implemented tools. The results of these benchmarks are
presented in Section V. In Section VI, we discuss the presented
results. Finally, Section VII contains the conclusion, and we
discuss future work.

II. BACKGROUND

In our previous paper, we presented a file system in user
space, which uses MPI to reduce bandwidth usage when
accessing large files in the context of HPC systems [1].
This design used MPI’s one-sided communication methods
to transfer data between nodes on demand. Upon opening a
file, it is split up between the nodes, and each node loads its
associated part of the file into memory, which is available to
be used with one-sided communication (see Figure 1). When
accessing a certain part of the file, the file system checks
whether it is already in the node’s memory. If that is not
the case, the node will read the missing range of bytes from
the node that initially loaded that part of the file using the
MPI_Get method (see Figure 2).

In our performance tests, the file system was able to match
or even outperform a slower existing file system providing the

Figure 3. Time measurements on Sofja system.

home directory with about 1.4 Gb/s bandwidth. However, it was
not able to reach the performance level of a more optimized
scratch file system. At least not with the workloads we tested
during our benchmarks (see Figure 3).

We conducted further tests with more granular timing
measurements to analyze what factors were most impacting
the performance of our file system. The goal was to isolate the
impact MPI and FUSE have, specifically. The results show that
the MPI communication calls are the biggest factor affecting
the performance of the file system (see Figure 4). Since the

98International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Visualization of performance factors for the OSR file system.

overhead by FUSE is only dependent on the file size and block
size while accessing the file, it is constant for varying numbers
of nodes. At the same time, the amount of overhead introduced
by MPI will increase with a larger number of nodes.

Originally, file systems in Linux exclusively operated on the
kernel level. Thus, developing new file systems requires chang-
ing and compiling the kernel, which can be very cumbersome
and is only possible for privileged users. To make developing
new file systems more accessible, the FUSE (Filesystem in
Userspace) kernel module was incorporated into the Linux
kernel with version 2.6.14 [5]. The FUSE project consists of the
kernel module and the libfuse userspace library. By linking the
libfuse library to a program, a non-privileged user can mount
their own file system by writing their own open/read/write,
etc. methods. When the library issues a syscall, the VFS in
the kernel handles it and passes it on to the FUSE kernel
module. The FUSE kernel module then calls the linked user
space program, the FUSE file system, which finally executes
the call.

FUSE is mainly used to implement virtual file systems,
which don’t actually store data but provide a different view or
translation of an existing file system or storage device. Other
accessible resources can also be used by FUSE file systems.
For example, Fuse-archive by Google [6] allows the user to
mount different types of archive file types (.tar, .zip, etc) and
access it like a normal directory while decompressing the data
on the fly. It uses buffers to increase performance and prevent
decompressing the same files multiple times. The file system
implemented later for this work will be a virtual file system
using FUSE. Some popular distributed file systems also use
FUSE, such as GlusterFS [7].

The most commonly used standard for passing messages
between nodes is the Message Passing Interface (MPI). MPI
provides different concepts for communication like Point-to-
Point communication, Collective communication, and One-
Sided communication. Point-to-point communication involves
two specific processes to send a message from one to the
other. It requires both processes to call respective methods,
such as MPI_Send and MPI_Recv. Developers need to
ensure that these methods are actually called by both processes.
Otherwise, one process may get stuck while waiting for the
other involved process, possibly resulting in a deadlock. There

are also non-blocking alternatives allowing asynchronous Point-
to-Point communication (MPI_Isend and MPI_Irecv).
Collective communication always involves a group (or groups)
of processes to share data. For example, processes can send
a message to all other processes of the specified group
using MPI_Bcast or gather data from all other processes
with MPI_Gather, while MPI_Allgather combines both
operations into one. These examples also have non-blocking
alternatives. For synchronization when using point-to-point
or collective communication, the MPI_Barrier method
is most commonly used. As the name suggests, it acts
as a barrier for the specified group of ranks, at which
all ranks have to wait until all ranks reach this point in
the program. One-sided communication uses the concept of
Remote Memory Access (RMA), which allows a process
to share data with another process without interrupting it.
During initialization, all processes need to specify a memory
’window’ that will be accessible by other processes. The method
MPI_Win_allocate creates the window and allocates its
memory. For the actual communication, the following two
methods are of main interest. MPI_Get reads a range of bytes
from the window on a specified target, MPI_Put writes into
the memory of a specified target, and MPI_Accumulate
realizes a reduction operation over the same memory over
multiple targets. When using any of these RMA communication
methods, they need to be encapsulated by synchronization
methods, mainly MPI_Win_lock and MPI_Win_unlock.
These methods start and terminate a RMA communication
epoch, in which accessing the specified window is possible.
MPI_Win_lock takes a specifier as an argument with the
options MPI_LOCK_SHARED and MPI_LOCK_EXCLUSIVE.
When using the keyword MPI_LOCK_EXCLUSIVE the win-
dow is completely locked for any other operations on the
window. Other MPI_Win_lock calls trying to access the
window on the same rank have to wait until the current lock is
released again by MPI_Win_unlock. The keyword should
be used when writing operations are executed on the window.
Using MPI_LOCK_SHARED is safe as long as only read
operations are issued during the RMA epoch, and it allows
multiple processes to start an epoch on the same window at
the same time. In this situation, the usage of MPI_Win_lock
is still necessary, as the method also has to initialize the
communication between the two ranks since RMA is not
entirely one-sided in MPI. MPI provides many more methods
and concepts, the ones presented here are a selection that will
be relevant for the rest of this work.

III. RELATED WORK

FUSE is said to significantly affect the performance of file
operations due to the additional context switches introduced
between user space and kernel space, as described above.
Rajgarhia and Gehan evaluated the performance of FUSE
using the Java bindings as an example [8]. They found that for
block sequential output, FUSE adds a lot of overhead when
dealing with small files and a lot of metadata but becomes
quite efficient with larger files. When running the PostMark

99International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

benchmark, FUSE added less than 10% in comparison to native
ext3. Vangoor et al. also analyzed the performance of FUSE
and its kernel module design in greater detail [9]. According to
Vangoor et al., FUSE can perform with only 5% performance
loss in ideal circumstances, but certain workloads can result in
83% performance loss. Additionally, a 31% increase in CPU
utilization was measured. This negative effect on performance
will be relevant when we compare our file system’s performance
to the native file system later.

The performance of MPI can vary depending on the
environment and implementation that is being used. Hjelm
analyzed the performance of one-sided communication in
OpenMPI [10]. OpenMPI has supported one-sided communi-
cation since version 1.8.0 but emulated it using point-to-point
communication. With version 2.0.0, OpenMPI introduced an
implementation of one-sided communication using actual RMA
concepts. The paper provides an overview of OpenMPI’s RMA
implementation and evaluates its performance by benchmarking
the Put, Get, and MPI_Fetch_and_op methods for latency
and bandwidth. The benchmarks showed basically constant
latency for Put and Get for messages of up to 210 bytes
and a drastic increase of latency for messages larger than 215

bytes. Analog to the latency results, the bandwidth performance
plateaus with message sizes larger than 215 bytes.

There are also alternative APIs to MPI for message passing
and I/O management. One of them is Adios2, presented
by Godoy et al. [11]. Adios2 is designed as an adaptable
framework for managing I/O on a wide range of scales, from
laptops to supercomputers. Adios2 provides multiple APIs
with its MPI-based low-level API being designed for HPC
applications. It realizes both, parallel file I/O and parallel
intra/interprocess data staging. Adios2 adopts the Open Systems
Interconnection (OSI) standard and is designed for high
modularity. Each provided component can be mapped to OSI
layers 4 to 7. At the core of its concept are abstract engines,
which describe I/O workflows by bundling components from
OSI layers 4 to 7. Engines are highly adaptable to different
use cases (mainly parallel file I/O and parallel data staging)
and performance needs.

Also important to mention here is OpenMP (Open Multi-
Processing). OpenMP provides libraries for multi-threaded pro-
cessing using a shared memory model. In C/C++ #pragma’s
are used to start multi-threaded processing, they are often used
to parallelize loops without data dependency, thus multiple
iterations of a loop can be calculated concurrently. OpenMP
is limited to multi-threaded processing on a single node, so
we cannot use it for the current project. However, MPI and
OpenMP are often used together with MPI handling inter-node
communication and OpenMP used for parallelization inside
the nodes.

As High-Performance Computing (HPC) applications be-
come increasingly complex, the size and complexity of the
software packages used to support them have also grown.
Research has shown that the number of package dependencies
in HPC has skyrocketed in recent years [4]. This paper, written
by Zakira et al., explores various software deployment models,

including store models like Spack, which is used on the HPC
systems hosted by the GWDG. The authors also introduce
their own solution, Shrinkwarp, which aims to reduce loading
times for highly dynamic applications. However, the paper’s
primary focus is on software distribution models and package
management, rather than optimizing loading times through
improved I/O efficiency.

The concept of creating file systems in user space to
enhance I/O performance is not a novel idea. Several existing
file systems, such as FusionFS, have already explored this
approach. FusionFS, in particular, is a user-space file system
that optimizes metadata operations by storing remote file
metadata locally and is designed to handle high-volume file
writes [12]. In contrast, in our work, we focus on optimizing
file reads to facilitate the distribution of files and software.

In HPC Systems, resources like memory and CPUs are tightly
coupled into nodes. Systems may offer different configurations
of nodes to serve different use cases. Still, studies show, that
HPC jobs often underutilise the available memory [13]. The
concept of disaggregation in HPC systems aims to decouple
resources like memory and processing power by allowing direct
memory access over network interfaces. Peng et al. conducted
a study on memory utilization, showing that 90% of all jobs
utilized less than 15% of node memory and 90% of the time the
node less than 35% of node memory is used [13]. These results
highlight the under utilization of resources by a majority of
jobs running on HPC Systems, while only few jobs profit from
well equipped compute nodes. A possible approach to improve
resource utilization could be the concept of disaggregated
architectures, as they aim to disconnect different resources
like computing power and memory capacity from each other.
Thus, the paper introduces different disaggregated architectures,
including a centralized design with dedicated memory nodes
and a decentralized design, in which nodes share their local
memory. Finally, Peng et al. present their implementation of a
remote paging library rMap. It uses a centralized approach to
allow nodes with little local memory to run memory-intensive
jobs by requesting memory pages of dedicated nodes and
swapping them into local memory.

Creating and distributing software environments is a common
problem, especially in the HPC environment. A popular
solution for this problem is containerization. A container is
a lightweight and portable way to package an application, its
dependencies, and a runtime environment into a single unit
that can be easily deployed and managed. Containers allow
the execution of software in an environment totally isolated
from the host system. Similar to virtual machines, while not
requiring dedicated resources and using the kernel of the host
operating system. The best containerization software in the
HPC environment is Apptainer. Apptainer is designed with
a focus on security and reproducibility. Rajesh Pasupuleti et.
al. discussed what advantages Apptainer containers offer for
running AI applications on HPC systems [14].

In HPC Systems, software packages are often managed by
module systems. The HPC systems hosted by the GWDG use
Lmod. Lmod is a Lua-based module system that uses module

100International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

files to dynamically change the user’s environment [15]. This
paper aims to offer a solution for distributing software that
seamlessly integrates into the existing Lmod environment on
the GWDG systems.

In this section we reviewed different frameworks for commu-
nication including OpenMP, Adios2 and MPI. OpenMP does not
fit our given problem, as it only allows communication between
processes on the same node, and not between multiple nodes.
Adios2 allows for communication between nodes, but mainly
provides more high level API which is unnecessarily complex
for our use case. We also talked about other file systems that
aim to improve file I/O performance like FusionFS. However,
in contrast to our goal of improving performance when reading
large files, FusionFS is focused on improving performance for
writing to files. Containerization applications like Docker and
Apptainer were also mentioned. They allow running software
in isolated systems, similarly to virtual machines, but with
less overhead by using the same kernel as the host system.
We considered using container files as a base for our software
pools, but decided against it, because container images often
include all the files of a operating system and can be difficult
to handle.

Ultimately, the goal of this paper is to create a tool set that
includes features of many of the before mentioned technologies,
such as file I/O performance improvement, image file handling
and software distribution.

IV. DESIGN

The proposed design of our original paper introduced a
lot of overhead caused by the on-demand communication
approach. Using MPI calls to transfer data while files are
being accessed introduces a lot of extra latency, which is a
problem for performance-critical applications. Especially in
the HPC environment, where users might be charged per used
core hour.

For this reason, we want to investigate whether it is more
efficient to distribute the files before the application starts.
Specifically, we want to use MPI to broadcast the files and
store a copy locally so that the local copy can be accessed
during runtime. However, this becomes quite complicated and
inefficient when dealing with large directory trees and large
amounts of files. For example, simple Python environments can
easily contain tens of thousands of files. To simplify the task
of broadcasting whole software stacks and huge directory trees,
we want to pack them into a single file that is easy to distribute
and mount on the target nodes. These files, which can hold
complex software stacks, will be called software pools. Once
the software pool is mounted on the target nodes, we want
to integrate it automatically into an existing software module
system. In our case, that would be Lmod.

Being able to load multiple software packages by mounting
a single file has multiple other advantages. It reduces the Inode
usage and metadata operations on the original file system. This
is especially true when dealing with a lot of files, as is the case
when using Python, Conda, or similar environments. Software
pools can make it easier to manage collections of software

c r e a t e f i l e poo l . e x t 2 which c o n t a i n s t h e
s o f t w a r e poo l
dd i f =/ dev / z e r o o f = poo l . e x t 2 bs=< block − s i z e > \

c o u n t =<number − b locks > conv= s p a r s e

c r e a t e f i l e s y s t e m and copy g i v e n d i r e c t o r y
as r o o t d i r e c t o r y i n t o t h e poo l f i l e
mke2fs poo l . e x t 2 −d < source − d i r e c t o r y >

Figure 5. Bash commands for building a software pool.

packages on multiple levels. We plan to provide software pools
on personal, project, and data center level, so that users can
easily modify their environment for their current tasks. Software
pools make sharing and reproducing software collections easy,
as they can include binaries and source code. That allows the
software pools to be shared between users and different HPC
Systems. Software pools offer a simple way to add a trust
factor for integrity and trustworthiness by offering a built-in
method to sign and verify pool files using existing algorithms
with private and public key pairs.

Choosing the correct file format for the project is crucial.
The first idea was to use apptainer containers as software pools.
Being able to quickly build containers from a simple definition
file can be very beneficial for software pools’ use cases. The
directory tree of an apptainer container can be mounted by
dumping the container’s content using apptainer’s sif tool.
The resulting squashFS image could then be mounted using
squashfuse. However, while testing this workflow, multiple
drawbacks became obvious. Most importantly, apptainer images
often take quite a long time to build and cannot be modified
without completely rebuilding them. That makes the process
of creating a software pool unnecessarily cumbersome and
time-consuming.

Instead, we decided to focus on simpler file types and we
used image files as containers for ext2, ext3, or ext4 file systems.
To handle all operations in the context of the files representing
software pools, we implemented our own tool called sw-pool.
This tool offers the following commands: build, sign, verify,
and load.

The build command creates a software pool from a given
source directory. It takes the output file and source directory
as arguments and the file size as an option. This directory
should already include everything the pool should contain,
most importantly, the binaries of the applications included
in the pool. First, a file with a fixed size has to be created.
This file should be sparse to ensure it only occupies as much
disk space as needed. Then, the file can be written to using
the mke2fs tool. It is part of the E2fsprogs package, which
includes various utilities to handle ext2 (or ext3, ext4) file
systems. With mke2fs, we can initialize the file system and
copy the content of the software pool in one step, as you can
see in Figure 5. This image can later be mounted using the
load command.

The sign and verify commands add a factor of trustworthiness
and integrity to the software pools. Internally, we use OpenSSL

101International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with the -sign and -verify to sign and verify the file with
a given private and public key pair.

The load command broadcasts the given software pool, writes
it to local temporary storage, and mounts it to the given mount
point. The broadcasting and mounting procedures are done
with other standalone tools we implemented for this use case.
These tools are separated from the primary software pool tool,
as broadcasting and mounting files with dedicated tools can
also be very helpful outside of the context of software pools.

When the load command is called, it first determines the
ideal temporary directory to store the local copy of the software
pool. Then, our tool scalable-fs-cp is called. It takes an
input file or directory and the target path as arguments. Before
it does anything else, it checks if the input file already exists in
all of the nodes it is running on. If the file is already present,
nothing has to be done, so the tool can simply exit. Only if
the file doesn’t exist on all nodes does it start the procedure
to broadcast the file using MPI.

Before the file can be broadcasted, it has to be read into
memory. This is not done by one node, instead the file is split
into N sections, with N being the number of nodes in our job.
This is more efficient, as we know from our previous paper.
After the sections of the file are loaded into memory, it can
be broadcasted. For that, we iterate over the nodes, and each
node broadcasts its section to the other nodes. This is not done
with a single big chunk, however. Since our software pools are
sparse files, the file size can be quite large, even though only a
small part of the file was actually written. The rest of the file
is filled with zeros, as we used /dev/zero as input when
creating the file. To avoid broadcasting all the empty parts
of the file, each section is processed block by block, with a
default block size of 4096 bytes. Each will only be broadcasted
if it contains a byte that is not zero. This should significantly
reduce the time it takes to broadcast large pool files that are
partly empty without having a big impact on broadcasting
fully written pools, as we check for the first nonzero byte
for each block. For this to work, the array to store the file in
memory should be initialized to zeros. This can be done easily
by simply using calloc instead of malloc in C.

Once the file is broadcasted, it can simply be written to a
given target location on the nodes. If the tool detects that it
is only running on a single node, it skips the broadcasting
procedure and simply uses the cp command to copy the file
to the given target location. Pseudo code for this procedure is
listed in Figure 6. Copying directories is also supported. This
comes with a performance loss, however, since the directory
has to be compressed to and extracted from an archive file
before and after broadcasting.

Once the distribution of the software pool is done, the
software pool tool uses our scalable-fs-mount tool to
mount the local copy to a given mount point. This tool supports
different file types, in the case of our software pool file, it uses
fuse2fs, which is also part of the E2fsprogs package.

Now that we have successfully distributed and mounted the
software pool, the included software must be made available
to the user. Theoretically, the user could just add the binary

def b c a s t _ c p (i n p u t _ f i l e , o u t p u t _ p a t h ,
rank , w o r l d _ s i z e) :

i f f i l e _ e x i s t s :
re turn 0

i f w o r l d _ s i z e > 1 :
f i l e _ b u f f e r = z e r o s (f i l e _ s i z e (i n p u t _ f i l e))
o f f s e t , range = g e t _ s e c t i o n (r ank)
f i l e _ b u f f e r [o f f s e t : o f f s e t +range] =

i n p u t _ f i l e [o f f s e t : o f f s e t +range]
f o r c u r r _ r a n k in w o r l d _ s i z e :

b l o c k s = s p l i t (f i l e _ b u f f e r , c u r r _ r a n k)
i f not i s _ e m p t y (b l o c k) :

MPI_Bcast (b lock , c u r r _ r a n k)
w r i t e (o u t p u t _ p a t h , f i l e _ b u f f e r)

e l s e :
copy (i n p u t _ f i l e , o u t p u t _ p a t h)

Figure 6. Pseudo code for scalable-fs-cp.

<Pool-Name>
<Pool-Version>

modulefiles
<Pool-Name>

<Pool-Version>
<SW-Name>

<SW-Version>.modulefile
install

<SW-Name>
<SW-Version>

binaries...
source

<SW-Name>
<SW-Version>

source code...
config

...

Figure 7. Proposed Software Pool Structure.

locations manually to the path. While this might be feasible
for small software pools, it would not work for more complex
software stacks, since most HPC systems already use module
systems that can solve this problem for us, especially. In our
case, the HPC systems hosted by the GWDG use the Lmod
module system. As described in Section II, Lmod uses module
files to load modules into the user’s environment. Lmod looks
for module files based on the MODULEPATH environment
variable. To make our software pool visible for Lmod, we need
to provide the correct module files and add the corresponding
paths to the MODULEPATH variable. This happens in the
gwdg-sw load command after mounting the software pool.
For this process to reliably work, the pools need to have a
standardized format so that the gwdg-sw tool knows where to
find the module files. Our proposed pool structure is presented
in Figure 7.

The directory structure for the module files might seem
unnecessarily complex. However, it is needed for Lmod to
detect the correct module and software package hierarchy. This
is complicated by the fact that Lmod requires the module files

102International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

l o c a l v e r s i o n = myModuleVersion ()
l o c a l pkgName = myModuleName ()
l o c a l moun tPo in t = os . g e t e n v ("GWDG_SW_MOUNT")
l o c a l poolName = " t e s t − poo l "
l o c a l p o o l V e r s i o n = " 0 . 5 "
l o c a l pkg = p a t h J o i n (mountPoin t , poolName , p o o l V e r s i o n

, " i n s t a l l " , pkgName , v e r s i o n , " b i n ")
p r e p e n d _ p a t h ("PATH" , pkg)

Figure 8. Module File Example.

to be in a different directory than the module that the module
file itself points to. The module file, in this case, would add
the path of the binaries of the corresponding software in the
install directory. An example for what a module file should
look like can be seen in Figure 8.

The source and config directories are optional. However,
pool authors should consider making the pools reproducible.
To support this, any source code would go into the source
directory, and any other files that are required for building the
pool should go into the config directory.

With this in place, all the software packages included in
the software pool are visible for Lmod after loading the pool
with gwdg-sw load <pool-name>/<pool-version>
and can be activated with Lmod using
module load <SW-name>/<SW-version>.

V. METHOD

It is difficult to compare the performance of the tools we
introduced in this paper to the file system we implemented in
our previous paper, as they follow two completely different
approaches. The file system from our previous paper impacted
the latency of each read operation during the execution of the
user’s application. The software pool tools we implemented
in this paper distribute the software packages before the user
application starts. Thus, the effect on read latency is reduced
because we still have overhead caused by FUSE, but no
overhead from MPI. The overhead from MPI is shifted to
the loading procedure which happens before the start of the
user application. To see if this improves the overall situation,
we can compare the total time it takes to read a file with the
OSR file system with the time it takes to distribute the file in
a software pool and read it afterward.

The tests will be run on the Emmy system hosted by the
GWDG [16]. The system consists of 1.423 nodes with 111.464
cores. The system scored 5,95 PetaFlop/s during the LINPACK
benchmark.

For comparison with the OSR file system, the results from
the previous paper will be used. In this paper, we will focus
our benchmarks on files with a size of 1 GB since the project
aims to improve performance with large software stacks, and
the largest test case from the previous paper is 1 GB.

For the first part of our benchmarks, we will measure the time
it takes to distribute a pool using our introduced sw-pool tool
with 2, 4, 8, 16, and 32 nodes. Ten runs will be conducted for
each number of nodes, and the average of the ten runs will be
calculated to obtain a robust result. To match the benchmarks

of our previous paper, we will create a software pool, that
holds a file with the size of 1 GB filled with random data.
The commands to create our pool for tests are listed in Figure
9. Note that the file for the software pool has to be slightly
larger than the test file since it needs some space to create the
ext2 file system. To ensure that caching mechanisms do not
affect our testing results, the test data will be regenerated on a
different node before each run.

This software pool will be saved to the scratch file system.
We will measure the overall time the command for mounting
the software pool takes. The exact command we will use to
execute and measure the test is listed in Figure 10. Here, the
$LOCAL_TMPDIR variable points to the local SSDs of the
nodes, and the $SCRATCH variable points to the SSDs of the
remote scratch file system. In order to isolate how much of
the total time is used for reading and broadcasting the file,
additional time measurements are added to the code using the
MPI_Wtime method.

c r e a t e t e s t f i l e
head −c 1GB / dev / urandom > t e s t − poo l / random . d a t a

c r e a t e poo l i n l c u d i n g t e s t f i l e
sw− poo l b u i l d −s 1020MB t e s t − poo l . e x t 2 t e s t − poo l

Figure 9. Procedure to create software pool for testing.

t ime mpirun sw− poo l −v l o a d −m $LOCAL_TMPDIR / mnt \
$SCRATCH / random . e x t 2

Figure 10. Command to time and execute test for broadcasting and mounting
a software pool.

Secondly, we will measure the time it takes to calculate a
hash sum of the test file inside the container after the software
pool is copied to local SSDs and mounted using our tools. We
only have to run this test on one node since this operation
would always happen independently of all the nodes inside
a bigger job, as the software is copied to local SSDs on the
nodes. The results of this test can then be added to the results
of the previous test for any number of nodes. Again, there will
be 10 runs, to produce a dependable result. The same test will
be conducted, but without accessing the test file through a fuse
mount. By comparing these two results, we can isolate the effect
that the fuse mount has on our setup’s overall performance.

VI. RESULTS

The results of our first benchmark can be seen in Figure 11.
In this figure, we compare the performance of the sw-pool
tool, including the time to calculate a hash sum of the test file
over the mount point, to the results from our previous paper.
We can see a clear improvement when comparing the new
results to the performance of the first implementation of the
OSR file system. The software pool tools are almost twice
as fast overall: 10.224 seconds against 19.606 seconds with
two nodes and 16.159 seconds against 27.866 seconds with

103International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Timings of Software Pool Tool, OSR, OSR without caching and
native file system.

16 nodes. With more than 2 nodes, the software pools are
almost 25 % faster than the improved OSR implementation
(16.159 seconds against 20.889 seconds with 16 nodes). The
native scratch file system is still much faster than all the other
options.

The results from the performance factor analysis can be
seen in Figure 12. Here we compare the results when using
software pools against the first implementation of the OSR file
system. The biggest difference is clearly the time needed for the
communication procedures. We were able to reduce that from
16.711 seconds to 4.512 seconds for handling a 1 GB sized
file. The overhead caused by using a fuse also seems slightly
improved (3.921 seconds including hash sum calculation against
5.557 seconds excluding hash sum calculation).

VII. DISCUSSION

The software pools and corresponding tools that we presented
in this paper showed much-improved performance compared
to the OSR file system we presented in our previous paper.
This was achieved while still reducing the load put on the
storage nodes and network infrastructure to a minimum. The
performance increase was achieved by shifting the critical
communication procedure to before the user application starts.
That allowed us to use MPI’s broadcasting method instead of
one-sided communication. This change also results in much
better latency during runtime, which can lead to an even bigger
performance advantage in real-world applications. Especially
since with the new approach, existing caching mechanisms in
fuse2fs and the underlying native file system on the node
can have a positive effect, while the OSR file system did not
have a working caching mechanism. Additionally, the concept

Figure 12. Composition of performance factors for the OSR file system and
Software Pools.

of software pools and the implemented tools are much more
mature than the existing implementation of the OSR file system.
This was possible since we were able to use existing tools,
such as make2fs and fuse2fs for handling and mounting
our software pool image files and openssl for signing and
verifying our software pools. With our integration into the
existing Lmod environment, the software pool tools are almost
ready to go into production, while the OSR implementation is
missing basic features, such as a working caching mechanism,
handling multiple files at once, and multi-threading.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new way to distribute software
in HPC environments with our software pools. Software
pools offer a simple way to create software environments
on HPC systems. By being able to represent whole software
stacks in a single file, software pools offer multiple additional
benefits. Software pools can be shared easily between users
and HPC systems, are reproducible, and reduce the load on
stage nodes and network infrastructure. By using a single
file, software pools also reduce the usage of Inodes and offer
an additional trust factor by being able to sign and verify
them with private/public key pairs. The corresponding tools
we implemented showed greatly improved performance when
compared to the OSR file system from our previous paper. This
was achieved by shifting the critical communication procedures
to before the user application runs. We were able to seamlessly
integrate software pools into the existing module management
software Lmod. The tools we presented are already very mature
and can go into production without much additional work.

In the future, we want to put software pools into production
on the HPC systems hosted by GWDG. To that end, we need
to work on documentation, user support, and user training.
The implemented tools should also be further improved and
expanded. For example, we want to explore other file types,
such as squashFS images, that could be used as software pools.

104International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] J. Dieterle, H. Nolte, and J. Kunkel, “Scalable software
distribution for HPC-systems using MPI-based file systems
in user space”, in SCALABILITY 2024 : The First International
Conference on Systems Scalability and Expandability, Valencia,
Spain, Nov. 2024, pp. 14–20, ISBN: 978-1-68558-216-6.

[2] C. E. Leiserson et al., “There’s plenty of room at the top: What
will drive computer performance after moore’s law?”, Science,
vol. 368, no. 6495, eaam9744, 2020. DOI: 10.1126/science.
aam9744.

[3] W. Frings et al., “Massively parallel loading”, in Proceedings
of the 27th International ACM Conference on International
Conference on Supercomputing, ser. ICS ’13, Eugene, Oregon,
USA: Association for Computing Machinery, 2013, pp. 389–
398, ISBN: 9781450321303. DOI: 10.1145/2464996.2465020.

[4] F. Zakaria, T. R. W. Scogland, T. Gamblin, and C. Maltzahn,
“Mapping out the HPC dependency chaos”, in SC22: In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis, 2022, pp. 1–12. DOI: 10.
1109/SC41404.2022.00039.

[5] T. kernel development community, “The Linux kernel docu-
mentation - FUSE”, [Online]. Available: https://www.kernel.
org/doc/html/next/filesystems/fuse.html?highlight=fuse (visited
on 10/24/2024).

[6] Google, “Fuse-archive repository”, [Online]. Available: https:
//github.com/google/fuse-archive (visited on 10/24/2024).

[7] R. Hat, “Gluster”, [Online]. Available: https: / /github.com/
gluster/glusterfs (visited on 05/26/2025).

[8] A. Rajgarhia and A. Gehani, “Performance and extension of
user space file systems”, in Proceedings of the 2010 ACM
Symposium on Applied Computing, ser. SAC ’10, Sierre,
Switzerland: Association for Computing Machinery, 2010,
pp. 206–213, ISBN: 9781605586397. DOI: 10.1145/1774088.
1774130.

[9] B. K. R. Vangoor, V. Tarasov, and E. Zadok, “To FUSE or
not to FUSE: Performance of User-Space file systems”, in

15th USENIX Conference on File and Storage Technologies
(FAST 17), Santa Clara, CA: USENIX Association, Feb. 2017,
pp. 59–72, ISBN: 978-1-931971-36-2.

[10] N. Hjelm, “An evaluation of the one-sided performance in
Open MPI”, in Proceedings of the 23rd European MPI Users’
Group Meeting, ser. EuroMPI ’16, Edinburgh, United Kingdom:
Association for Computing Machinery, 2016, pp. 184–187,
ISBN: 9781450342346. DOI: 10.1145/2966884.2966890.

[11] W. F. Godoy et al., “ADIOS 2: The adaptable input output
system. a framework for high-performance data management”,
SoftwareX, vol. 12, p. 100 561, 2020, ISSN: 2352-7110. DOI:
https://doi.org/10.1016/j.softx.2020.100561.

[12] D. Zhao et al., “FusionFS: Toward supporting data-intensive
scientific applications on extreme-scale high-performance com-
puting systems”, in 2014 IEEE International Conference on
Big Data (Big Data), 2014, pp. 61–70. DOI: 10.1109/BigData.
2014.7004214.

[13] I. Peng, R. Pearce, and M. Gokhale, “On the memory underuti-
lization: Exploring disaggregated memory on HPC systems”,
in 2020 IEEE 32nd International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD),
2020, pp. 183–190. DOI: 10.1109/SBAC- PAD49847.2020.
00034.

[14] R. Pasupuleti, R. Vadapalli, C. Mader, and V. J. Milenkovic,
“Apptainer-based containers for legacy and platform dependent
machine learning applications on HPC systems”, in 2024
IEEE International Conference on Big Data (BigData), 2024,
pp. 6083–6091. DOI: 10.1109/BigData62323.2024.10825376.

[15] R. McLay, “Lmod: A new environment module system”,
[Online]. Available: https : / / lmod . readthedocs . io /en / latest/
(visited on 03/14/2025).

[16] G. für wissenschaftliche Datenverarbeitung mbH Göttingen,
“NHR-NORD@Göttingen systeme “Emmy””, [Online]. Avail-
able: https : / / gwdg . de / hpc / systems / emmy/ (visited on
03/14/2025).

105International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

