

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 5, no. 1 & 2, year 2012, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 5, no. 1 & 2, year 2012, <start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2012 IARIA

International Journal on Advances in Security

Volume 5, Number 1 & 2, 2012

Editor-in-Chief

Reijo Savola, VTT Technical Research Centre of Finland, Finland

Editorial Advisory Board

Vladimir Stantchev, Berlin Institute of Technology, Germany
Masahito Hayashi, Tohoku University, Japan
Clement Leung, Victoria University - Melbourne, Australia
Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan
Dan Harkins, Aruba Networks, USA

Editorial Board

Gerardo Adesso, University of Nottingham, UK

Ali Ahmed, Monash University, Sunway Campus, Malaysia

Manos Antonakakis, Georgia Institute of Technology / Damballa Inc., USA

Afonso Araujo Neto, Universidade Federal do Rio Grande do Sul, Brazil

Reza Azarderakhsh, The University of Waterloo, Canada

Ilija Basicevic, University of Novi Sad, Serbia

Francisco J. Bellido Outeiriño, University of Cordoba, Spain

Farid E. Ben Amor, University of Southern California / Warner Bros., USA

Jorge Bernal Bernabe, University of Murcia, Spain

Lasse Berntzen, Vestfold University College - Tønsberg, Norway

Jun Bi, Tsinghua University, China

Catalin V. Birjoveanu, "Al.I.Cuza" University of Iasi, Romania

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

Alexis Bonnecaze, Université d'Aix-Marseille, France

Carlos T. Calafate, Universitat Politècnica de València, Spain

Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain

Zhixiong Chen, Mercy College, USA

Peter Cruickshank, Edinburgh Napier University Edinburgh, UK

Nora Cuppens, Institut Telecom / Telecom Bretagne, France

Glenn S. Dardick, Longwood University, USA

Vincenzo De Florio, University of Antwerp & IBBT, Belgium

Paul De Hert, Vrije Universiteit Brussels (LSTS) - Tilburg University (TILT), Belgium

Pierre de Leusse, AGH-UST, Poland

Raimund K. Ege, Northern Illinois University, USA

Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany

El-Sayed M. El-Alfy, King Fahd University of Petroleum and Minerals, Saudi Arabia

Rainer Falk, Siemens AG - Corporate Technology, Germany

Shao-Ming Fei, Capital Normal University, Beijing, China

Eduardo B. Fernandez, Florida Atlantic University, USA

Anders Fongen, Norwegian Defense Research Establishment, Norway

Somchart Fugkeaw, Thai Digital ID Co., Ltd., Thailand

Steven Furnell, University of Plymouth, UK

Clemente Galdi, Universita' di Napoli "Federico II", Italy

Marco Genovese, Italian Metrological Institute (INRIM) -Torino, Italy

Birgit F. S. Gersbeck-Schierholz, Leibniz Universität Hannover, Certification Authority University of Hannover (UH-

CA), Germany

Manuel Gil Pérez, University of Murcia, Spain

Karl M. Goeschka, Vienna University of Technology, Austria

Stefanos Gritzalis, University of the Aegean, Greece

Michael Grottke, University of Erlangen-Nuremberg, Germany

Ehud Gudes, Ben-Gurion University - Beer-Sheva, Israel

Indira R. Guzman, Trident University International, USA

Huong Ha, University of Newcastle, Singapore

Petr Hanáček, Brno University of Technology, Czech Republic

Gerhard Hancke, Royal Holloway / University of London, UK

Sami Harari, Institut des Sciences de l'Ingénieur de Toulon et du Var / Université du Sud Toulon Var, France

Dan Harkins, Aruba Networks, Inc., USA

Ragib Hasan, University of Alabama at Birmingham, USA

Masahito Hayashi, Nagoya University, Japan

Michael Hobbs, Deakin University, Australia

Neminath Hubballi, Infosys Labs Bangalore, India

Mariusz Jakubowski, Microsoft Research, USA

Ángel Jesús Varela Vaca, University of Seville, Spain

Ravi Jhawar, Università degli Studi di Milano, Italy

Dan Jiang, Philips Research Asia Shanghai, China

Georgios Kambourakis, University of the Aegean, Greece

Florian Kammueller, Middlesex University - London, UK

Sokratis K. Katsikas, University of Piraeus, Greece

Seah Boon Keong, MIMOS Berhad, Malaysia

Sylvia Kierkegaard, IAITL-International Association of IT Lawyers, Denmark

Marc-Olivier Killijian, LAAS-CNRS, France

Hyunsung Kim, Kyungil University, Korea

Ah-Lian Kor, Leeds Metropolitan University, UK

Evangelos Kranakis, Carleton University - Ottawa, Canada

Lam-for Kwok, City University of Hong Kong, Hong Kong

Jean-Francois Lalande, ENSI de Bourges, France

Gyungho Lee, Korea University, South Korea

Clement Leung, Hong Kong Baptist University, Kowloon, Hong Kong

Diego Liberati, Italian National Research Council, Italy

Giovanni Livraga, Università degli Studi di Milano, Italy

Gui Lu Long, Tsinghua University, China

Jia-Ning Luo, Ming Chuan University, Taiwan

Thomas Margoni, University of Western Ontario, Canada

Rivalino Matias Jr ., Federal University of Uberlandia, Brazil

Manuel Mazzara, UNU-IIST, Macau / Newcastle University, UK

Carla Merkle Westphall, Federal University of Santa Catarina (UFSC), Brazil

Ajaz H. Mir, National Institute of Technology, Srinagar, India

Jose Manuel Moya, Technical University of Madrid, Spain

Leonardo Mostarda, Middlesex University, UK

Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong

Syed Naqvi, CETIC (Centre d'Excellence en Technologies de l'Information et de la Communication),Belgium

Sarmistha Neogy, Jadavpur University, India

Mats Neovius, Åbo Akademi University, Finland

Jason R.C. Nurse, University of Oxford, UK

Peter Parycek, Donau-Universität Krems, Austria

Konstantinos Patsakis, Rovira i Virgili University, Spain

João Paulo Barraca, University of Aveiro, Portugal

Sergio Pozo Hidalgo, University of Seville, Spain

Vladimir Privman, Clarkson University, USA

Yong Man Ro, KAIST (Korea advanced Institute of Science and Technology), Korea

Rodrigo Roman Castro, Institute for Infocomm Research (Member of A*STAR), Singapore

Heiko Roßnagel, Fraunhofer Institute for Industrial Engineering IAO, Germany

Claus-Peter Rückemann, Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster / North-

German Supercomputing Alliance, Germany

Antonio Ruiz Martinez, University of Murcia, Spain

Paul Sant, University of Bedfordshire, UK

Reijo Savola, VTT Technical Research Centre of Finland, Finland

Peter Schartner, University of Klagenfurt, Austria

Alireza Shameli Sendi, Ecole Polytechnique de Montreal, Canada

Dimitrios Serpanos, Univ. of Patras and ISI/RC ATHENA, Greece

Pedro Sousa, University of Minho, Portugal

George Spanoudakis, City University London, UK

Lars Strand, Nofas, Norway

Young-Joo Suh, Pohang University of Science and Technology (POSTECH), Korea

Jani Suomalainen, VTT Technical Research Centre of Finland, Finland

Enrico Thomae, Ruhr-University Bochum, Germany

Tony Thomas, Indian Institute of Information Technology and Management - Kerala, India

Panagiotis Trimintzios, ENISA, EU

Peter Tröger, Hasso Plattner Institute, University of Potsdam, Germany

Simon Tsang, Applied Communication Sciences, USA

Marco Vallini, Politecnico di Torino, Italy

Bruno Vavala, Carnegie Mellon University, USA

Mthulisi Velempini, North-West University, South Africa

Miroslav Velev, Aries Design Automation, USA

Salvador E. Venegas-Andraca, Tecnológico de Monterrey / Texia, SA de CV, Mexico

Szu-Chi Wang, National Cheng Kung University, Tainan City, Taiwan R.O.C.

Piyi Yang, University of Shanghai for Science and Technology, P. R. China

Rong Yang, Western Kentucky University , USA

Hee Yong Youn, Sungkyunkwan University, Korea

Bruno Bogaz Zarpelao, University of Campinas (UNICAMP), Brazil

Wenbing Zhao, Cleveland State University, USA

International Journal on Advances in Security

Volume 5, Numbers 1 & 2, 2012

CONTENTS

pages 1 - 15
Application of Scenario-driven Role Engineering in Knowledge Management Systems - Requirements
and Implementation
Daniel Kimmig, Karlsruhe Institute of Technology, Germany
Andreas Schmidt, University of Applied Sciences, Karlsruhe, Germany
Klaus Bittner, Karlsruhe Institute of Technology, Germany
Markus Dickerhof, Karlsruhe Institute of Technology, Germany

pages 16 - 27
A Scalability Analysis of an Architecture for Countering Network-Centric Insider Threats
Faisal Sibai, George Mason University, USA
Daniel Menasce ́, George Mason University, USA

pages 28 - 35
Advances in Protecting Remote Component Authentication
Rainer Falk, Siemens AG Corporate Technology, Germany
Steffen Fries, Siemens AG Corporate Technology, Germany

pages 36 - 45
A Privacy Preserving Solution for Webmail Systems with Searchable Encryption
Karthick Ramachandran, University of Western Ontario, Canada
Hanan Lutfiyya, University of Western Ontario, Canada
Mark Perry, University of Western Ontario, Canada

pages 46 - 67
Organizing Security Patterns Related to Security and Pattern Recognition Requirements
Michaela Bunke, Center for Computing Technologies (TZI), Universität Bremen, Germany
Rainer Koschke, Center for Computing Technologies (TZI), Universität Bremen, Germany
Karsten Sohr, Center for Computing Technologies (TZI), Universität Bremen, Germany

Application of Scenario-driven Role Engineering
in Knowledge Management Systems - Requirements and Implementation

Daniel Kimmig⇤, Andreas Schmidt†⇤, Klaus Bittner⇤, and Markus Dickerhof⇤
⇤Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

E-mail: {daniel.kimmig, andreas.schmidt, klaus.bittner, markus.dickerhof}@kit.edu
†Department of Informatics and Business Information Systems,

University of Applied Sciences, Karlsruhe
Karlsruhe, Germany

E-mail: andreas.schmidt@hs-karlsruhe.de

Abstract—Collaborative systems, which are often used in
short-term virtual enterprises or long-term cooperation net-
works, often contain information about the manufacturing
and fabrication competences of the participating technology
partners. These should only be made available to a very
restricted group of persons for example to support feasibility
studies in the context of actual customer requests. This is a
new important feature to be supported in nowadays knowledge
management systems. Hence, the goal of this paper is to
present a methodology for implementing an access control
mechanism based on role based access control. This mechanism
supports the definition of fine granular access rights capable
of protecting sensible information often found in cooperative
process knowledge management systems. In this paper we will
discuss models of access control and present an adaption of
the scenario-driven role engineering method to the special
needs in a collaborative process knowledge management system
with very particular access requirements. Beside the adaption
of the scenario-driven role engineering method to such a
system, the adapted method will be concretely applied to the
process knowledge management system MinaBASE, which was
developed in our institute. To complete, an implementation will
be shown with the help of the inversion of control framework
“Spring Security” as well as aspect-oriented programming.
Here static as well as dynamic aspects of security will be
presented. The paper shows in a detailed manner the usability
of the scenario-driven role engineering method for applications
in the field of collaborative knowledge management.

Keywords-Access control; Knowledge Management; RBAC;
Role Engineering.

I. INTRODUCTION

Both corporate groups as well as small and medium-sized
enterprises (SME) are experiencing increasing competition
and shorter product lifecycles [1]. The resulting necessity
of shortening the product development process also has to
be mastered by enterprises in the field of microsystems
technologies (MST) that are characterized by a high in-
terdisciplinarity and complex, multi-stage, and hardly stan-
dardized fabrication processes. Frequently, every product is
produced by an individually tailored fabrication process [2].

While larger MST enterprises still manage a wide spectrum
of technologies, SME rather tend to offer solutions in a
high specialized area. To offer more complex solutions, they
establish technical partnerships with other SME. These may
have the form of short-term virtual enterprises or long-
term cooperation networks. To support such organization
forms in the field of MST, the MinaBASE process knowl-
edge database was developed by the Institute for Applied
Computer Science of Karlsruhe Institute of Technology. By
means of this database, the manufacturing and fabrication
competences of the technology partners are made available
to a central coordinator who then assesses technical and
economic feasibility.

This information, however, includes company secrets,
whose confidentiality and integrity is of crucial impor-
tance to a company’s existence. Acceptance of MinaBASE
therefore does not only depend on meeting functional re-
quirements, but also on aspects like security and access
protection. To prevent an undesired disclosure of company
secrets, access shall be controlled by the established role-
based access control (RBAC) [3]. Here, authorizations are
not assigned directly to subjects, i.e., the users of a system,
but to abstract roles to which the users are assigned subse-
quently. In this way, the frequently error-prone maintenance
is reduced and security is increased. This requires the
definition of an adequate role concept.

Information systems often use standard models with
system-wide administrators, owners of information objects,
and guests having restricted read access. While this is a
reasonable default for establishing a minimal level of access
control, it does not consider the business processes in which
the system is used and which particular requirements result
in terms of confidentiality and data integrity. The lack of
a role concept tailored to these specific requirements can
severly harm the acceptance and usage of a knowledge
management system. For example in MinaBASE, it should
be possible to grant a partner access to product-related

1

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

properties of a microsystem during the sales process with-
out disclosing the configuration of machine parameters to
produce these properties. Such an application exceeds the
modeling capabilities of the standard role concept described
above, as external partners are not the owners of this infor-
mation. This shows that nowadays knowledge management
systems have particular security requirements, which require
activites of role engineering to create an adequate role
concept to support usage in different business processes.
Our contribution takes on this problem by showing how
a role concept tailored to the particular requirements of
process knowledge management systems can be defined and
implemented. The main contribution of the paper is twofold:
First, the scenario-driven role engineering method will be
adapted to the requirements of collaborative knowledge
management systems. And second, the suitability of existing
access frameworks to implement the adapted method will be
shown by means of the framework spring security.

The paper is structured as follows: In the next sec-
tion, the MinaBASE process knowledge database will be
presented. Then, mechanisms for access control as well
as the scenario-driven role engineering approach [4] and
the adaptations due to the background and objective of
MinaBASE will be outlined. Subsequently, the methodology
will be applied and a role concept for RBAC ensuring data
integrity and confidentiality for MinaBASE will be derived.
The final section describes the implementation of this role
concept within an ”Inversion-of-Control”-Framework (IoC)
by demonstrating how Spring Security and technologies such
as aspect-oriented programming (AOP) can be used to fulfill
static and dynamic security requirements.

II. MinaBASE PROCESS KNOWLEDGE DATABASE

The knowledge required to produce added value is no pub-
lic property, but a company resource that has to be admin-
istrated efficiently in order to ensure economic success. To
support this process, knowledge management systems have
been established [5]. In process-oriented knowledge manage-
ment [6], these methods are applied to highly knowledge-
intensive fabrication processes, as those used in MST. The
MinaBASE process knowledge database is used by the
technology partners for the structured storage of technical
fabrication parameters of the methods and materials used
in MST and of the partner-specific technical competences.
In MinaBASE, the smallest information entity is the so-
called technical aspect (TA). It is used to model materials,
machines, and fabrication technologies [7]. By means of
generalization hierarchies, TAs are arranged in taxonomies.
The number and contents of taxonomy trees can be specified
and modified during runtime, such that a flexible structure
meeting MST requirements can be defined for the storage
of fabrication know-how. TAs may be assigned properties
referred to as technical parameters (TP). A TP is a string of
characters, integers, or floating-point numbers in a certain

injection
pressure

refractive
index

surface
roughness

Procedure

Injection
molding Geometry

Rib

 Material

Polystyrene

 Machine

Arburg
Allrounder

edge
quality

pressure
tolerance

Legend
TA - Technical Aspect
TP - Technical Parameter
Competence-specific TP

Figure 1. Schematic representation of a MinaBASE competence [9].

unit and references an attribute, e.g., the aspect ratio. The
TP of a TA are inherited by lower partial hierarchies of the
hierarchy tree in analogy to the object-oriented approach.
In addition, lower hierarchy levels can further refine the
inherited TP. Classification of TP places them in a certain
context, such that a TP refers to a product or its fabrica-
tion and, hence, is either product-specific or fabrication-
specific. Product-specific TP describe the properties of a
microsystem, such as the depth of a groove reached by
the fabrication process of milling. Fabrication-specific TP
refer to the machine configuration needed to produce a
specific product property. For modeling the capabilities of
a technology partner, competences [8] are considered to be
a set of various TA from disjunct hierarchy trees, which is
illustrated in Figure 1. This figure schematically represents
the competence “injection molding of a rib with polystyrene
using the Arburg Allrounder machine” together with some
TP. From the hierarchy trees of process, machine, material,
and geometry element, the TAs are selected. These TAs are
characterized by their TP, such as the injection pressure of
the injection molding process. The combination of these TAs
results in the competence that is reflected by other TP, such
as the edge quality and surface roughness. Consequently,
a competence is a type of view of a certain combination
of TAs with properties in the form of TP that apply to
this combination only, i.e., that characterize the competence
in more detail. TAs can be used in several competences.
They represent reusable, encapsulated, smallest information
entities. An extension of the MinaBASE concept has been
developed in order to reuse these information entities to
allow process modeling of manufacturing sequences based
on semantic technologies [9].

III. ACCESS CONTROL

Information security is concerned with mitigating risks
that affect information systems in the age of growing in-
terconnectedness of computers. The purpose of information
security is to establish a state, in which the following three
criteria are met for the protected information.

• Confidentiality in this context means that only users
with certain privileges are allowed to access protected
information.

2

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Integrity ensures that information can only be altered
or deleted by users that have sufficient permissions.

• Availability is the requirement that an authorized access
to information is possible at any time.

Access control mainly refers to the first two points above:
Confidentiality and integrity. But it also has an impact on the
third criterion, since bypassing access control is often a first
step to be able to compromise availability [10]. In the digital
age massive productivity gains have been achieved due to
the integrated availability of enterprise data in business
information systems. However, the availability of critical
data in such systems involves risks, because the majority
of attacks come from within an organization itself [11].
This means that in the long term value added can only
be achieved when access to the information systems can
be controlled appropriately. The so-called ”Broken Access
Control”, i.e., the selective exploitation of unsuitable access
control, takes a central place in the OWASP (Open Web
Application Security Project - a project, which focuses on
the analysis and control of secure software), which reports
the most common vulnerabilities of web based applications.
From this it can be concluded that the design of an optimal
access control for applications such as MinaBASE is one of
the most important factors for ensuring information security.
Essential for this are principles for the design of secure
applications that are described briefly below.

• The principle Fail-safe defaults stipulates that any at-
tempt to access any object by an arbitrary subject is to
be rejected, unless it was explicitly permitted [12] [13].
Instead of asking why one cannot access a resource, it
is more important to ask why one should be able to
access it in the first place.

• The Principle of Least Privilege was first postulated by
Saltzer and Schroeder [14] and states that a user within
a certain period of time, e.g., during a session, should
only possess the minimal amount of privileges that are
sufficient for him to fulfill his task. This will ensure
that access control cannot be easily circumvented by
privileges that were granted too loosely [10].

• The demand for the principle of Separation of Duty
(SoD) is correlated to the need for integrity of infor-
mation. This mainly concerns operations on resources
that are either very risky or where a situation cannot
be excluded in which resources are at risk of being
abused even by authorized users. For such cases SoD
suggests to split the operation onto multiple users,
so that no single user has sufficient authority to that
operation [10].

After the objectives and key principles for information
security through access control have been introduced, the
following sections will present different models of designing
access control mechanisms, which are qualified to achieve
the described goals of information security.

A. Discretionary Access Control
The model of Discretionary Access Control (DAC) is

based on the principle of ”object ownership”, which means
that one or more owners are assigned a resource, grant
permission to access these resources at their discretion. The
decision on granting access is based on the identity of a
user or his group membership [10]. The term ”discretionary”
means that the passing of permissions to specific operations
on resources such as files is determined by the owner’s
confirmation. This means that each user is enabled to
spread these rights to another user or his subjects [10]. The
implementation of the permission distribution is based on
so-called ”Access Control Lists” (ACLs) or capability lists.
The advantage of DAC is a high degree of flexibility, since
it is possible to grant permissions in a very fine-grained
manner. The drawback of DAC is that you can not limit the
spread of permissions.

B. Mandatory Access Control
Mandatory Access Control (MAC) relies on weaknesses

of DAC, and is therefore specifically designed for the
containment of potential information flows [15]. This is
achieved as MAC has no principle of object-ownership, but
is built upon a classification of information. The sensitivity
of information and user status function as a decision criterion
for access requests. The sensitivity is determined by the
classification of the information depending on how big the
damage caused by the loss of confidentiality would be. MAC
prevents the proliferation of permissions to users who were
not considered to be authorized, as the mechanisms of MAC
protect information of a certain level from being accessed by
users of an insufficient level. Examples of such mechanisms
are the Bell-LaPadula model [16] and the Biba Integrity
Model [17]. The advantage of MAC is the safe limitation of
access permissions, however it prevents the flexible sharing
of information between users, because the classification of
information and users is predetermined and therefore static
and rather inflexible [13].

C. Role-based Access Control
In Role-Based Access Control, permissions for operations

on resources are not assigned directly to users, but an
abstraction in between both concepts is created, which is
referred to as a role [3]. The meaning of these roles is
directly comparable with roles in organizations. Subjects
who use a system to accomplish similar tasks, act in a similar
role towards the system. Therefore completely different
permissions are required, which are limited by the operations
necessary to accomplish the different tasks. Permissions are
assigned to roles in RBAC [10], thus there is no direct
allocation of permissions between users and objects. The
reason for the development of the RBAC model is based
on two insights: The first is that after investigating the
security requirements of commercial organizations, it was

3

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An SSD policy can be centrally specified and then uniformly imposed on specific roles. From a policy
perspective, static constraint relations provides a powerful means of enforcing conflict of interest and other
separation rules over sets of RBAC elements. Static constraints generally place restrictions on
administrative operations that have the potential to undermine higher-level organizational Separation of
Duty policies.

Static constraints can take on a wide variety of forms. A common example is that of Static Separation of
Duty (SSD) that defines mutually disjoint user assignments with respect to sets of roles. Static constraints
have also been shown to be a powerful means of implementing a number of other important separation of
duty policies [FCK96; Kuh97; SZ97; GGF98; GI96]. For example, Gligor, et al. has formally defined four
other types of static separation of duty policies. The static constraints defined in this model are limited to
those relations that that place restrictions on sets of roles and in particular on their ability to form UA
relations. Although formal RBAC models and RBAC policy specifications have grown well beyond these
simple relations, we know of no commercial products that implement these advanced static separation of
duty relations.

RBAC models have defined SSD relations with respect to constraints on user-role assignments over pairs
of roles (i.e., no user can be simultaneously assigned to both roles in SSD). Although real world examples
of this SSD policy exist, this definition is overly restrictive in two important aspects. The first aspect being
the size of the set of roles in the SSD and the second being the combination of roles in the set for which
user assignment is restricted. In this model we define SSD with two arguments—a role set that includes
two or more roles and cardinality greater than one indication a combination of roles that would constitute a
violation of the SSD policy. For example, an organization may require that no one user may be assigned to
three of the four roles that represent the purchasing function.

As illustrated in figure 5, SSD relations may exist within hierarchical RBAC. When applying SSD relations
in the presence of a role hierarchy, special care must be applied to ensure that user inheritance does not
undermine SSD policies. As such, role hierarchies have been defined to include the inheritance of SSD
constraints [GB98, FBK99]. If for example, the role Accounts Receivable Supervisor inherits Accounts
Receivable Clerk, and Accounts Receivable Clerk has an SSD relationship with Billing Clerk, then
Accounts Receivable Supervisor also has an SSD relationship with Billing Clerk. To address this potential
inconsistency we define SSD as a constraint on the authorized users of the roles that have an SSD relation.

Figure 5: SSD within Hierarchical RBAC

The formal definition of Static Separation of Duty is given below.

user_
sessions session_roles

SES-
SIONS

USERS ROLES
 OPS OBS

 PRMS

 (UA)
User Assign-
ment

 (PA)
Permission
Assignment

 (RH)
Role Hierarchy

SSD

Figure 2. Schematic overview of the extended RBAC model.

found that neither MAC nor DAC cover the needs of these
organizations. The origin of the MAC model is the protection
of classified information, which means a way of controlling
which subject can see what kind of information. In contrast
to that, RBAC is concerned with the question of which
subjects are allowed to perform which operations on what
kind of resources [3]. In addition, it is very difficult to clas-
sify information and subjects for a commercial organization,
since such a classification is static and inflexible. This lack
of flexibility is overcome by the characteristics of DAC to
make the decision to limit propagation of access permissions
at the discretion of the ”Object Owner”, since a more
dynamic access control becomes possible. The challenge in
commercial organizations is, users are not the owners of
resources, but the institution, in which they are embedded
into [18].

Consequently, the essential principle of ”Object Owner-
ship” of DAC is not applicable, as the distribution of access
privileges should not be put at the discretion of the users. For
this reason RBAC is also referred to as non-discretionary [3].
RBAC is less focused on the grouping of users such as DAC,
but rather on grouping of permission sets, which enable
the execution of operations on resources [3]. Through this
concept, the grouping of permissions to roles, administration
becomes easier, as changes to users only result in updating
the membership to associated roles [18].

It also supports the distribution of RBAC permissions
according to the ”Principle of Least Privilege”, since the
roles of an organization can be assigned with a minimal
amount of privileges necessary to complete the respective
tasks within the organization. If there are conflicts of interest
between certain units of the organization, these can be over-
come using the technique of ”Separation of Duty”, which
means that restrictions are placed on the distribution of roles.
Over time, different stages of RBAC have been developed,
which build on each other and will be briefly described
below. A schematic structure of these models is given by
Figure 2 from [11]. Basic RBAC only consists of three
sets, which model users, roles and permissions. Roles exist
purely because of the grouped assignment of permissions.
In reality, however, there is a hierarchical arrangement, as

some roles consist of more permissions than others and
thus the privileges of these are included redundantly. The
introduction of a hierarchical arrangement for Hierarchical
RBAC directly in the model decreases the required effort to
administrate access control. The arrangement of roles can
then be represented by a partial order as a graph or as
an inverted tree. With the idea to encapsulate the functions
of an organization and the necessary permissions to roles,
it becomes apparent that this can easily lead to an abuse
of privileges in a commercial environment. To avoid such
cases, the principle of ”Separation of Duty” is part of the
Constrained RBAC model, in order to assign permissions to
different roles in cases of conflicts of interest. The use of
the RBAC model has the potential to reduce complexity and
error rate of access control as well as to reduce the cost and
duration of administration.

IV. SCENARIO-DRIVEN ROLE ENGINEERING

The term of role engineering (RE) in the context of RBAC
means the design and specification of roles, authorizations,
secondary conditions, and restrictions as well as of a hi-
erarchic role model [19]. RE is used to create a concrete
model for RBAC-based access control. In [4], Scenario-
driven role engineering (SDRE) is defined as an approach
based on scenarios, such as sequences of actions and events
from the user’s perspectives. This sequence in a scenario
can be subdivided into subscenarios and atomic steps of
chronological user interaction. Scenarios are embedded in
a task, i.e., a problem or a work area, which links the
scenarios of a system with its users. The users mostly apply
a system to fulfill a task of their work profile or their job
description. This structurization into various levels serves to
break down a job description of a user into atomic steps,
each of which may be associated with an authorization to
access a resource. For various types of users, the minimum
amount of authorizations required for the execution of the
tasks can be derived. In this way, the principle of least
privilege [14] is implemented. For documentation, various
models are generated by the SDRE approach, which are
interlinked in terms of contents and used for the derivation of
the role concept. The scenario model describes all scenarios
and steps, task definitions serve to structure scenarios, the
work profile summarizes tasks for job descriptions. The
permission catalog lists the individual permissions or autho-
rizations. It may be complemented by a constraint catalog
of special limitations [4]. While the permission catalog is
focused on static assignments of authorizations to specific
resources, constraints describe dynamic conditions, which
are evaluated at runtime. Hereinafter, the SDRE process
will be described in general. First, the use scenarios of
the system are compiled and their actions and events are
documented. Then, subscenarios and steps are defined and
the authorizations required for them are included in the
permission catalog or special limitations are listed in the

4

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User%concept+based+on+
MST+business+processes

Drilldown+tasks+into+
scenarios+and+atomic+steps

Link+work+profiles+with+
tasks+having+MinaBASE

relevance

DerivaAon+of+permissions
required+for+steps

DefiniAon+of+a+preliminary+
role+concept

Reassessment+of+
preliminary+role+concept

Final+role+concept+as
RBAC+model

All parts of
MinaBASE
covered?

Y

Extension of
MinaBASE

features

1 2 3

56

4

N

Figure 3. Scenario-driven role engineering according to [4] with adaptations.

constraint catalog. When this step is completed for all
scenarios, similar scenarios are generalized. Very complex
scenarios are divided into smaller parts which are then
included in the scenario model. On this basis, tasks are
formed by grouping scenarios. These tasks are then classified
into various work profiles. This results in a preliminary role
concept and minimum authorizations can be assigned to
the individual activities. As a rule, this preliminary model
contains duplicates of roles with identical authorizations,
which then have to be fused in a last step. This yields
the RBAC model as a role concept. The SDRE process
represents a systematic approach to RE. It was applied to in-
formation systems for the health care sector by the technical
committee of HL7 already [20]. Due to this practical test,
SDRE in principle may be applied to MinaBASE. However,
certain adaptations are required, because the background
and objective of MinaBASE differ from those of the HL7
systems. The paramount objective of MinaBASE is the
support of knowledge-intensive business processes of MST
enterprises by a structurization of the knowledge required
for the execution of these business processes. A criterion for
the acceptance of knowledge management is its integration
in workflows of the users and an efficient and complete
coverage of information needs [21]. As such the SDRE
approach is to be applied to the use of MinaBASE in business
processes of MST enterprises and cooperation networks. The
model given in [4] is therefore subjected to the following
adaptations:

• In the standard SDRE methodology, scenarios for a
system are the main input, to which required autho-
rizations are allocated. Subsequently, these scenarios
are generalized and assigned to tasks and work-profiles
which create a preliminary role concept.
For MinaBASE however an alternative input is more
persuasive. Instead of starting with the scenarios of the
system, work areas within the business processes of
an MST-company are examined, whether they include
tasks in which MinaBASE can be used to increase added
value. To these tasks scenarios will be assigned in

order to obtain the information, which resources are
required for fulfilling them and what authorizations
are needed. Based on this information, a preliminary
role concept can be derived in a similar way to the
standard model due to the minimal set of authorizations
for each role. By these adapations - a switch of input
variables to the methodology - the basic principle of
SDRE is preserved, while better results for the creation
of the role concept are expected, because of the adapted
methodology being closer to the business processes of
a MST-company.

• The scenarios to be formulated are not based on conse-
quences of actions and events, but will also contain
all definable steps. Although these do not occur in
sequential order, they can be characterized by a certain
access authorization.

• For reasons of clarity, special limitations extending
beyond the static allocation of authorizations are in-
cluded directly in the permission catalog and not in the
constraint catalog, such that both models fuse.

The adapted process is illustrated in Figure 3. It comprises
six steps, the execution of which shall be described in more
detail in the following section.

V. APPLICATION OF SDRE TO MinaBASE

Using parts of the models created by the SDRE process,
it shall now be demonstrated how the role concept can be
generated systematically.

A. Step 1: Generation of the User Concept

Application of the model is based on an analysis of the
business processes of a model MST company for possibil-
ities of using MinaBASE and for activities, where the use
of MinaBASE can result in a added value. Functions and
units of an MST company, which may be potential users of
MinaBASE, are:

• Sales, external guest: MinaBASE supports the sales
process in the strategic assessment of the feasibility of
customer orders, because these decisions can be made

5

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

based on an IT documentation of competences and
fabrication know-how. Strategic means that a general
decision is made without taking into account technical
details. In addition, the customer order is typed depend-
ing on whether a standard product is to be manufactured
or a specification has to be met by enforcing the
development in a project. The documented compe-
tences can be used as a database for sales promotion.
External guests, e.g., customers or suppliers, may be
given access to the system in order to stay informed
about fabrication processes used by the company or
the cooperation network.

• Project management, development: If a customer order
is classified to be not directly producible by the sales
division, a project team is established based on the
customer’s specification. This team is composed of the
project manager and technical experts. In an iterative
process, they specify general solution alternatives, the
commercial feasibility of which is assessed. In addition,
solution approaches, such as functional patterns or pro-
totypes, are developed in detail, the technical feasibility
of which is guaranteed. Upon successful agreement
with the customer, exact fabrication planning is started
in the next step. Planning is based on the results of the
development of a commercially and technically feasible
solution.

• Construction, fabrication planning: Planning of fabri-
cation, i.e., of the individual steps of production flow,
may be initiated by a successful development process
or a directly producible customer order, e.g., the repe-
tition of an already executed fabrication process. In the
latter case, MinaBASE, a system for process-oriented
knowledge management, provides support by the stor-
age of process elements of process steps and process
sections and their combination in process chains, as this
allows for the direct use of already executed fabrication
processes [9]. This principle in weaker form may also
be applied to fabrication planning based on a technical
solution alternative from development. By copying or
adapting existing process models or process elements,
planning of the fabrication process can be acceler-
ated. Construction and fabrication planning result in
a detailed schedule for production and defined quality
management tests, during which data are measured in
the production process.

• Quality management, production: Production focuses
on the execution of the process steps defined by fab-
rication planning in a process chain to execute the
order placed by the customer. Technicians working at
the machines have direct access to production and are
capable of using technical parameters of the individual
process elements of the process chain for adjusting
the machine parameters and of measuring real data
during the tests. Various areas of quality management

Figure 4. Work area project management with associated tasks from the
work profile model.

are covered. New fabrication knowledge of attributes
and parameters of process elements is generated.

B. Step 2: Definition of Work Profiles and Task Definitions
According to the adaptations to the SDRE model,

MinaBASE tasks are assigned to the enterprise units or work
areas listed in the previous section. Figure 4 shows a part
of the work profile model. In the work area of project
management for the iterative development of solutions for an
unsolved development problem of a customer order, tasks are
identified, to which the MinaBASE resources can be applied.
These tasks are the pooling of technical experts, the analysis
of fabrication competences and process chains, and the
coordination of process dependencies beyond organizational
units. The complete work profile model contains all tasks
to which MinaBASE may be applied. These are the input
variables for the detailed assignment of scenarios, steps, and
authorizations to access resources in the following step.

C. Steps 3/4: Refinement of Scenarios and Assignment of
Authorizations

For the first two tasks mentioned in the previous section,
namely, the pooling of experts and the coordination of pro-
cess dependencies, a part of the fused permission and con-
straint catalog is illustrated in Figure 5. For every scenario or
every step, the associated operation on an object or resource
is modeled, with R denoting read access (read), C denoting
the creation of a new entry (create), U meaning processing
(update), and D the deletion (delete) of a resource. The
information of which actor accesses which resource with
which operation is encapsulated as a permission by a triple
of the type (actor, operation, object). At last, limitations or
constraints of access are specified. For the first task, the
organizational units, contact data of technical experts, and
competences of the organizations stored in MinaBASE are
considered as use scenarios. Read access (R) to the tables
of the database and application components is required. The
second task is handled similarly, as order data and detailed,
production-related attribute values of process dependences
are needed. In addition, an entry in the constraint catalog
is made to ensure that the actor sees only those attribute

6

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Refinement of tasks in use scenarios and assignment of authorizations to access the resources needed.

values that are characterized as project-specific property
and not as production-specific, internal know-how of an
organization. This constraint cannot be implemented as a
static authorization, as the assignment is made dynamically
during runtime.

D. Steps 5/6: Derivation of the Role Concept
By applying the first steps of the adapted SDRE model to

the identified MinaBASE-using enterprise units, a hierarchy
corresponding to a preliminary model of the role concept
may be derived on the basis of the authorizations. This
preliminary model is show in Figure 6. The highest point
is the administration that is not only responsible for ad-
ministering users and their assignment to roles, but also
has all other authorizations in the system. The lowest point
is the external guest, who is given fewest access rights.
In between, the graph may be structured horizontally and
vertically. Vertical structurization results from the degree of
orientation to orders. This means that planning of working
steps of a process chain and their execution are much
more related to orders than the development of solution
alternatives for a certain customer specification by technical
experts. Horizontal arrangement results from the respective
amount of granted privileges.

Then, the last step of the SDRE process follows, i.e.,
the analysis of the preliminary model for groupings of
authorizations in the form of roles that exist several times
and have a comparable amount of authorizations. These roles
have to be eliminated. Otherwise, the catalog would list
more roles than necessary, which might result in anomalies
and undesired side effects in the administration of rights
and roles. Review of the preliminary model taking into
account the criteria described yields the role concept shown
in Figure 7. Documentation of the authorizations for the
individual company units shows that a separation between
project management and development is not reasonable, as
the access rights for the modeled scenarios and steps are
identical. For this reason, both units are summarized by the
developer role. The same applies to fabrication planning and
quality management, as both units use MinaBASE for various

External)guest

Administra1on

Knowledge)
engineering

Produc1onSales

Project
management Development

Work
scheduling

Quality
management

Figure 6. Preliminary role concept based on the permission catalog.

External)guest

Administrator

Knowledge
engineer

Technician

Work)
scheduler

Sales

Developer

Figure 7. Revised role concept as RBAC model.

objectives, but still have comparable use scenarios and,
hence, identical authorizations. Consequently, they assume
the same role in the use of MinaBASE, the role of the work
planner. Underneath the role of the work planner, the role

7

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

technician exists, who is responsible for the implementation
of the plans made by the work planner. The technician is in
the position to acquire the measurement data for the tests of
the work planner and to define detailed parameters, such
as machine instructions, as information added to process
elements. To fulfill his task, the developer needs deep insight
into the details of the competences and process chains,
as he has to extend the strategic assessment of the sales
division by a guaranteed technically possible feasibility
assessment. The “knowledge engineering” component has
already encapsulated the rights to update order-independent
knowledge in the preliminary model. In this way, additional
authorizations can be assigned specifically to a role.

VI. IMPLEMENTATION IN AN IOC-FRAMEWORK

This section describes the implementation of the RBAC
model within MinaBASE. Firstly, the used framework,
Spring Security, is introduced. Subsequently, it is shown how
static and dynamic security requirements stemming from the
permission catalog as well as the constraint catalog can be
fulfilled.

A. Spring Security

Spring Security is a subproject of the application frame-
work “Spring” to control authentication and authorization
in the JEE environment, i. e., in the range of business
applications based on Java technology [22]. It is empow-
ered by technologies provided by the core of Spring, such
as ”Inversion of Control“ using ”Dependency Injection“
(DI), which means a passive provisioning of an application
component’s dependencies by a central container known
as the Spring ”ApplicationContext“. Martin Fowler defined
the term dependency injection as means of provisioning an
object’s dependencies [23], for which several tools have been
developed to aid the construction of large object graphs
consisting of many interrelated classes mainly based on
declarative configuration. The main motivation behind the
idea of dependency injection is the overcoming of drawbacks
found in previous solutions to the problem of object graph
construction. The ”ServiceLocator-Pattern” is an example of
such a solution. The difference between the two approaches
is displayed in Figure 8.

Inject''

Inject'

Lookup

Inject''

Object'A

Object'CObject'B

Object'A

Object'CObject'B

Pull$Model)of)Dependency)Lookup Push$Model)of)Dependency)Injec6on

Container ContainerDatasource Datasource

Figure 8. Approaches to constructing object graphs and its dependencies.

The first approach can be characterized as a ”Pull-model”,
in which an object actively requests certain dependencies
from a central container that helps in locating services such
as a reference to a datasource. The second approach uses a
push-model, where the object is passive and the container
will manage the object’s lifecycle alongside the fulfillment
of dependencies that the object requires. The main advantage
of the second approach is, the object does not need to know
about the central container and is therefore easier to test,
refactor and maintain [24].

In addition to that, the ApplicationContext provides
AOP capabilities. New programming paradigms usually are
invented to overcome the weakness of well established
paradigms. In the same way AOP is an extension of
traditional object-oriented programming (OOP). In OOP,
classes are used as blueprints to model objects from the
real world. By following principles such as separation of
concerns [25] and information hiding of implementation
details, OOP had a drastic effect on the way functional
requirements are translated into the structure of application
code. However, after decades of experience with OOP, it
has been shown that a strict separation of all concerns is not
feasible as there are requirements that are the same across
all components of a system. Examples for this include but
are not limited to transaction management, logging as well
as enforcing security policies [26]. Concerns like these are
equally relevant to several components while at the same
time not capurable as separate components in traditional
OOP. As they spread across several components, they are
often refered to as cross-cutting concerns. AOP is used for
central encapsulation of cross-cutting concerns into so-called
aspects, which avoids the scattering of duplicated code for
realizing them across the codebase. The difference of the
two approaches is shown in Figure 9.

OOP AOP

Class%A Class%CClass%B Class%A Class%CClass%B Aspect

Figure 9. Using AOP to avoid duplication of cross-cutting concerns.

Utilizing DI and AOP, Spring Security allows central defi-
nition of security constraints. By integrating with the hosting
web container, a central hook is implemented by which a
chain of filters can monitor and control the processing of
HTTP requests as well as the execution of application com-
ponents. This enables Spring Security to capture all elements
of an application’s architecture while thoroughly ensuring
its security requirements using a declaratively configurable
mechanism. Figure 10 visualizes how a request is processed.

8

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Authen'ca'on
established

Resource
2protected?

Authen'cate
request2source

Principal2
authen'cated?

Access
granted

New
request

Principal2
authorized?

HTTP
4032

Y

N

N

YN

Y N

Y

Figure 10. Overview of request processing within Spring Security.

This central hook determines whether an incoming request
is trying to access a protected resource according to the
supplied configuration. If this is the case, the ”Authen-
ticationManager“ (AM) is requested to authenticate and
return the current principal, an abstract notion for, e. g., the
currenlty logged in user, which is used by the ”AccessDeci-
sionManager“ (ADM) to determine whether its role has the
permission required for the protected resource in question.

These two components can be controlled in a very flexible
manner. For instance, during authentication, the AM can
be configured to consult different providers, which in turn
compare the principal’s credentials by querying relational
databases, LDAP directories or Single-Sign-On authentica-
tion servers. The ADM can be controlled by assigning static
key/value-pairs of resources and required permissions or by
enabling the dynamic execution of AOP-driven components.
As the flow of the request processing shows, no access is
granted unless the source of the request is properly authen-
ticated and the principal possesses sufficient permissions.
This effectively realizes the ”Fail Safe Defaults” principle
as it will return a security error unless both conditions are
met. The following shows how Spring Security can be used
to enforce compliance with the static and dynamic security
requirements as specified in the permission- and constraint
catalog in Figure 5.

B. Static aspects of security

Now that the basic functionality and main components
of Spring Security were introduced, this section will focus
on how the AM and ADM are used to implement the
security requirements stemming from the SDRE role concept
defined in chapter V. The following Figure 11 visualizes
the architecture of MinaBASE. As shown, the application
serves multiple types of clients while also utilizing heteroge-
nous datasources. It is structured using the popular 3-tier
architecture, which divides the application into presentation
logic for request processing, application logic for satisfying
business requirements and components for accessing the
various datasources.

Desktop MobileClient

Database, Filesystem,
LDAP, Cache-Server,

Search-Server

Server

Data-
source

Presentation layer

Data access layer

Application logic

HTTP

TCP

Sp
rin

g
Se

cu
rit

y

Figure 11. Schematic overview of MinaBASE architecture.

The following will show how Spring Security is used to
implement the security requirements across the entire appli-
cation architecture in a coherent way. Extending the security
mechanisms requires the ADM to use a FilterSecurityInter-
ceptor“ (FSI) for securing the presentation layer as well as a
MethodSecurityInterceptor“ (MSI) for the application layer.
To protect the application layer, a configuration of the MSI
is required that determines which permissions the role of
the current principal must possess to invoke components for
data access and application logic. This can be realized by
placing annotations directly in the application source code
or through a central AOP configuration. The latter variant
is used due to easier maintenance and therefore shown in
Listing 1. For the protection of method invocations, a so-
called pointcut, which is an entry point for the execution
of code formulated as AOP-advices, is associated with a
permission, whose presence will be checked by the MSI.
<g l o b a l�method�s e c u r i t y>
<p r o t e c t �p o i n t c u t

e x p r e s s i o n =” e x e c u t i o n (⇤
edu . k i t . minabase .⇤CompetenceDAO . g e t ⇤ (. .)) ”

a c c e s s =”PERM R Competence” />
<p r o t e c t �p o i n t c u t

e x p r e s s i o n =” e x e c u t i o n (⇤
edu . k i t . minabase .⇤CompetenceDAO . save (. .)) ”

a c c e s s =”PERM W Competence” />
<p r o t e c t �p o i n t c u t

e x p r e s s i o n =” e x e c u t i o n (⇤
edu . k i t . minabase .⇤CompetenceDAO . d e l e t e (. .)) ”

a c c e s s =”PERM W Competence” />
< / g l o b a l�method�s e c u r i t y>

Listing 1. Configuration of the MethodSecurityInterceptor.

This restricts the data access to competences by requiring
the presence of the ”PERM R Competence“ permission for
the execution of methods, whose names start with ”get“ and
are located within the CompetenceDAO class. On top of that
the methods to insert, update or delete a competence requires
the ”PERM W Competence“-permission to be assigned to
the role of the current user. The assignments of permissions

9

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to roles can be altered using an administrative interface
at runtime. The invocation of methods for modifying and
deleting other information entities within MinaBASE as well
as the execution of application logic can be restricted in a
similar fashion. To make sure that the pointcut expressions
are executed as intended, the following Listing 2 shows how
their effectiveness can be tested using standard JUnit tests.

@RunWith (S p r i n g J U n i t 4 C l a s s R u n n e r . c l a s s)
@ C o n t e x t C o n f i g u r a t i o n (l o c a t i o n s ={

” f i l e : s r c / s p r i n g� t e s t . xml ” })
p u b l i c c l a s s CompetenceDAOSecur i tyTes ts {

@Autowired
CompetenceDAO dao ;

@Test (e x p e c t e d = A u t h e n t i c a t i o n E x c e p t i o n . c l a s s)
p u b l i c vo id u n a u t h e n t i c a t e d g e t (){

dao . g e t (1L) ;
}

@Test
p u b l i c vo id a u t h e n t i c a t e d g e t (){

l o g i n (” u s e r ” , ” u s e r ”) ;
Competence c = dao . g e t (1L) ;
a s s e r t N o t N u l l (c) ;

}

@Test (e x p e c t e d = A c c e s s D e n i e d E x c e p t i o n . c l a s s)
p u b l i c vo id i n s u f f i c i e n t p e r m i s s i o n s s a v e (){

l o g i n (” u s e r ” , ” u s e r ”) ;
Competence c = new Competence () ;
dao . s ave (c) ;

}

@Test (e x p e c t e d = A c c e s s D e n i e d E x c e p t i o n . c l a s s)
p u b l i c vo id i n s u f f i c i e n t p e r m i s s i o n s d e l e t e (){

l o g i n (” u s e r ” , ” u s e r ”) ;
dao . d e l e t e (1L) ;

}

@Test
p u b l i c vo id s u f f i c i e n t p e r m i s s i o n s (){

l o g i n (” admin ” , ” admin ”) ;
Competence c = new Competence () ;
dao . s ave (c) ;
dao . d e l e t e (1L) ;

}

p r i v a t e vo id l o g i n (S t r i n g u , S t r i n g pw) {
U s e r n a m e P a s s w o r d A u t h e n t i c a t i o n T o k e n t o k e n =
new U s e r n a m e P a s s w o r d A u t h e n t i c a t i o n T o k e n (u , pw) ;
S e c u r i t y C o n t e x t H o l d e r . g e t C o n t e x t ()

. s e t A u t h e n t i c a t i o n (t o k e n) ;
}

}

Listing 2. Testing effectiveness of pointcut expressions.

The annotations on the class are necessary to specify
the JUnit-Test-Runner as well as to provide the location of
the configuration file to the Spring Framework. Given this
information, Spring will bootstrap the DI-container in the
background, inject the dependency CompetenceDAO into
the test class and run all methods marked with the JUnit
”@Test”-annotation. The first testcase simulates anonymous
access and makes sure that no unauthenticated user can
run the ”get”-method of the CompetenceDAO component

by expecting the test code to raise an exception of type
”AuthenticationException”, which is part of Spring Security.
If this exception is not raised, the testcase is considered to
have failed by JUnit and will be reported as such. The next
testcase is responsible for proving that authenticated users
can execute the ”get”-method without causing an exception.
The credentials specified in the ”login”-method refer to an
In-memory AuthenticationProvider, which is used during
the tests only. The configuration is shown in the following
Listing 3.

<s e c : a u t h e n t i c a t i o n �manager>
<s e c : a u t h e n t i c a t i o n �p r o v i d e r>

<s e c : u s e r �s e r v i c e>
<s e c : u s e r name=” u s e r ” password =” u s e r ”

a u t h o r i t i e s =”PERM R COMPETENCE” />
<s e c : u s e r name=” admin ” password =” admin ”

a u t h o r i t i e s =
”PERM R COMPETENCE, PERM W COMPETENCE” />

< / s e c : u s e r �s e r v i c e>
< / s e c : a u t h e n t i c a t i o n �p r o v i d e r>

< / s e c : a u t h e n t i c a t i o n �manager>

Listing 3. In-Memory AuthenticationManager.

By placing this into the test-specific Spring configuration,
the runtime duration of the tests can be reduced as no
database lookups are required. For reasons of clarity, the
permissions are not grouped to roles here, but are added di-
rectly to the users of the In-Memory AuthenticationProvider.
In a production scenario the authentication process is backed
by a chain of AuthenticationProviders which consult dif-
ferent datasources (LDAP-repositories, a relational database
or the filesystem). But to minimize the dependencies on
the surrounding environment, the In-Memory approach was
chosen, as it enables the tests to be run from anywhere. As
the configuration shows, the first user only possesses the
”PERM R Competence“ permissions, while the ”admin”-
user additionally owns ”PERM W Competence“. The is
important for the rest of the testcase from Listing 3, as
the third testcase tries to run the ”save”-method, which has
been configured to require the higher permission. To ensure
the effectivness of the pointcut expression in Listing 1, this
testcase is expected to raise an ”AccessDeniedException”
or to fail otherwise. The following testcase assures the same
for the ”delete”-method. The final testcase is used to prove
that no exception is raised when a user with sufficient
permissions runs both methods. While the pointcuts in
Listing 1 are expressed in a very generic and broad way,
these testcases will assure their effectiveness. By minimizing
dependencies to external datasources, this way of testing can
be used to prove the fulfillment of the security requirements
on the level of application logic and data access.

For securing the presentation layer, combinations of URL-
patterns for protected regions and required permissions are
specified, which are evaluated by the FSI during the monitor-
ing of HTTP request processing. An excerpt of the necessary
configuration is shown in Listing 4.

10

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User Web'Controller Service'Layer'Bean Data'Access'Bean Database

/competence/
show/... loadCompetence() getCompetence() Hibernate'Query

Competence'
JPAFObject

Competence'
Before'Advice

Competence'
AJer'Advicecompetence/

show.jsp

MParameterF
SecAdvice

Figure 12. Integration of the MParameterSecAdvice in MinaBASE.

<h t t p au to�c o n f i g =” f a l s e ”
a c c e s s�den ied�page=” / d e n i e d . j s p ”>
< i n t e r c e p t �u r l

p a t t e r n =” / s t a t i c / ⇤ . ⇤ ” f i l t e r s =” none ” />
< i n t e r c e p t �u r l

p a t t e r n =” / competence / show /⇤⇤ ”
a c c e s s =”PERM R Competence” />

< i n t e r c e p t �u r l
p a t t e r n =” / competence / e d i t /⇤⇤ ”
a c c e s s =”PERM W Competence” />

<form�l o g i n l o g i n�page=” / l o g i n . j s p ”
a u t h e n t i c a t i o n �f a i l u r e �u r l =” / l o g i n . j s p ? e r r o r =1” />

<l o g o u t l o g o u t�s u c c e s s�u r l =” / l o g o u t . j s p ” />
< / h t t p>

Listing 4. Configuration of the FilterSecurityInterceptor.

Due to the URL-patterns being evaluated from top to
bottom, the monitoring is at first disabled for static resources
to achieve higher performance. Thereafter, permissions for
visiting URLs matching the location for display and editing
of competences are stated. The final step is the declaration
of URLs, to which the AM will redirect unauthenticated
users, that try to access a protected resource as well as URLs
for authentication failures and the termination of a user’s
session. These settings ensure that protected areas are not
reachable for users that dont possess the required permis-
sions. To improve the user experience, links to sections the
user does not have access to should not be displayed in the
first place. To achieve this, the generation of HTML needs
to be controlled with permissions in mind. Spring Security
is bundled with an extension that allows fragments of Java
ServerPages (JSP) to be rendered according to the current
user’s permissions, which is demonstrated in Listing 5.
<s e c : a u t h o r i z e i f A l l G r a n t e d =”PERM W Competence”>
<a h r e f =” / competence / e d i t / . . . ”>

E d i t t h i s competence< / a>
< / s e c : a u t h o r i z e>

Listing 5. Permission based generation of the user interface.

This JSP-Tag assures that links to the area for editing
competences are only rendered to those users that have
the ”PERM W Competence“ permission. These three list-
ings show how Spring Security can be used to employ a
homogeneous system of permissions that stems from the
SDRE permission catalog and covers the entire application
architecture from data access to the presentation layer. At
runtime these permissions are assigned to roles from the
designed RBAC model.

C. Dynamic security aspects
In the previous section, security aspects were considered,

which could be fulfilled by statically restricting access to a
protected resource by requiring a specific permission to be
held by the current principal. While most aspects of the
permission catalog are covered by this approach, entries
of the constraint-catalog as depicted in Figure 5 cannot
be implemented in this fashion, because of their dynamic
nature, wich means, these constraints cannot be enforced at
build-time, but only at runtime. As an example, the filtering
of fabrication-specific TP of a competence’s detailed view
is used. To avoid code duplication whenever fabrication-
specific TP of a MinaBASE information entity shall be
filtered, this concern is encapsulated into a separate AOP-
Advice called ”MParameterSecAdvice“, whose integration
into the method’s call flow is illustrated in Figure 12.

A request for the detailed view of a competence is
received by a Web-controller, which initiates the data access
for the current competence by invoking methods from the
service layer. Once this competence is loaded as a database
object, the MParameterSecAdvice is hooked into the execu-
tion flow using AOP-Weaving. The job of this component
is to iterate over the competence’s parameter collection and
filter out those parameters to which the current principal
has no permission. The revised competence object is then

11

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

returned to the controller which starts the generation of
HTML templates and sends the result to the browser.

After explaining the implementation from a high-level
point of view, the following will focus on the detailed
implementation by describing the source code of the MPa-
rameterSecAdvice, which is shown in Listing 6.

p u b l i c c l a s s MParameterSecAdvice {
p u b l i c vo id i n j e c t A f t e r (O b j e c t r e t) {

S e c u r i t y C o n t e x t c t x =
S e c u r i t y C o n t e x t H o l d e r . g e t C o n t e x t () ;

A u t h e n t i c a t i o n a u t h = n u l l ;
boolean f p p e r m i s s i o n = f a l s e ;
H a s A t t r i b u t e s c =

(H a s A t t r i b u t e s) r e t ;
Set<C A t t r i b u t e> c a t t r s

= c . g e t A t t r i b u t e s () ;
Set<C A t t r i b u t e> o n l y P P A t t r s

= new HashSet<C A t t r i b u t e > () ;

i f (c t x . g e t A u t h e n t i c a t i o n () != n u l l){
a u t h = c t x . g e t A u t h e n t i c a t i o n () ;
G r a n t e d A u t h o r i t y [] p e r m i s s i o n s =

a u t h . g e t A u t h o r i t i e s () ;
f o r (i n t i = 0 ; i < p e r m i s s i o n s . l e n g t h ; i ++){

S t r i n g perm
= p e r m i s s i o n s [i] . g e t A u t h o r i t y () ;

i f (perm . e q u a l s (C o n s t a n t s . FP PERM)){
f p p e r m i s s i o n = t rue ;
break ;

}
}

}

i f (f p p e r m i s s i o n == f a l s e){
i f (c a t t r s != n u l l){

f o r (C A t t r i b u t e c u r r e n t : c a t t r s){
i f (i sFP (c u r r e n t) == f a l s e){

o n l y P P A t t r s . add (c u r r e n t) ;
}

}
}
c . s e t A t t r i b u t e s (o n l y P P A t t r s) ;

}
}

p r i v a t e boolean i sFP (C A t t r i b u t e a){
A t t r i b u t e t y p e t y p e = a . g e t A t t r i b u t e () . ge tType () ;
re turn t y p e . g e t I d () . e q u a l s (C o n s t a n t s . FP ID) ;

}
}

Listing 6. Parameter filtering constraint within MParameterSecAdvice.

At first, the SecurityContext is retrieved, which contains
all information about the current principal. If the current
principal can be fetched, its permissions are loaded by
invoking the ”getAuthorities”-method from the current Au-
thentication object. The next step is iterating over the list
of permissions to find out, whether the current principal
has the authority to view the fabrication-related competence
parameters. If this is the case, then filtering of parameters
can be skipped later on. If this is not the case, the parameters
need to be filtered. If the current principal does not possess
the required permission, a new collection of parameters is
built by iterating over all the parameters of the current

competence and inserting only product-related parameters
into it. Afterwards the competence is updated by setting
the new collection of product-related parameters as the
competence’s attributes. As the call flow in Figure 12 shows,
only the final step, namely rendering of the user interface
using HTML templates, is left. As the competence now
only consists of product-related parameters, the fabrication-
related parameters cannot be rendered to the user. The
following Listing 7 shows how the advice is weaved into
the execution using a pointcut expression.

<bean i d =” competenceDAO ”
c l a s s =” edu . k i t . minabase . d a t a . CompetenceDAO” />

<bean i d =” mParamSecAdvice ”
c l a s s =” edu . k i t . minabase . aop . MParameterSecAdvice ” />

<a o p : c o n f i g>
<a o p : a s p e c t r e f =” mParamSecAdvice ”>

<a o p : p o i n t c u t i d =” a f t e r D a o P o i n t c u t ”
e x p r e s s i o n =”

e x e c u t i o n (⇤
edu . k i t . minabase .⇤
. CompetenceDAO . g e t A t t r i b u t e s (. .)) ” />
<a o p : a f t e r �r e t u r n i n g r e t u r n i n g =” r e t ”

method=” i n j e c t A f t e r ”
p o i n t c u t �r e f =” a f t e r D a o P o i n t c u t ” />

< / a o p : a s p e c t>
< / a o p : c o n f i g>

Listing 7. Pointcut expression for the MParameterSecAdvice.

At first the beans ”competenceDAO” and the ”mParam-
SecAdvice” are declared to the DI container. Subsequently,
the pointcut expression states where the advice is to be
executed. In our concrete example this expression refers
to the ”getAttributes”-method of the CompetenceDAO. As
advices can run before, during or after the method referenced
in the pointcut expression, the last step is to state when the
advice should run. Due to the fact that we need to have
the competences populated with all of its parameters, we
need to run the advice after the data access code of the
CompetenceDAO class. Using the ”returning”-attribute, we
specify the name of the method parameter that will be used
to tramsit the return value of the data access code to the
advice. The value ”ret” corresponds to the method parameter
of the ”injectAfter”-method inside of MParameterSecAd-
vice as can be seen in Listing 6. Inside this method, the
”ret”-variable is assigned and type casted to an interface
type called ”HasAttributes”, which is an interface that all
information entities within MinaBASE implement whenever
they can be characterized by parameters. Using this interface
instead of a concrete class make this advice useful to all
those entities as the implementation is not bound to a single
on of them. The advantage of this approach is the fact
that the permission based filtering is encapsulated into the
MParameterSecAdvice once and can be applied declaratively
to multiple application components without code duplication
and mixture of concerns by simple configuration in a similar
fashion as described in Listing 7.

12

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VII. RELATED WORK

The significance of RE activities when implementing
RBAC has led to the development of various RE method-
ologies. These can be classified as top-down, bottom-up
and hybrid approaches. To support enterprise-wide RE, Role
Mining has been used to automate parts of the RE activities.
In this section, we will discuss these approaches.

Top-down approaches use abstract concepts like work
profiles or business functions as a starting point. These are
decomposed into smaller parts and mapped onto permissions
which enable an aggregation to roles. As an example, in [27]
Roeckle et al. define a formal, process-oriented approach for
role finding combining an RBAC metamodel with a prode-
cural model for interfacing business processes in order to
automatically derive roles from a process view using a tool
called ”RoleFinder”. In [19] Coyne employs user activities
to also identify roles in a top-down manner. Permissions are
allocated to roles using the Principle of Least Privilege, as
only those permissions are assigned which are necessary to
complete a role. Constraints are defined and role hierarchies
are built subsequently. Fernandez and Hawkins introduce
a semi-formal approach based on textual description of
system and user interaction utilizing use-cases [28]. By
extending use-cases with rights specification in the form of
actors, activity descriptions, preconditions, exceptions and
postconditions, all roles and permissions necessary for a
system can be determined.

Bottom-up approaches collect permissions as pairs of
operations on resources within information systems and
use these as a building block for role aggregation using
business functions. In [29] Thomsen et al. introduce seven
abstract layers to facilitate security management based on
RBAC. These layers enable the identification of permissions
from objects as well as associated methods and roles for
usage by security administration and application developers.
Epstein and Sandhu propose the use of the Unified Modeling
Language to document each layer introduced by Thomsen
et al. in [30].

Hybrid approaches try to combine both technqiues as
described above by parallelizing the RE activities or by
basing them on an iterative-incremental process [31]. As
an example, Epstein and Sandhu propose a conceptual
framework in [32] to derive roles in a top-down and bottom-
up manner.

RE is useful when the quality of documentation is high
and if the amount of tasks, work-profiles or business pro-
cesses is manageable. In case of dozens of processes, thou-
sands of resources and permissions, a proper decomposition
and aggregation to role concepts becomes rather difficult.
These conditions have led to Role Mining approaches, in
which tools and algorithms from data mining, such as
clustering and neural networks are used to derive potential
roles automatically [33]. In [34] Fuchs and Pernul introduce

HyDRo, which is a tool-supported methodology that facil-
itates the definition of enterprise-wide roles by combining
elements from RE and Role Mining.

As described in detail in section IV, the underlying
methodology of this paper is SDRE [4]. As scenarios are
used as a building block to derive complete work profiles and
associated tasks, but also a mapping of tasks to permissions
result in aggregated roles, SDRE - even with our adaptions to
it - can be characterized as a hybrid approach. For RE in the
context of collaborative knowledge management systems, an
alternative configuration of the SDRE mechanism has been
used throughout this paper. The approach has been applied
with special focus on the use of MinaBASE in business
processes of MST enterprises and cooperation networks.
Instead of using scenarios as the main input, work areas
within the business processes of an MST-company are
examined, whether they include tasks in which MinaBASE
can be used to increase added value. To these tasks scenarios
are assigned in order to determine which authorizations
are needed to fulfill them. Based on this information, a
role concept can be derived and further refined. As we
only adapt the input variables to the methodology, basic
principle of SDRE is preserved, while better results for the
creation of the role concept in the context of collaborative
knowledge management systems are expected as the adapted
methodology is closer to the business processes of a MST-
company.

VIII. CONCLUSION

In this paper, a role concept for the process knowl-
edge database MinaBASE has been developed based on a
systematic methodology called Scenario-driven role engi-
neering. The implementation of this role concept within
an IoC-Framework such as Spring has been demonstrated
by utilizing Spring Security and technolgies such as AOP.
At first, the MinaBASE approach, mechanisms for access
control with a special focus on role based access control as
well as the Scenario-driven role engineering methodology
were introduced. Following this, careful adjustments were
made to the inputs of the SDRE process resulting from the
background and purpose of MinaBASE without hurting the
methodology’s idea and principles. Then the application of
the SDRE process was shown including examples on how
to derive a minimal set of permissions enabling each role to
fulfill its work profile. In the following section the imple-
mentation of the derived role concept using Spring Security
is described in detail. Important concepts are Dependency
Injection and AOP, as they enable Spring Security to ensure
static and dynamic security requirements across the entire
application architecture. For the implementation of security
requirements that can be decided at runtime only, an example
was given in order to prevent the disclosure of fabrication-
specific parameters for non-authorized persons.

13

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] D. Kimmig, A. Schmidt, K. Bittner, and M. Dickerhof,
“Application of Scenario-driven Role Engineering to the
MinaBASE Process Knowledge Database,” in SECURWARE
2011, Proceedings of the Fifth International Conference on
Emerging Security Information, Systems and Technologies.
978-1-61208-146-5, 2011, pp. 125–132.

[2] U. Hansen, C. Germer, S. Büttgenbach, and H. Franke, “Rule
based validation of processing sequences,” in Techn. Proc.
MSM, 2002.

[3] D. F. Ferraiolo and R. Kuhn, “Role-based access control,” in
Proceedings of 15th NIST-NCSC National Computer Security
Conference, October 1992, pp. 554–563.

[4] G. Neumann and M. Strembeck, “A scenario-driven role
engineering process for functional RBAC roles,” in SACMAT
’02: Proceedings of the seventh ACM symposium on Access
control models and technologies. New York, NY, USA: ACM
Press, 2002, pp. 33–42.

[5] I. Nonaka and H. Takeuchi, The knowledge-creating com-
pany: How Japanese companies create the dynamics of inno-
vation. Oxford University Press, USA, 1995.

[6] M. Dickerhof, “Prozesswissensmanagement für die Mikrosys-
temtechnik.” 2003.

[7] M. Dickerhof and A. Parusel, “Bridging the Gap—from
Process Related Documentation to an Integrated Process
and Application Knowledge Management in Micro Systems
Technology,” Micro-Assembly Technologies and Applications,
vol. 260, pp. 109–119, 2008.

[8] M. Dickerhof, O. Kusche, D. Kimmig, and A. Schmidt,
“An ontology-based approach to supporting development and
production of microsystems,” Proc. of the 4th Internat. Conf.
on Web Information Systems and Technologies, 2008.

[9] D. Kimmig, A. Schmidt, K. Bittner, and M. Dickerhof,
“Modeling of Microsystems Production Processes for the
MinaBASE Process Knowledge Database Using Semantic
Technologies,” in Proc. of the The 3rd Internat. Conf. on
Information, Process, and Knowledge Management, 2011, pp.
17–23.

[10] R. C. David F. Ferraiolo, D. Richard Kuhn, Role-Based Ac-
cess Control, 1st ed., ser. Computer Security Series. Artech
House, Inc., 2003.

[11] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli, “Proposed nist standard for role-based ac-
cess control,” ACM Transactions on Information and System
Security (TISSEC), vol. 4, no. 3, pp. 224–274, 2001.

[12] E. Glaser, “A brief description of privacy measures in the
Multics operating system,” in Proceedings of AFIPS SJCC,
vol. 30. Montvale, N.J.: AFIPS Press, 1967.

[13] M. Benantar, Acces Control Systems - Security, Identity
Management and Trust Models, 1st ed. Springer Sci-
ence+Business Media, Inc., 2006.

[14] M. D. S. Jerome H. Saltzer, “The protection of information in
computer systems,” in Proceedings of fourth ACM Symposium
on Operating System Principles, 1975.

[15] Trusted Computer System Evaluation Criteria - DoD 5200.28
Std. Department of Defense, 1985.

[16] D. E. Bell and L. J. LaPadula, “Secure computer systems:
Mathematical foundations,” Mitre Corporation Bedford, Tech.
Rep., March 1973.

[17] K. Biba, “Integrity considerations for secure computer sys-
tems,” Mitre Corporation Bedford, Tech. Rep., April 1977.

[18] D. F. Ferraiolo, J. A. Cugini, and D. R. Kuhn, “Role Based
Access Control (RBAC): Features and Motivations,” in In
Proceedings of 11th Annual Computer Security Application
Conference. IEEE Computer Society Press, 1995, pp. 241–
48.

[19] E. J. Coyne, “Role Engineering,” in RBAC ’95: Proceedings
of the first ACM Workshop on Role-based access control.
New York, NY, USA: ACM Press, 1996, p. 4.

[20] HL7 Security Technical Committee , “HL7 Role Based Ac-
cess Control (RBAC) Role Engineering Process,” January
2005.

[21] K. Boehm, W. Engelbach, J. Härtwig, M. Wilcken, and
M. Delp, “Modelling and implementing pre-built information
spaces. architecture and methods for process oriented knowl-
edge management,” Journal of Universal Computer Science,
vol. 11, no. 4, pp. 605–633, 2005.

[22] B. Alex and L. Taylor, “Spring Security Reference
Documentation,” URL: http://static.springsource.org/spring-
security/site/docs/3.1.x/reference/springsecurity-single.html,
accessed: 2012-07-12.

[23] M. Fowler, “Inversion of Control Containers
and the Dependency Injection pattern,” URL:
http://martinfowler.com/articles/injection.html, Januar 2004,
accessed: 2012-07-12.

[24] R. Johnson and J. Hoeller, J2EE Development without EJB,
1st ed., ser. Expert on-on-one. Wiley Publishing, Inc., 2004.

[25] E. Dijkstra, A discipline of programming. Englewood Cliffs,
NJ: Prentica Hall, 1976.

[26] O. Böhme, Aspektorientierte Programmierung mit AspectJ 5.
dpunkt.verlag, 2006.

[27] H. Roeckle, G. Schimpf, and R. Weidinger, “Process-oriented
approach for role-finding to implement role-based security ad-
ministration in a large industrial organization,” in Proceedings
of the fifth ACM workshop on Role-based access control, ser.
RBAC ’00. New York, NY, USA: ACM, 2000, pp. 103–110.

[28] E. B. Fernandez and J. C. Hawkins, “Determining role rights
from use cases,” in Proceedings of the second ACM workshop
on Role-based access control, ser. RBAC ’97. New York,
NY, USA: ACM, 1997, pp. 121–125.

14

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[29] D. Thomsen, D. O’Brien, and J. Bogle, “Role based access
control framework for network enterprises,” in Computer
Security Applications Conference, 1998, Proceedings., 14th
Annual, Dec 1998, pp. 50 –58.

[30] P. Epstein and R. Sandhu, “Towards a UML based approach
to role engineering,” in Proceedings of the fourth ACM
workshop on Role-based access control, ser. RBAC ’99. New
York, NY, USA: ACM, 1999, pp. 135–143.

[31] A. Kern, M. Kuhlmann, A. Schaad, and J. Moffett, “Observa-
tions on the role life-cycle in the context of enterprise security
management,” in Proceedings of the seventh ACM symposium
on Access control models and technologies, ser. SACMAT
’02. New York, NY, USA: ACM, 2002, pp. 43–51.

[32] P. Epstein and R. Sandhu, “Engineering of Role/Permission
Assignments,” in Proceedings of the 17th Annual Computer
Security Applications Conference, ser. ACSAC ’01. Wash-
ington, DC, USA: IEEE Computer Society, 2001, pp. 127–.

[33] J. Vaidya, V. Atluri, and Q. Guo, “The role mining problem:
finding a minimal descriptive set of roles,” in Proceedings
of the 12th ACM symposium on Access control models and
technologies, ser. SACMAT ’07. New York, NY, USA: ACM,
2007, pp. 175–184.

[34] L. Fuchs and G. Pernul, “HyDRo – Hybrid Development of
Roles,” in Information Systems Security, ser. Lecture Notes
in Computer Science, R. Sekar and A. Pujari, Eds. Springer
Berlin / Heidelberg, 2008, vol. 5352, pp. 287–302.

15

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Scalability Analysis of an Architecture for
Countering Network-Centric Insider Threats

Faisal M. Sibai
Volgenau School of Engineering

George Mason University
Fairfax, VA 22030, USA
Email: fsibai@gmu.edu

Daniel A. Menascé
Dept. of Computer Science, MS 4A5,

George Mason University
Fairfax, VA 22030, USA

Email: menasce@gmu.edu

Abstract—Dealing with the insider threat in networked en-
vironments poses many challenges. Privileged users have great
power over the systems they own in organizations. To mitigate
the potential threat posed by insiders, we introduced in previous
work a preliminary architecture for the Autonomic Violation
Prevention System (AVPS), which is designed to self-protect
applications from disgruntled privileged users via the network.
We also provided insight on an architecture extension and how
well the AVPS can scale. This paper extends the scalability
model of our previous work and presents additional results. We
conducted a series of experiments to assess the performance of
the AVPS system on three different application environments:
File Transfer Protocol (FTP), database, and Web servers. Our
experimental results indicate that the AVPS introduces a very
low overhead despite the fact that it is deployed in-line. We also
developed an analytic queuing model to analyze the scalability of
the AVPS framework as a function of the workload intensity. We
show model results for a varying number of applications, users,
and AVPS engines.

Keywords- insider threat, scalability, network security.

I. INTRODUCTION

Defeating the insider threat is a very challenging problem
in general. An insider is a trusted person that has escalated
privileges typically assigned to system, network, and database
administrators; these users usually have full access and can
do almost anything to the systems and applications they
own. Users with escalated privileges within an organization
are trusted to deal with and operate applications under their
control. This trust might be misplaced and incorrectly given to
such users. It is extremely difficult to control, track or validate
administrators and privileged user actions once these users
are given full ownership of a system. The recent disclosure
by Wikileaks of U.S. classified embassy foreign policy cable
records provides a perfect example of an insider attack [1] [2].
In this disclosure, an insider with unfettered access to data at
his classification level was able to access data over a secure
network using laptops that had functional DVD writers. Our
approach to mitigate the insider threat allows for users or
groups of users to be treated differently despite having the
same classification level [3]. The approach limits and controls
network access through an in-line component that checks
access to specific applications based on policies that can be
as specific or granular as needed.

In our prior work, we introduced a framework that self-
protects networks in order to mitigate the insider threat [3].
The framework, called AVPS (Autonomic Violation Preven-
tion System), controls and limits the capabilities provided to
administrators and privileged users in organizations. AVPS
concentrates entirely on detecting and preventing usage policy
violations instead of dealing with viruses, malware, exploits,
and well-known intrusions. In our implementation, the AVPS
monitors events and takes actions for conditions that occur, as
specified by Event-Condition-Action (ECA) commonly used
in security-centric systems and autonomic computing [4].

Our most recent work [1] significantly extends our earlier
work [3] and presents a scalable AVPS architecture and
supports its design with experimental results and a theoretical
queuing modeling. We presented the results of experimental
evaluations of the AVPS architectures as well as the anal-
ysis of its performance overhead on three different types
of application servers: FTP, database, and web server. We
specifically measured the average throughput, average transfer
time, average CPU utilization, and provided 95% confidence
intervals for all three measurements. We also used a queuing
theoretic analytic model to predict the scalability of the AVPS
for different workload intensity values for these three types of
applications. It is also worth noting that the previous design
of the AVPS architecture considered scalability, manageability,
application integration, ease of use, and the enforcement of
separation of duties. This paper extends our previous work [1]
in that it presents extra scalability cases where application,
users, and the number of AVPS engines vary. We present an
architecture and an explanation for each case.

There has been prior work in this area at the application,
host, and network levels [5] [6] [7] [8] [9]. The previous
methods have applied self-protecting capabilities by either
considering single applications on the host or more towards
vulnerabilities, malware, exploits and traditional threats.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents some of the major
challenges and requirements faced in the design of AVPS. The
next section presents a scalable architecture for the AVPS
framework. Section V presents an experimental evaluation
and a thorough performance and scalability analysis of AVPS
for all three different cases. Finally, Section VI presents the

16

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

conclusion, final remarks, and future work.

II. RELATED WORK

There has been substantial work in scalability analysis and
performance enhancement of network security. We discuss
specifically some of the major work related to intrusion
prevention systems, firewalls and Snort respectively.

In [10], the authors create a framework that can enhance
inline intrusion prevention systems performance by utilizing
future commodity hardware to the fullest. In [11] the authors
of the NIST SP800 stress on scalability as an extremely
important part of any deployment of inline intrusion prevention
system to be successful. In [12], the authors design a network
intrusion prevention system that combines the use of software-
based NIPS and a network board processor. Their focus on
a method for boosting system performance resulted in a 45%
improvement in performance allowing speeds to reach 1Gibt/s.
In [13], the authors presented a system called Gnort that
utilizes a GPU to offload pattern matching computations. The
system was able to achieve a maximum throughput of 2.3
Gbit/s, in a real world scenario and outperformed conventional
Snort by a factor of two. The authors in [14] point out
some challenges and scalability issues that might arise when
it comes to intrusion detection systems. In [15] the authors
present “Para-Snort, a structure for a multithreaded Snort for
high performance Network Intrusion Detection Systems and
anti-virus on a multi-core IA; they also analyze the perfor-
mance impact of load balancing and multi-pattern matching.

On the firewall side, the authors of [16] implemented a
scalable packet classification architecture resulting in a fire-
wall that achieves a classification throughput of 50 million
packets/s.The authors in [17] present a fast and highly scal-
able approach for discovering anomalies in firewall policies
and resolving them. The results of their heuristic algorithm
achieved from 40% to 87% improvement in the number of
comparisons overhead.

The authors in [18] designed and tested a multithreaded
Snort that uses flow pinning as a major optimization tech-
nique to improve Snort performance and achieve significant
speedups. In [19], the authors present a mechanism to split
traffic into different Snort sensors; the system is adaptive and
is able to adjust the splitting of policies in order to reduce load
disparity among sensors. The authors of [20] compared the
performance and accuracy of Suricata and Snort and showed
that Snort had a lower system overhead than Suricata utilizing
a single core. At the same time, Suricata indicated that it
was more accurate in the environment where multi-cores were
available. In [21], the authors compared the performance of
Snort NIDS under both windows 2003 and Linux and showed
that Snort used on a Linux machine with a small NAPI (New
API) budget would yield a substantial performance gain for
Snort over Windows under all different malicious traffic loads.
On the other hand, Windows showed better performance for
Snort under moderate normal traffic load conditions.

III. CHALLENGES AND REQUIREMENTS

The following major challenges play a primary role in the
success of the AVPS framework: scalability in production en-
vironments, support for encrypted network traffic, integration
with multiple types of application servers on the network, and
ease of deployment in large production environments. This
paper mainly addresses scalability and performance issues and
sheds some light on all four challenges. Security mechanisms
usually pose additional demands on system resources and may
compromise system performance. In some cases, the use of
security mechanisms has been abandoned due to the need to
run systems efficiently. Thus, it is important to understand
security-performance tradeoffs [22].

Scalability is an absolute requirement for production en-
vironments. The AVPS solution is an in-line solution that
intercepts every single packet that traverses the local area
network that is destined to an application server. Therefore,
it could become a focal point and a possible bottleneck. The
primary goal of our solution is to scale with growing network
and application demands. The AVPS architecture should allow
for horizontal scaling to cope with high-volume environments.
This requirement is further discussed in more detail in the
following sections.

Encryption is another important challenge in the design of
our solution. SSH and SSL are widely used in local area
networks for information retrieval and administration of ap-
plications and devices. The AVPS performs packet inspection
on some or all (depending on the application) packets that
pass through it. This poses a challenge that is handled in our
solution through one of the following methods: (1) decrypting
the traffic that passes through the AVPS and then re-encrypting
it for delivery to its destination using viewSSLd [23] or
netintercept [24] for example, (2) completely off-loading
the encryption/decryption requirements to external hardware-
based devices that sit before and after the AVPS, or (3) decrypt
the traffic by having a legitimate man-in-the-middle host that
decrypts and re-encrypts the traffic and delivers it to the
destination [25]. This paper does not discuss encryption in
any further detail.

Application server integration is also extremely important.
With the wide range of applications deployed in production
environments, the AVPS framework must be capable of in-
terpreting and understanding requests and responses that it
intercepts. The AVPS is based on intercepting, not necessarily
inspecting, every single packet initiated by a host that is
delivered from and to an application. This makes application
integration completely possible and achievable. Policies de-
ployed on the AVPS are customizable to the desired granularity
level and types of attributes (e.g., from very generic, such as IP
or user level, to very specific, such as IP, user, application type,
request, and response). Thus, it is completely up to the AVPS
owner to specify the granularity of what should be inspected
and what should be ignored.

Finally, the successful deployment of AVPS in large en-
vironments is crucial. The AVPS solution should be easy

17

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to deploy and maintain and should be capable of handling
heavy traffic loads. Current environments have hundreds if
not thousands of servers with networks that are capable of
handling and processing 100 to 1000 Mbps of traffic. A
solution that handles thousands of servers through a handful
of clustered AVPS compute nodes is part of the architecture
discussed in the remaining sections of this paper.

IV. SCALABLE AVPS ARCHITECTURE

For the AVPS to achieve its goal of solving the insider
threat problem, it must be placed in-line between clients and
internal application servers. This way, the AVPS is capable
of intercepting every single packet that flows from clients to
applications and back in order to take the correct actions when
a rule in a policy is matched.

A. The AVPS Architecture
Figure 1 depicts the architecture of the AVPS framework.

Performance and high availability are extremely important
since the AVPS is located between the clients and the ap-
plication servers. Traffic coming from a pool of M clients
goes through a load balancer that handles incoming requests.
The load balancer forwards the traffic to one of N AVPS
engines that process and inspect the incoming traffic. The
AVPS engines compare traffic policies that contain rules and
actions on how to handle traffic. The policies are stored on
a database/multiple databases local to the AVPS engine or
on an external database shared by all AVPS engines. Events
are stored on a centralized database or multiple databases.
Actions are taken on traffic once a rule in a policy has been
matched. Examples of possible AVPS actions include drop-
ping, blocking, or replacing traffic as it traverses the engine
on its way to application servers. Let there be K different types
of applications servers (e.g., FTP server, database server, Web
server).

Figure 2 depicts a flowchart that shows the traffic processing
steps taken by the AVPS engine. Traffic is first collected by the
machine that runs the AVPS engine. Then, traffic is received
by a layer 2 bridge that is responsible for handling incoming
and outgoing traffic. The layer 2 bridge flow traffic contains
layers 2 and 3 traffic for processing.

Traffic is then forwarded to the normalization and process-
ing module where packets are broken down into pieces that
can be matched against rules. Traffic is then matched against
policies and rules that are pre-loaded into memory. If there
is a rule match, an event or action is generated. If an event
or action occurred, it is logged into a database. If the traffic
results in an unauthorized action, the traffic will be dropped,
blocked or replaced. If the action is authorized, the system
starts the cycle again from the traffic collection process. If the
process is terminated, the system halts and does not perform
any further action.

B. Advantage of Using the AVPS
As an example of the advantage of using the AVPS architec-

ture, consider a scenario with multiple database servers scat-
tered over a large geographically distributed network. Assume

Fig. 1: Architecture of the AVPS framework.

Fig. 2: Steps of the AVPS engine.

that a top secret table is replicated in every database server and
that we want to have fine access control to this table. Using
conventional access control methods, we would be able to limit
specific users or roles from accessing the table. This would
require manually setting these controls on every database
server. This approach has several drawbacks: (1) Manually
setting access controls into each server is time consuming
and might have a high error rate. (2) This method requires
an administrator to know all of the DB servers that live on
the network; newly installed DB servers or even covert ones
may be missed. (3) The DB owner actually does the changes
with no oversight, which contradicts the separation-of-duties
concepts. (4) Last but not least, it would be almost impossible

18

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with traditional access control methods to limit access for
a specific population of administrators or privileged users,
coming from a specific location on the network, accessing the
information at a specific time and targeting a specific table.
The AVPS would also be a viable solution to better control
actions and secure access to and from cloud Infrastructure As a
Service (IAAS), Software As a Service (SAAS), and Platform
As a Service (PAAS).

In recent work, we showed how the AVPS can automatically
generate low level Snort rules from high-level rules [26]. Each
high-level rule may generate more than one low level rule. The
automatic rule generation takes place offline so that it does
not impact performance. The new rules are then automatically
loaded into the main memory of the Snort engine used to
implement the AVPS. This substantially lowers the amount
of time required to to manually configure rules and mitigates
the drawback mentioned in the example above. In addition
to automatic low level rule generation, we used supervised
learning (Support Vector Machines (SVM) in our case) to learn
new high-level rules [27].

The AVPS is also tamper resistant. It enforces a separation-
of-duties policy, i.e., the primary application system owner
has no control over the AVPS policies [3]. The AVPS can be
deployed to carry insider and regular user traffic or to only
carry insider traffic. The proper deployment depends on how
the network is setup and on how the network is segmented.

Emerging technologies, such as new network TAPs (e.g.,
Network Critical V-line TAP [28]), that can handle 1/10 Gpbs
traffic and allow in-line functionality without introducing a
single point of failure, make systems such as the AVPS
possible to implement without fault-tolerance concerns.

C. AVPS vs. Other Solutions

Our prior work [3] distinguishes the AVPS from other
systems such as IPS, Firewalls, Host based IPS and Network
Admission Control/Network Access Control (NAC). We use
Intrusion Prevention Systems (IPS) and Intrusion Detection
Systems (IDS) in this paper interchangeability. The only dif-
ference between the two is that IDS is considered a passive net-
work monitoring system and IPS is considered an active/inline
network monitoring system. Traditional IDS/IPS systems tend
to concentrate on users that do not have access to the system
and try to exploit, hack, or crack into it. Other enhanced
IPS/Firewall systems such as IBM Proventia [29] or Cisco
ASA [30] do have enhanced context-aware security but lack
insider threat defeating capabilities. The AVPS, on the other
hand, is designed with the insider threat in mind. Moreover, as
indicated previously, the AVPS uses self-learning techniques
to learn high-level rules that are automatically translated into
low level Snort rules.

V. PERFORMANCE ASSESSMENT OF THE AVPS

This section presents an experimental evaluation of the
AVPS in a controlled environment. We describe the experi-
mental testbed, analyze the results, and present a scalability
analytical model based on the M/M/N//M queuing model [31].

A. Experimental Testbed

The experiments conducted in this paper measure the impact
of a rule that exists in the engine’s main memory and is used
to match a specific network pattern while the traffic flows in an
in-line fashion through the AVPS. While we understand that
a growing number of rules in policies may have an overall
performance impact, we have not seen this to be an issue
in our system when performance profiling [32], fast pattern
matching [32], and other Snort [33] [32] [34] tweaks are
performed, using third party plug-ins such as Barnyard [35],
and the adequate CPU and main memory resources, and
number of AVPS engines re available at the time the AVPS
solution is deployed. The experiments conducted in this paper
do not cover the effects of a growing number of rules over
time due to the various factors that need to be considered and
tested separately, we plan to conduct further testing for this in
the future.

We based our experiments on three different applications:
FTP, database, and Web server. The specification of the
environment and the experimental testbed is shown in Figure 3.

In this environment, the client requests services from ap-
plication servers, which respond to the requests. All traffic
between client and server is monitored and inspected by
the AVPS. A controlling host controls the environment and
collects the results of the experiments (see Figure 3).

Apache JMeter 2.4 [36] was used on the client to conduct
both FTP and Web experiments. We measured the average
throughput and average transfer time in both cases. For the
database experiment, mysqlslap [37] was used to measure the
average response time.

On the AVPS we used Snort-inline 2.8.6.1 [38]. Snort is
highly used in academic IDS/IPS research experiments. Other
tools are also used in academic research (e.g., Bro [39] and
EMERALD [40]). We used Linux iptables [41], a firewall
package installed under RedHat, Fedora, and Ubuntu Linux,
in conjunction with Snort in-line to filter packets as they come
into the AVPS and leave. We used MySQL 5.1 [42] to store
events and event packet captures. We used BASE [43] to query

Fig. 3: Experimental environment.

19

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the DB and display the events in the browser.
We configured three different application servers: (1) vsftpd

2.3.2 FTP server [44], (2) MySQL 5.1 DB [42], and (3)
Apache 2 Web server [45].

We customized the Snort configuration file to meet the
AVPS requirements. All default rules that come with Snort
were disabled and our own policies were added inside lo-
cal.rules. We configured Snort to output events into a MySQL
database.

The client and server are connected directly to the AVPS
as shown in Figure 3. All three machines are also connected
via a second network card to a switch. The controlling host is
also connected to the switch to control and collect the results
from all three machines.

B. Experimental Results

In this section we show the results of experiments using
the testbed described above. For each application server type,
we conducted two types of experiments. The first consisted
of manually submitting 10 requests to the application server.
This was used to measure the average file transfer time,
query response time, and throughput. The second consisted of
automatically submitting 30 requests to the application server,
in sequence with no think time. This process was used to
measure the average, minimum, and maximum CPU utilization
of the AVPS engine. All results include 95% confidence
intervals.

The manual experiments considered the following four
scenarios: (1) No AVPS, client and application servers are
connected to a 1000-Mbps switch. (2) Client and server are
connected to the AVPS but the engine is disabled, traffic is
only being bridged. (3) The AVPS is enabled and no rules
match the traffic (either because no policies are loaded or
because the loaded policies do not trigger a violation). (4) The
AVPS is enabled, detects a violation on all rules checked, and
generates an alert, which is stored in a database. However, the
AVPS is configured not to block the traffic. It should be noted
that case (4) above is the one that generates the largest possible
overhead because all rules generate a violation, an unlikely
event in practice, and traffic flowing through the AVPS is not
decreased due to blocking offending requests. Thus, all results
presented in what follows for scenario (4) represent a worst-
case performance scenario.

The automated experiments were used to measure average
and maximum CPU utilization of the AVPS engine and
consider the following four scenarios: (1) Same as scenario (2)
above. (2) Same as scenario (3) above. (3) Same as scenario
(4) above. (4) Same as scenario (4) above but the AVPS is
configured to block the traffic. Case (3) above is also a worst-
case performance scenario for the reasons outlined above. Case
(4), the blocking case, is the ideal operational situation. In
that case, blocked traffic does not contribute to network and
application server load.

1) FTP Results: The FTP results are discussed in what
follows. Table I shows the measured results for the average
throughput (in KB/sec) and average transfer time (in msec) for

10 manually submitted requests using JMeter for four different
file sizes: 100 KB, 1 MB, 10 MB and 100 MB.

In the case where we check against a rule (case (4) in the
manual experiments), we loaded into memory the following
rule that alerts when user “appserver” tries to log into a specific
FTP server.

alert tcp any any → FTPserver any (classtype:attempted-
user; msg:“Snortinline Autonomic FTP event”;content:
“appserver”;nocase;sid:2;)

The elements of the rule above are (a) alert: notify the user
of a violation, (b) tcp: the protocol used, (c) Any: the IP
address, (d) → is the direction, (e) classtype: is the category
for the type of rule, (f) msg: the description of the rule, (g)
nocase: the pattern is not case sensitive, and (h) sid : unique
Snort id. The syntax of Snort rules is described in [34].

From Table I, we see that the differences in the four
scenarios in average throughput and average transfer time for
any of the various file sizes are either statistically insignificant
at the 95% confidence level (e.g., for 100 KB and 1 MB files)
or are very small (e.g., less than 1.8% different for 10 MB and
100 MB files). This means that there is little or no difference
between the case when the AVPS process is disabled (case
(2)) and the case where the AVPS engine is enabled and all
rules checked generate a violation, but traffic is not blocked
(case (4)). This is expected behavior since the AVPS does
not inspect packets that contain file data being transferred. It
only inspects the initial administration and request commands.
Thus, the AVPS has no or very little impact on throughput and
transfer time.

For the CPU measurements discussed below, we used the
automated submission scenario. We load into memory the
following rule that blocks a user when he/she tries to access
a specific FTP server using “appserver” by replacing it with
“*********”.

alert tcp any any → FTPserver any (classtype:attempted-
user; msg:“Snortinline Autonomic FTP block”; content: “
appserver”; nocase;replace:“*********”;sid:2;)

Table I shows the measured average CPU utilization of the
AVPS engine for 30 automated requests with zero think time
using JMeter for four different file sizes: 100 KB, 1 MB, 10
MB and 100 MB.

Table I shows that the CPU utilization is negligible in most
scenarios except for when the AVPS is enabled, matching,
and not blocking violations for large files (i.e., 100 MB). In
this case, we see an average 6.12% CPU utilization. This is
considered the worst case but is still considered very small
and has almost no effect on the traffic traversing or being
processed. If we consider the blocking situation (the default
action in an ideal AVPS deployment), we see that the CPU
utilization drops to an average of 0.12%, a negligible overhead.
This is expected because in this case, data packets are blocked
and are not processed any further.

20

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

File Size → 100 KB 1 MB 10 MB 100 MB
Average throughput (KB/Sec) with 95% confidence intervals

No AVPS, switching 327.0 ± 7.0 2811.9 ± 48.0 9834.2 ± 38.5 13395.3 ± 90.1
AVPS process not on 331.1 ± 5.3 2754.7 ± 35.6 9984.4 ± 56.3 13539.5 ± 95.0
AVPS process on but not matching 330.0 ± 6.0 2754.9 ± 45.5 9756.8 ± 29.4 13257.5 ± 57.5
AVPS matching and policy applied 332.6 ± 4.7 2746.4 ± 34.4 9841.2 ± 77.3 13300.8 ± 78.9

Average transfer time (msec) with 95% confidence intervals
No AVPS, switching 307.2 ± 6.9 365.3 ± 7.2 1043.2 ± 4.2 7647.6 ± 51.6
AVPS process not on 302.8 ± 5.1 372.3 ± 4.8 1025.9 ± 6.0 7566.4 ± 52.4
AVPS process on but not matching 304 ± 5.8 372.7 ± 6.5 1049.6 ± 3.2 7725.2 ± 33.3
AVPS matching and policy applied 301.3 ± 4.4 373.4 ± 4.7 1041.1 ± 8.1 7701.2 ± 45.0

Average CPU utilization (%) with 95% confidence intervals
AVPS - bridging only 0.02 ± 0.01 0.04 ± 0.03 0.05 ± 0.01 0.05 ± 0.00
AVPS enabled, not matching 0.02 ± 0.01 0.3 ± 0.06 1.44 ± 0.20 2.11 ± 0.06
AVPS enabled, matching, not block-
ing

0.20 ± 0.06 0.79 ± 0.17 3.90 ± 0.51 6.12 ± 0.17

AVPS enabled, matching, blocking 0.09 ± 0.02 0.12 ± 0.02 0.10 ± 0.02 0.12 ± 0.03

TABLE I: FTP results

2) Database Server Results: For the database server exper-
iments we built a database of customers, orders, and order
items and developed three different queries. Query Q1 returns
the list of all items of all orders submitted by all customers for
a total of 51,740 records. Query Q2 returns one record with
the number of customers in a geographical region. This query
needs to scan 50 customer records. Finally, query Q3 returns
the dollar amount of all orders placed by customers in a given
geographical region. While this query returns only a number,
it needs to do significant work on the database to obtain the
result.

Table II shows the measured average response time (in sec)
for 10 manually submitted queries using mysqlslap for the
three different queries and for the four scenarios described
above.

For the case in which rules generate a violation alert but no
traffic is blocked, we loaded into memory the following rule
that alerts when a user tries to access “companyxyz” database
located at a specific DB server.

alert tcp any any → DBserver any (classtype:attempted-
user; msg:“Snortinline Autonomic DB event”;content: “
companyxyz”;nocase;sid:2;)

We can see from Table II, that the worst case appears
in Q1, which returns 51740 records. For Q1 the differences
between no AVPS and AVPS matching is almost 5 msec, or
13% additional overhead. We consider the extra time to be
small given the large number of records returned. In fact,
the overhead is approximately 0.08 µsec per record returned.
For queries Q2 and Q3 we can see almost no overhead given
that both only return one record. In fact, for Q3, there is no
statistically significant difference at the 95% confidence level
between the no AVPS and AVPS matching cases. For Q2, the
difference in response time is small and equal to 1.2 msec.

It is important to note that the largest component of the
response time is the transfer time over the network and not
processing time at the DB server. We measured Q1, Q2, and
Q3 directly at the server and we found that Q1 takes14 msec to

Query → Q1 Q2 Q3
Average response time (msec) with 95% confidence interval

No AVPS, switching 31.6± 0.24 10 ± 0.31 10.6± 0.39
AVPS process not on 32.4± 0.24 10.2 ± 0.2 10.8± 0.57
AVPS process on but
not matching

36.4± 0.24 11 ± 0.31 10.6± 0.24

AVPS matching and
policy applied

36.2± 0.57 11.2 ± 0.2 11.2± 0.37

Average/Maximum CPU utilization (%)
AVPS - bridging only 0.024/0.15 0.045/0.23 0.007/0.04
AVPS enabled, not
matching

0.43/1.51 0.01/0.05 0.058/0.3

AVPS enabled, match-
ing, not blocking

1.57/4.75 0.152/0.43 0.23/0.71

AVPS enabled, match-
ing, blocking

0.220/1.49 0.262/1.14 0.221/1.05

TABLE II: DB results

execute, and Q2 and Q3 take virtually zero seconds to execute.
The difference in execution time between Q1 and the other two
queries lies on the fact Q1 has to output a very large number of
records. Thus, the average transfer time for case (4) for query
Q1 is 22 msec obtained by subtracting the average response
time at the client (i.e., 36 msec) from the server execution
time of 14 msec.

As before, the CPU utilization experiments use the au-
tomated submission process. In the cases where we block
against a rule, we load into memory the following rule that
blocks a user when he/she tries to access the “companyxyz”
database located at a specific database server by replacing it
with “**********”.

alert tcp any any → DBserver any (classtype:attempted-
user; msg:“Snortinline Autonomic DB block”; content:“
companyxyz”; nocase;eplace:“**********”;sid:2;)

Table II shows the measured average and maximum (after
the “/”) CPU utilization of the AVPS engine for 30 automated
requests with zero think time using JMeter for queries Q1, Q2,
and Q3. The minimum CPU utilization was zero in all cases.

In Table II, we notice that the average CPU utilization does
not fully reflect the actual CPU utilization due to the very

21

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

File Size → 518 KB
Average throughput (KB/sec) with 95% confidence interval

No AVPS, switching 43038 ± 1675
AVPS process not on 33861 ± 902
AVPS process on but not matching 23385 ± 372
AVPS matching and policy applied 17938 ± 677

Average transfer time (msec) with 95% confidence interval
No AVPS, switching 6.1 ± 0.23
AVPS,process not on 7.7 ± 0.21
AVPS process on but not matching 11.1 ± 0.18
AVPS matching and policy applied 14.6 ± 0.47

Average CPU utilization (%) with 95% confidence interval
AVPS - bridging only 0.03 ± 0.04
AVPS enabled, not matching 0.24 ± 0.45
AVPS enabled, matching, not blocking 0.54 ± 1.04
AVPS enabled, matching, blocking 0.15 ± 0.11

TABLE III: Web results

low amount of time that it takes to process a request over
the network. The maximum CPU utilization provides a better
view of the actual utilization encountered. We can see again
that the worst case occurs with a maximum CPU utilization of
4.75% for Q1 when the AVPS is matching but not blocking.
This overhead is considered very small and almost negligible
given the number of records returned. The other queries have
a maximum of 1.14% utilization, which is extremely low and
can almost be completely ignored. In the case of blocking (last
row), we see extremely low overhead for the worst case (Q1)
that has a maximum of 1.49% utilization. Again, in an ideal
environment a blocking policy would be in place.

3) Web Server Results: The results of the experiments in
a Web server environment are shown in Table III, which
presents the average throughput (in KB/sec) and the average
transfer time (in msec) for 10 manually submitted requests
using JMeter for a Web page of 518 KB. In the cases where we
check against a rule but do not block, we loaded into memory
the following rule that alerts when a user tries to access the
page “notallow.html” located at a specific webserver.

alert tcp any any→ Webserver any (classtype:attempted-user;
msg:“Snortinline Autonomic web event”;
content:“notallow.html”;nocase;sid:2;)

Table III indicates that the average throughput is reduced by
56% when the AVPS is running, matching, and not blocking
as compared with the case of no AVPS. The response time
difference in that case (see Table III) increases 2.28 times.
However, the increase in time units is only 8.2 msec for a
large web page (i.e., 518 KB). This increase in response time
is hardly noticeable by a human being. It should be noted that
in the Web case, the AVPS has to inspect every single packet
of a Web page.

Table III indicates that the CPU utilization results for the
web case are equally low as in the previous cases.

C. Scalability Analysis

The previous section showed experimental results obtained
with our implementation of the AVPS. In this section, we use

a queuing theoretical model to examine the scalability of the
AVPS under a variety of configurations not contemplated in the
implementation due to resource limitations. Some examples
of these configurations include many clients, many AVPS en-
gines, and different mixes of workload. The input parameters
for our queuing model, in particular the execution time and
overhead of running applications protected by the AVPS, were
obtained from the experiments described previously.

We assume that there are M clients that submit requests
that are initially processed by one of N AVPS engines, which
then send the requests to an application server (AS) (e.g., FTP
server, database server, Web server). Each client pauses for
an exponentially distributed time interval, called think time,
before submitting a new request after a reply to the previous
request has been received. The average think time is denoted
by Z. See Figure 4 for a depiction of the model.

1

M

.

.

.

Clients

Queue
of

requests

Z

R

X0

N
1

N

.

.

.

A
p
p
lic

a
ti
o
n

S
e
rv

e
rs

AVPS

Engines

Fig. 4: AVPS analytic model.

We also assume that the average time to process a request,
not counting time waiting to use resources at the AVPS and the
application server, is exponentially distributed with an average
equal to x̄.

We can use the results of the M/M/N//M queue (see [46])
to obtain the probabilities pk of having k requests being pro-
cessed or waiting by either the AVPS or the application server.
The M/M/N//M queue models a variable service rate finite-
population of M request generators that alternate between
two states: (1) waiting for a reply to a submitted request and
(2) thinking before submitting a new request after receiving a
reply to the previous request.

The probabilities pk are then given by

pk =

{
p0 (x̄/Z)k M !

(M−k)! k! 0 ≤ k ≤ N
p0 [x̄/(N Z)]k M ! NN

(M−k)! N ! N < k ≤M
(1)

where

p0 =

[
N∑

k=0

(
x̄

Z
)k

M !

(M − k)!k!
+

M∑
k=N+1

(
x̄

N Z
)k

M ! NN

(M − k)!N !

]−1

(2)
We can now compute the average number, N̄ , of requests
being processed or waiting to be processed by the AVPS +
application server system as

N̄ =

M∑
k=1

k pk (3)

22

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and the average throughput X0 as

X0 =

N∑
k=1

k

x̄
pk +

M∑
k=N+1

N

x̄
pk. (4)

The average response time, R, can be computed using Little’s
Law [31] as R = N̄/X0.

The workload intensity of such a system is given by the
pair (M,Z). An increase in the number of clients M or a
decrease in the think time Z imply in an increase in the rate
at which new requests are generated from the set of clients. As
the processing time x̄ increases, contention within the system
increases and requests tend to spend more time in the system
instead of at the client. In the extreme case, pM ≈ 1 and
pk ≈ 0 for k = 0, · · · ,M −1. This is when saturation occurs.
When that happens, N̄ →M , X0 → N/x̄, and R = N̄/X0 →
M x̄/N . In other words, the response time grows linearly with
M at very high workload intensities.

In the following sections, we provide the results for three
different scenarios:

• Multiple clients (M > 1) accessing a specific application
server (FTP, DB or Web) via a single AVPS (N = 1).

• Multiple clients (M > 1) accessing a specific application
server (FTP, DB or Web) via multiple AVPS engines
concurrently (N = 1, 2, 3, 4, 5).

• Multiple clients (M > 1) accessing a mixture of applica-
tion servers (FTP, DB or Web) via multiple AVPS engines
concurrently (N = 1, 2, 3, 4, 5).

We use the x̄ values obtained in our measurements from
Section V-B to analyze the scalability of the AVPS for an
FTP server, database server and web server under the same
conditions shown in the previous sections (see Table IV). Note
that the values of x̄ used here correspond to the worst-case
scenario in the automated tests, i.e., case (3) in which all rules
generate a violation and an alert but traffic is not blocked.

1) Specific Application and N = 1: Figure 5 depicts the
architecture of this scenario, which discusses the performance
results for the number of clients, M , varying from 1 to 30
and each client accessing a single application/element (i.e.,
FTP/100 MB file) via one AVPS engine.

Server type x̄
FTP Server 100 KB 0.360 sec

1 MB 0.513 sec
10 MB 1.050 sec

100 MB 8.100 sec
DB Server Q1 41.6 msec

Q2 14.8 msec
Q3 15.6 msec

Web Server 518 KB 12.1 msec

TABLE IV: Average service time x̄ obtained from mea-
surements for the FTP Server, DB Server and Web Server
Applications.

Figure 6 shows the average file transfer time, R, when the
number of clients varies from 5 to 30 for an average think
time equal to 10 sec. The AVPS is enabled, matching packets

Fig. 5: Single application with one AVPS engine

against the policy, but not blocking bad transfers. If blocking
were enabled, the transfer time would be reduced since some
files would not be transferred. As expected, for each file size,
the average transfer time increases with the file size. For large
files (e.g., 100 MB) and for this value of the think time,
the system is close to saturation and the average transfer
time increases almost linearly with the number of clients, as
discussed above. For example, R = 233 sec for M = 30. This
value is very close to 30× x̄ = 30× 8.1 = 243 sec. For half
the number of clients, R is 111.5 sec, which is almost half
the value for M = 30. But, even in this worst case, the FTP
server with the AVPS system scales linearly with the number
of clients.

Before saturation is reached, the increase in average transfer
time is more than linear, as can be seen for example in the 10
MB file size case. For example, the value of R for M = 30
is about 3.4 times higher than for M = 15. However, as M
increases way past M = 30 for 10-MB files, the system will
saturate and the transfer time will increase linearly with M .

Figure 7 shows the average response time, R, for the result
of queries Q1, Q2, and Q3 defined in Section V-B for an
average think time equal to 0.1 sec. As before, the number of
clients varies from 5 to 30. The number of records returned by
queries Q1-Q3 are 51740, 1, and 1, respectively. Q3 is a much
more complex query and requires more database processing
time. Thus, its average response time is slightly higher than
that for Q2, even though both queries return the same amount
of data. The graph indicates that for 30 clients and for Q1,
the system is very close to saturation and the average transfer
time is very close to be proportional to M . In fact, R = 1.148
sec ≈ 30× x̄ = 30× 0.0416 = 1.248 sec. Queries Q2 and Q3
do not return enough records to push the system to saturation
and therefore we see a more than linear increase in transfer
time as a function of M for the values shown in the graph.

Figure 8 shows the average transfer time R for a 518-
KB Web page and for an average think time equal to 1 sec.
As before, the number of clients varies from 5 to 30. The

23

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6: Average file transfer time vs. number of clients for
various file sizes. The average think time is 10 sec.

Fig. 7: Average database query result transfer time vs. number
of clients for three different queries. The average think time
is 0.1 sec.

graph indicates that the increase in transfer time is negligible
between 5 and 30 clients. While R increases linearly with
the number of clients, the rate of increase is mainly due
to increased congestion at the Web server and not to AVPS
overhead, which is small (8.2 msec) and hardly noticeable by
a human being.

2) Specific Application and N=1-5: Figure 9 depicts the
architecture of this scenario. The performance results dis-
cussed here are for 1 to 30 clients accessing a single applica-
tion/element (e.g., FTP/100 MB file) via 1 to 5 AVPS engines.

Figure 10 shows the average file transfer time when the
number of clients, M , varies from 5 to 30 for an average
think time equal to 10 sec, for a 100-MB file transfer, and
for a number of AVPS engines, N , varying between 1 and
5. The AVPS is enabled, matching packets against the policy,
but not blocking bad transfers. If blocking were enabled the
transfer time would be reduced since some files would not be
transferred. As expected, the average transfer time decreases
substantially, and in a non-linear way, with the increase in the
number of AVPS engines, especially for a higher number of

Fig. 8: Average web transfer time vs. number of clients for a
518-KB Web page. The average think time is 1 sec.

Fig. 9: Single application mode architecture with multiple
AVPS engines

clients. This is due to the fact that more clients generate more
contention at the AVPS. The addition of more AVPS engines
reduces contention. For example, for M = 30 the response
time decreases by 83% as one goes from one to five AVPS
engines. For any value of the number of clients, there is a value
N∗ of the number of AVPS engines that does not produce any
significant reduction in response time because contention has
already been eliminated. At that point, the response time must
be equal to the service time x̄. For the case shown in Figure 10,
this value is x̄ = 8.1 sec (see Table IV for the average service
time for 100-MB files). For example, for M = 5, N∗ = 3 and
for M = 10, N∗ = 5.

The curves of Figure 10 can also be used to determine
the adequate number of AVPS engines for a desired average
response time. For example, for 25 clients, 2 AVPS engines
would be required for the average response time not to exceed
100 sec.

Figure 11 shows the average response time for queries of
type Q1 defined in Section V-B for an average think time equal
to 0.1 sec and the number of AVPS engines N varying between
1 and 5. As before, the number of clients varies from 1 to 30.

24

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 10: Average file transfer time vs. number of AVPS engines
for a 100-MB file. The number of clients varies from 1 to 30.
The average think time is 10 sec.

The results are very similar to those of the FTP case. All curves
must eventually converge to 41.6 msec (see Table IV for the
average service time for queries of type Q1) when N = N∗.
For example, N∗ = 3 for M = 5 and N∗ = 4 for M = 10.
The average response exhibits an 87% reduction for 30 clients
as the number of AVPS engines increases from 1 to 5.

Fig. 11: Average query Q1 response time vs. number of AVPS
engines for various values of the number of clients. The
average think time is 0.1 sec.

Figure 12 shows the average transfer time, R, for a 518-KB
Web page, for an average think time equal to 1 sec, and for
the number of AVPS engines N varying between 1 and 5. As
before, the number of clients varies from 1 to 30. The graph
indicates that all curves (1-30 clients) almost converge to the
value of 12.1 msec (see Table IV for the average service time
for a 518-KB Web page transfer) when a second AVPS engine
is added into the system. Thus , N∗ = 2 for all values of the
number of clients in this case. For 30 clients, the reduction in
response time is about 33% as an additional AVPS engine is
added.

3) Mixed Application and N = 1, · · · , 5: Figure 13 depicts
a scenario in which users access any of the three applications.

We discuss here the performance results of a scenario in
which 1 to 30 clients access multiple applications (e.g., FTP,

Fig. 12: Average Web page transfer time vs. number of AVPS
engines for various values of the number of clients for a 518-
KB Web page. The average think time is 1 sec.

Fig. 13: Mixed application scenario with multiple AVPS
engines.

DB, and Web) with multiple files sizes and query types for a
number of AVPS engines varying from 1 to 5.

Figures 14, 15, and 16 show, respectively, the results of
three different experiments:

• The average file transfer time when the number of clients
varies from 1 to 30 for an average think time equal to 10
sec, the file transfer is for a mix of 100 KB, 1MB, 10
MB and 100 MB files, and the number of AVPS engines
N varies between 1 and 5.

• The average query response time for a mix of Q1, Q2
and Q3 queries when the number of clients varies from 1
to 30 for an average think time equal to 0.1 sec, and for
a number of AVPS engines N varying between 1 and 5.

• The average transfer time for a mix of FTP downloads of
files of size 100 KB, 1MB, 10 MB, 100 MB, queries of
type Q1, Q2, Q3 and a 518-KB Web page. The number
of clients varies from 1 to 30 for an average think time
equal to 5.16 sec and the number of AVPS engines N
varying between 1 and 5.

In all three cases, the AVPS is enabled, matching packets

25

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

against the policy, but not blocking bad transfers. If blocking
were enabled the transfer time would be reduced since some
files would not be transferred.

Similar to previous results, the average transfer time de-
creases substantially with the increase in N . We notice,
as expected, that when the number of clients increases the
performance gain increases when additional AVPS engines are
used. As before, there is a point after which additional AVPS
engines do not improve performance.

Fig. 14: Average FTP transfer time vs. number of AVPS
engines for a mix of 100 KB, 1 MB, 10 MB, and 100 MB file
downloads. The number of clients varies from 1 to 30. The
average think time is 10 sec.

Fig. 15: Average query response time vs. number of AVPS
engines for a mix of Q1, Q2 and Q3. The number of clients
varies from 1 to 30. The average think time is 0.1 sec.

VI. CONCLUSION AND FUTURE WORK

This paper presented a scalable AVPS framework to defeat
the insider threat. The AVPS is an inline mechanism that
inspects traffic between insider clients and servers. The AVPS
uses low level rules in the form of ECAs, implemented as
Snort rules in our prototype. An offline process uses super-
vised learning to learn high-level rules that are automatically
converted into one or more low level rules.

The paper also presented a performance evaluation assess-
ment for three different application servers. The performance

Fig. 16: Average transfer time vs. number of AVPS engines for
a mix of different applications (FTP, DB, and Web requests).
The number of clients varies from 1 to 30. The average think
time is 5.16 sec.

assessment measured average transfer times, average through-
put, and CPU utilization as well as 95% confidence intervals
for all three measurements.

The experiments showed that: (1) The impact on the aver-
age transfer time and throughput for FTP transfers is either
negligible at the 95% confidence level or very small (i.e.,
less than 1.8%). (2) The response time impact on database
queries is heavily dependent on the number of records returned
by the queries. For queries that return a very large number
of records (e.g., over 51,000), the response time increase is
13% on average. However, this amounts to only 0.08 µsec
on average per record returned. (3) When a Web server is
accessed through the AVPS system, the response time for a
large Web page (e.g., 518 Kbytes) increases by 8.2 msec, an
amount hardly noticeable by a human being. (4) The average
and maximum CPU utilization of the AVPS engine are very
small in all cases tested, not exceeding 7%.

We also presented an M/M/N//M queuing analytical scala-
bility model for three different cases with a varying number of
applications, users, and AVPS engines and generated average
response times curves for all different cases. The scalability
and performance model showed that the AVPS framework can
easily scale horizontally to achieve the desired performance
level. The model also showed that for each number of clients,
there is an optimal number of AVPS engines that totally
eliminates congestion and minimizes response time. Using
more than that number of AVPS engines does not improve
performance any further.

Our results also showed that there is very low overhead
incurred when the AVPS is in-line between the clients and
the application servers. We used worst-case scenarios in our
analysis by considering situations in which all checked rules
trigger a violation and generate an alert, but do not block
incoming traffic. Blocking traffic in violation situations, which
is the normal operational approach, reduces the load on the
network and on the AVPS engine and improves performance.

We are currently looking at model based architectures,
typically used in self-optimizing systems, and the effects of
rule complexity on the overall performance of the system.

26

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] F. Sibai and D. Menascé, “A scalable architecture for countering
network-centric insider threats,” in SECURWARE 2011, The Fifth
Intl. Conf. Emerging Security Information, Systems and Technologies,
Nice/Saint Laurent du Var, France, 2011, pp. 83–90.

[2] “zdnet,” 2010, last accessed on 6/17/2012.
[Online]. Available: http://www.zdnet.com/blog/perlow/
wikileaks-how-our-government-it-failed-us/14988

[3] F. Sibai and D. Menascé, “Defeating the insider threat via autonomic
network capabilities,” in Communication Systems and Networks (COM-
SNETS), 2011 Third Intl. Conf. Bangalore, India: IEEE, 2011, pp.
1–10.

[4] M. Huebscher and J. McCann, “A survey of autonomic computing -
degrees, models, and applications,” ACM Comp. Surveys, Vol. 40, Issue
3, pp. 1–28, 2008.

[5] G. Jabbour and D. Menascé, “Policy-Based Enforcement of Database
Security Configuration through Autonomic Capabilities,” in Proc. Fourth
Intl. Conf. Autonomic and Autonomous Systems. IEEE Computer
Society, 2008, pp. 188–197.

[6] ——, “The Insider Threat Security Architecture: A Framework for an
Integrated, Inseparable, and Uninterrupted Self-Protection Mechanism,”
in Proc. 2009 Intl. Conf. Computational Science and Engineering-
Volume 03. Vancouver, Canada: IEEE Computer Society, 2009, pp.
244–251.

[7] M. Engel and B. Freisleben, “Supporting autonomic computing func-
tionality via dynamic operating system kernel aspects,” in Proc. 4th
Intl. Conf. Aspect-oriented Software Development. Chicago, IL, USA:
ACM, 2005, p. 62.

[8] Y. Al-Nashif, A. Kumar, S. Hariri, G. Qu, Y. Luo, and F. Szidarovsky,
“Multi-Level Intrusion Detection System (ML-IDS),” in Intl. Conf.
Autonomic Computing, 2008. Karlsruhe, Germany: IEEE, 2008, pp.
131–140.

[9] R. He, M. Lacoste, and J. Leneutre, “A Policy Management Framework
for Self-Protection of Pervasive Systems,” in 2010 Sixth Intl. Conf.
Autonomic and Autonomous Systems. Cancun, Mexico: IEEE, 2010,
pp. 104–109.

[10] V. Paxson, R. Sommer, and N. Weaver, “An architecture for exploiting
multi-core processors to parallelize network intrusion prevention,” in
Sarnoff Symposium, 2007 IEEE. Princeton, NJ: IEEE, 2007, pp. 1–7.

[11] K. Scarfone and P. Mell, “Guide to intrusion detection and prevention
systems (idps),” NIST Special Publication, vol. 800, no. 2007, p. 94,
2007.

[12] K. Xinidis, K. Anagnostakis, and E. Markatos, “Design and imple-
mentation of a high-performance network intrusion prevention system,”
Security and privacy in the age of ubiquitous computing, pp. 359–374,
2005.

[13] G. Vasiliadis, S. Antonatos, M. Polychronakis, E. Markatos, and
S. Ioannidis, “Gnort: High performance network intrusion detection
using graphics processors,” in Recent Advances in Intrusion Detection.
Boston, MA, USA: Springer, 2008, pp. 116–134.

[14] S. Shaikh, H. Chivers, P. Nobles, J. Clark, and H. Chen, “Towards
scalable intrusion detection,” Network Security, vol. 2009, no. 6, pp.
12–16, 2009.

[15] X. Chen, Y. Wu, L. Xu, Y. Xue, and J. Li, “Para-snort: A multi-thread
snort on multi-core ia platform,” in Parallel and Distributed Computing
and Systems. ACTA Press, 2009.

[16] G. Jedhe, A. Ramamoorthy, and K. Varghese, “A scalable high through-
put firewall in fpga,” in Field-Programmable Custom Computing Ma-
chines, 2008. FCCM’08. 16th International Symposium on. Palo Alto,
California, USA: Ieee, 2008, pp. 43–52.

[17] H. Gobjuka and K. Ahmat, “Fast and scalable method for resolving
anomalies in firewall policies,” in Computer Communications Workshops
(INFOCOM WKSHPS), 2011 IEEE Conference on. Shanghai, China:
IEEE, 2011, pp. 828–833.

[18] B. Wun, P. Crowley, and A. Raghunth, “Parallelization of snort on a
multi-core platform,” in Proceedings of the 5th ACM/IEEE Symposium
on Architectures for Networking and Communications Systems. Prince-
ton, NJ, USA: ACM, 2009, pp. 173–174.

[19] M. Alam, Q. Javed, M. Akbar, M. Rehman, and M. Anwer, “Adaptive
load balancing architecture for snort,” in Networking and Communica-
tion Conference, 2004. INCC 2004. International. Lahore, Pakistan:
IEEE, 2004, pp. 48–52.

[20] D. Day and B. Burns, “A performance analysis of snort and suricata
network intrusion detection and prevention engines,” in ICDS 2011, The
Fifth Intl. Conf. Digital Society. Gosier, Guadeloupe, France: IARIA,
2011, pp. 187–192.

[21] K. Salah and A. Kahtani, “Performance evaluation comparison of snort
nids under linux and windows server,” Journal of Network and Computer
Applications, vol. 33, no. 1, pp. 6–15, 2010.

[22] D. Menascé, “Security performance,” IEEE Internet Computing, vol. 7,
no. 3, pp. 84–87, 2003.

[23] “viewSSLd,” 2012, last accessed on 6/17/2012. [Online]. Available:
http://sourceforge.net/projects/viewssld/

[24] “Netintercept, Niksun Inc.” 2012, last accessed on 6/17/2012. [Online].
Available: http://www.niksun.com/product.php?id=16

[25] “Ettercap, Sourceforge,” 2009, last accessed on 6/17/2012. [Online].
Available: http://ettercap.sourceforge.net/index.php

[26] F. Sibai and D. Menascé, “Countering network-centric insider threats
through self-protective autonomic rule generation,” in IEEE Sixth Intl.
Conf. Software Security and Reliability (SERE 2012). IEEE, 2012,
p. 10.

[27] F. Sibai, “Defeating insider attacks via autonomic self-protective net-
works,” Ph.D. dissertation, George Mason University, Fairfax, VA, 2012.

[28] “Network Critical V-Line TAP, Network Critical Solutions Limited,”
2012, last accessed on 6/17/2012. [Online]. Available: http://www.
networkcritical.com/Products/Bypass.aspx

[29] “IBM Proventia Network Intrusion Prevention System , IBM,” 2011,
last accessed on 6/17/2012. [Online]. Available: http://www-01.ibm.
com/software/tivoli/products/network-multifunction-security/

[30] “Cisco ASA, Cisco Systems,” 2011, last accessed on 6/17/2012.
[Online]. Available: http://www.cisco.com/en/US/products/ps6120/
index.html

[31] L. Kleinrock, Queueing systems, volume 1: theory. John Wiley & Sons,
1975.

[32] “Snort performance, Sourcefire, Inc ,” 2010, last accessed
on 6/17/2012. [Online]. Available: http://www.snort.org/assets/168/
LW-hakin9-custm-rules-2010.pdf

[33] “Snort tuning, Sourcefire, Inc ,” 2010, last accessed on
6/17/2012. [Online]. Available: http://www.snort.org/assets/127/Snort
Perf Tuning webinar Final.pdf

[34] “Snort manual, Sourcefire, Inc ,” 2009, last accessed on 6/17/2012.
[Online]. Available: http://www.snort.org/assets/120/snort manual.pdf

[35] “Barnyard,” 2009, last accessed on 6/17/2012. [Online]. Available:
http://barnyard.sourceforge.net/

[36] “JMeter,” 2012, last accessed on 6/17/2012. [Online]. Available:
http://jakarta.apache.org/jmeter/

[37] “MySQL Slap, Oracle Corporation,” 2012, last accessed on 6/17/2012.
[Online]. Available: http://dev.mysql.com/doc/refman/5.1/en/mysqlslap.
html

[38] “Snort, Sourcefire, Inc ,” 2010, last accessed on 6/17/2012. [Online].
Available: http://www.snort.org/snort

[39] “Bro Intrusion Detection System, Lawrence Berkeley National
Laboratory,” 2011, last accessed on 6/17/2012. [Online]. Available:
http://www.bro-ids.org/

[40] “Event Monitoring Enabling Responses to Anomalous Live Disturbances
(EMERALD), SRI Intl.” 2012, last accessed on 6/17/2012. [Online].
Available: http://www.csl.sri.com/projects/emerald/

[41] “Iptables, netfilter,” 2010, last accessed on 6/17/2012. [Online].
Available: http://www.netfilter.org/

[42] “MySQL DB, Oracle Corporation,” 2012, last accessed on 6/17/2012.
[Online]. Available: http://www.mysql.com/

[43] “BASE Project, Basic Analysis and Security Engine,” 2008, last
accessed on 6/17/2012. [Online]. Available: http://base.secureideas.net/

[44] “Vsftpd,” 2012, last accessed on 6/17/2012. [Online]. Available:
http://vsftpd.beasts.org/

[45] “Apache 2, The Apache Software Foundation,” 2012, last accessed on
6/17/2012. [Online]. Available: http://httpd.apache.org/

[46] D. Menascé and V. Almeida, Capacity Planning for Web Services.
Prentice Hall, 2002.

27

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Advances in Protecting Remote Component Authentication

Rainer Falk, Steffen Fries

Corporate Technology

Siemens AG

D-81739 Munich, Germany

e-mail: {rainer.falk|steffen.fries}@siemens.com

Abstract—Component authentication allows verifying the

originality of various components being part of a machine or a

system, or being connected to control equipment. Various

technologies are available, ranging from holograms, hidden

marks, special inks to cryptography-based component

authentication. Typical applied cryptography-based

mechanisms employ a challenge-response-based component

authentication mechanism. These component authentication

mechanisms have been designed originally for local

genuineness verification, i.e., for an authentication performed

in direct vicinity of the component to be verified. However, it

may be useful to support also a remote component

authentication, e.g., to verify the integrity of the control system

including its periphery from a central monitoring station. This

paper describes an attack on a challenge-response component

authentication protocol when using it in addition for a remote

component authentication. A new security measure, that binds

a challenge value to a specific remote verifier, is described to

prevent this attack. The challenge value for which the response

is calculated by the component authentication mechanism can

therefore not be selected by the remote verifier. This has the

advantage on one hand that a potential remote adversary

cannot use the component as oracle to collect challenge

response pairs. On the other hand, the response value can be

provided to the verifier directly.

Keywords-device authentication, counterfeiting, tunneled

authentication

I. INTRODUCTION

Authentication is an elementary security service proving
that an entity in fact possesses a claimed identity. Often
natural persons are authenticated. The basic approaches a
person can use to prove a claimed identity are by something
the person knows (e.g., a password), by showing something
the person has (e.g., passport, authentication token, smart
card), or by exposing a physical property the person has
(biometric property, e.g., a fingerprint, voice, iris, or
behavior). Considering the threat of counterfeited products
(e.g., consumables, replacement parts) and the increasing
importance of ubiquitous machine-oriented communication,
also physical objects need to be authenticated in a secure
way. Various technologies are used to verify the authenticity
of products, e.g., applying visible and hidden markers, using
security labels (using e.g., security ink or holograms), and by
integrating cryptographic authentication functionality (wired
product authentication token or RFID (Radio Frequency
IDentification) authentication tag)).

One important driver for verifying the authenticity of
products is safety. For example, counterfeited electrical
components as electrical switches or fuses can cause physical
damage when they do not fulfill electrical safety norms (e.g.,
by causing electric shock to humans or a fire). Other
examples are provided through electric safety devices as e.g.,
overvoltage protecting units or an earth leakage circuit
breaker that do not provide reliably the expected
functionality. Further examples can also be provided through
metering or measurement systems like Phasor-Measurement-
Units, which measure voltage and current magnitude and
phase angle values at diverse locations in the energy
transmission grid. If they report wrong values, the reliability
of transmission grids may be endangered. Component
authentication may be used also be vendors to identify
replacement parts or consumables like ink or toner.

An approach for remote component authentication has
already been described in [1] using a challenge-response
authentication of a physical object. Focus of this paper is a
further elaboration of this approach to provide more
background to and insight into the proposed solution for..
Authentication of a physical object has the advantage that
control or supervisory equipment can automatically verify
the authenticity of installed components. Local object
authentication is used widely e.g., for authenticating battery
packs or printer consumables (toner / ink cartridges). Here,
cryptographic challenge-response based component
authentication is applied. Highly cost-optimized solutions are
commercially available that allow to use these technologies
also in low-cost devices. However, local object
authentication are, often not being designed to protect
against man-in-the-middle attacks as these may not be seen
as relevant in the targeted use case. Hence, the applied
protocols or methods may not directly be applicable to
remote authentication. Here, especially Man-in-the-Middle
attacks are in scope, if public networks are traversed.

Section II gives an overview on challenge-response based
component authentication. The usage scenario for remote
component authentication is described in Section III. This
section also considers typical available technical solutions,
and their susceptibility to man-in-the-middle attacks when
used for remote component authentication by different
verifiers. A new, simple to implement countermeasure
protecting against man-in-the-middle attacks is described in
Section IV. It enables the re-using of highly cost-optimized
component authentication also for remote component
authentication, i.e., for a usage scenario for which it has not

28

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

been designed in the first place. This enables to use
extremely simple and therefore cost-efficient hardware-based
device security mechanisms for new usages that have not
been addressed originally. The countermeasure can be
applied in particular even in those cases when the verifier
needs access to the unmodified, raw response value. The
application to IP-based smart objects is described in
Section VI, providing a highly optimized basis for a secure
device identity within the Internet of Things. Related work is
summarized in Section VII, before giving a summary and
outlook in Section VIII.

II. COMPONENT AUTHENTICATION

This subsection provides an overview about component
authentication in general and specifically about
commercially available implementation examples. Besides
the pure mechanism overview application, some use cases
are shortly presented to provide more insight into the value
component authentication can provide.

A. Overview

Components of a machine (internal or attached) shall be
identified securely. This requirement is known for
components like ink cartridges, batteries. In industrial
machines it applies to replacement parts, sensors, actor
devices. Authentication of a device allows a reliable
identification of original products.

For authentication a challenge value is sent to the object
to be authenticated. This object calculates a corresponding
response value which is returned to the requestor and
verified. The response can be calculated using a
cryptographic authentication mechanism or by using a
physical unclonable function (PUF).

For cryptographic authentication different mechanisms
may be used. Examples are keyed hash functions like
HMAC-SHA1 or symmetric ciphers in cipher block chaining
(CBC-MAC, see [10]) mode or symmetric ciphers in Galois
counter mode (GMAC, see [19]) up to digital signatures. For
the symmetric ciphers AES would be a suitable candidate.
Common to keyed hashes or symmetric key based
cryptographic authentication approaches is the existence of a
specific key, which is only available to the object to be
authenticated and the verifier, One resulting requirement
from this fact is obviously the protection of the applied key,
as the leakage of this key leads to attack options, which can
be easily exploited. This may in turn lead to a higher
administrative effort on both sides, the component and the
verifier. Another requirement that may be derived is that the
key should ideally be unique for a dedicated component and
not only for a batch or version of that component. A
reasoning for this requirements is that if the key of one
component gets compromised, an attack is only successful
for this specific component, but not for other components
from the same series. Also asymmetric cryptography can be
used for component authentication. A suitable procedure
based on elliptic curves has been described in [17].

As only an original product can determine the correct
response value corresponding to a challenge, the product

entity or a dedicated part of the product is thereby
authenticated.

Authenticated

Object
Verifier

challenge C

response R

Determine

Response R

Create

Challenge C

Verify

Response

Figure 1. Challenge-Response Object Authentication

Figure 1 shows the schematic data flow between a
verifier and an object to be authenticated. The verifier sends
a random challenge to the component that determines and
sends back the corresponding response. The verifier checks
the response. Depending on the result, the component is
accepted as genuine or it is rejected. The further handling
upon detecting that a component or system has been
compromised is a matter of the security policy and is not
detailed here. Nevertheless, the reaction on detecting a failed
authentication is use case specific and may vary form an
immediate rejection of the component (like in the case of
faked batteries, to ensure the safety of the device using the
battery) to a graceful degradation mode of operation (e.g., in
case of toner cartridges certain modes may not work, but the
general functionality is still provided).

B. Implementation Examples

As stated in the previous section various cryptographic
mechanisms can be used to realize a challenge-response
product authentication. Basically, symmetric cryptography,
asymmetric cryptography, or physical unclonable functions
can be used. While in the case of symmetric cryptography
also the verifier is in possession of the cryptographic device
key and can therefore calculate the expected response value,
in case of asymmetric cryptography or PUFs the verifier
might not be in a position to calculate the correct response
himself. He has only the option to verify the received
response.

This has consequences on whether it is possible to
include binding parameters in the response, i.e. to calculate a
derived response value. In the symmetric case, the verifier
could calculate the expected response and perform the
expected response modifications and compare this obtained
expected result with the actually received result. However, in
the PUF and asymmetric cases, this is not possible as the
verifier can perform only a verification operation on the
received result, but cannot determine a valid response on its
own. The verifier needs therefore access to the original,
unmodified response value to perform the verification

29

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operation. It is not possible to use a derived response value,
e.g., by using a keyed hash function or a key derivation
function that uses freely definable binding parameters during
the response derivation, without letting the verifier know.

Implementation examples of product authentication are
summarized in the following list, providing one example per
category (symmetric, asymmetric, and PUF based
authentication):

 Atmel CryptoAuthentication [1], [3]: A symmetric-
key based authentication is performed, intended for
example for authenticating battery packs. A
challenge-response authentication based on the
SHA256 hash algorithm is implemented to compute
a keyed digest for the provided challenge value. The
input parameter to the SHA256 algorithm is the
concatenation of the secret key, the challenge value,
and optionally other chip-specific data (serial
number, fuses). The challenge is an arbitrary 256 bit
value selected by the verifier.

 Infineon ORIGA [4]: An asymmetric authentication
based on elliptic curves is performed. A
cryptographic operation is performed by the product
to be authenticated using the product’s private key.
The verifier checks the received response using the
corresponding public key by performing a
cryptographic verification operation on the received
value. The verifier does not need access to the
products private key. The product itself may provide
its public key as a digital certificate (using internal
memory), allowing for an offline verification of the
response.

 Verayo RFID Tag “Vera M4H” [5]: An integrated
circuit comprising a physically unclonable function
is used to determine a response value depending on
the challenge value and hardly to reproduce physical
characteristics of the product to be authenticated.
Therefore, no cryptographic key has to be stored on
the RFID tag as a physical fingerprint of the RFID
tag is employed.

C. Applications / Use Cases

Applications of component authentication have already
been given in the introduction targeting safety on one hand
and protection of business models (and interests) on the
other. As shown, a reliable identification of products is
needed in various use cases. For safety reasons, components
can be verified to ensure that no counterfeited products or
product components have been installed. Detection of
unverifiable product components may not necessarily lead to
outages. Depending on the use case, the component may be
operated with safe, conservative operating conditions (e.g.,
maximum charging current of battery pack) to prevent
damage.

Component authentication can also be leveraged for
centralized control, as the information about originally or
falsified system parts may be use to provide system integrity
information as part of an inventory management. Moreover,
the component authentication can also be used to support the
authenticated setup of a protected communication session for

field level device communication. This approach is outlined
in the following section.

III. REMOTE COMPONENT AUTHENTICATION

One important class of use cases is remote component
authentication. Here, a machine equipped with or connected
to several field devices (sensors, actuators) performs local
component authentication of installed machine parts or
connected periphery in the first place. Additionally, it also
supports a remote component authentication by a supervisory
system, e.g., a control center or an inventory management.
Remote component authentication is required in scenarios
were sensors are used in a widely dispersed area. One
example for such sensors are quality monitoring devices like
synchrophasors (Phasor Measurement Units – PMU), which
are used in the power transmission network to measure the
phase angle and magnitude of sinus waves of voltage and
currents. Based on this information, the network (and
system) condition may be deduced.

A. Use Case Description

In a remote object authentication, the verifier is distant to
the object to be authenticated. The challenge and response
values are encoded in messages that are transported over a
communication network, e.g., an IP-based network, see
Figure 2.

Verifier

Verifier

Object

Network
Object

Object

Object

Figure 2. Remote Object Authentication

A verifier may be a service technician performing remote
maintenance, or an automatic device tracking server or an
inventory management server, see left part of Figure 2. The
objects to be authenticated may be connected directly to the
network, or they may be attached to an intermediary device,
e.g. a programmable logic controller, see right part of
Figure 2.

The challenge response component authentication
operation, i.e., the calculation of the response value for a
given challenge value, is performed by the object to be
authenticated as described above. However, here the verifier
is not in close vicinity to the object to be authenticated so
that an intermediary (man in the middle) may intercept and
manipulate the exchange of challenge and response values.
In some cases, a protected communication channel may be
used between the verifier and the intermediary, e.g., IPsec or
SSL/TLS (Secure Socket Layer / Transport Layer Security),
to transport challenge and response values over an encrypted
communication channel.

30

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Man-in-the-Middle Susceptibility

In the case of remote object authentication, an adversary
node may manipulate the exchange of challenge and
response values when they are sent over a communication
network. The adversary may act as remote verifier towards
an object to be authenticated, and as authenticated object
towards a well-behaving remote verifier. Such a malicious
remote verifier acts as a man-in-the-middle attacker. Already
the simple forwarding of challenge and response messages
may constitute an attack, see Figure 3.

Authenticated

Object
MitM

Attacker

challenge C

response R

Determine

Response R

Verifier

Create

Challenge C

Verify

Response

challenge C

response R

Figure 3. MitM Attack on Object Authentication

An adversary node as “man-in-the-middle” forwards
unchanged messages towards and from the genuine object
that is authenticated. The remote verifier having
authenticated the object as genuine assumes that it is
communicating in fact with the device in the following data
exchange. However, in fact it is communicating with the
adversary. An attacker can use an arbitrary, remote genuine
object as an oracle that provides valid responses for an
arbitrary challenge value. In consequence, any remote entity
that has access to the object authentication functionality of a
genuine object can act as a man-in-the-middle and may
authenticate itself as the authenticated object if it has a
sufficient number of challenge and response pairs. Hence,
the remote object authentication can be manipulated.

When furthermore the authentication response is used for
deriving cryptographic session keys, these keys could be
derived by an attacker as well.

The fact that such a simple challenge-response
authentication is prone to man-in-the-middle attacks is well
known and documented also in the corresponding product
documentation. For example, the man-in-the-middle attack is
mentioned in [6]. In the considered usage environment where
authenticated object and verifier are in direct physical
vicinity, the attacker needs both a direct physical access to
the attacked object and measurement equipment like e.g., a
logic analyzer to analyze the information exchanged between
the components. This increases the overall effort of the
attack. The attack becomes relevant when the component
authentication mechanism is applied within a usage
environment in which not only a single verifier exists, but

where a component may be authenticated by multiple
verifiers, at least one of them connected only remotely or at
least not in close vicinity of the object.

IV. EXAMPLE FOR CRYPTOGRAPHIC BINDING

REQUIREMENTS

Binding cryptographic data as e.g., a session key to a
specific usage context is a basic countermeasure to prevent
attacks in which valid cryptographic data is applied by an
adversary in a different usage context. The general need for
cryptographic binding is motivated by describing a well-
known weakness of the TLS protocol. Transport Layer
Security (TLS) is a very popular security protocol, which is
used to protect web transactions in applications like online
banking, to protect the mail communication via IMAP
(Internet Message Access protocol), to realize VPNs (Virtual
Private Networks) or for remote administration. Meanwhile
the protocol is available as standard in version 1.2 as RFC
5246 [7].

Early November 2009, a vulnerability has been
discovered, allowing an attacker to inject data into a TLS
connection without being noticed by the client. Such attacks
were facilitated by a protocol weakness concerning
renegotiation of security parameters. Renegotiation is a TLS
feature to establish fresh security parameters for an existing
TLS session. The problem arose due to the missing
cryptographic binding between the initially negotiated
security parameters and the new parameter set resulting from
the renegotiation process. This can be exploited by an
attacker in a man-in-the-middle attack. A possible attack
scenario – a request to a web server – is explained in the
following, see Figure 4.

 Client Attacker Server

TLS Session Establishment

Attacker  Server

Data query EVIL (via TLS)

C
e
rt

if
ic

a
te

 b
a
s
e
d
 u

s
e
r

a
u
th

e
n
ti
c
a
ti
o
n
 r

e
q
u
ir
e
d

Start Renegotiation

TLS Session Establishment

 Client  Server protected

through TLS Attacker  Server

TLS Session Establishment

 Client  Server

Data query GOOD (via TLS)

E
x
e
c
u
ti
o
n
 o

f

E
V

IL
 a

n
d
 G

O
O

D

TLS Session 1

TLS Session 2

Figure 4. Man in the Middle (MitM) Attack on TLS Protocol

A potential attacker controlling the data path between a
Web client (Web browser) and a Web server is waiting for a
connection attempt by a client. As soon as the client
establishes a TLS connection to the server, the attacker
delays the client request. In a variety of applications this
connection is used with unilateral authentication, i.e., only
the server authenticates as part of the TLS handshake. Now,
the attacker himself establishes an own TLS connection to

31

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the server, which is (as the original connection attempt by
the client) unilaterally authenticated by the server side. So
the client itself has not been authenticated by the server. As
soon as the TLS connection has been established, the
attacker sends a request EVIL over the established TLS
connection. This request requires the authentication of the
client. If the client is to be authenticated using certificates, it
can be directly done within the TLS handshake, requiring the
certificate based authentication of the client by the server.
The attacker, however, does not possess the required client
credentials. This client authentication is now invoked by the
server through starting the TLS renegotiation. The EVIL
request, however, which has not been authenticated at this
point in time, is stored by the server and will be executed
only after a successful client authentication. Web servers are
typically configured in this way, i.e., to request a client
authentication not at the beginning of a session, but only
when a client performs a restricted operation, e.g., when data
from an access protected directory shall be read.

In the attack scenario, the attacker now forwards the
delayed Client request intercepted from the valid client to the
server over the TLS protected link that has been established
by the attacker with the server in response to the TLS
renegotiation request. The server accepts and interprets the
forwarded client message as valid part of the renegotiation
phase. Note that the response to a Start Renegotiation
message is the same message as used for the initial
connection attempt – the Client request. During the
renegotiation phase the server will require client side
authentication in a subsequent message. This enables an end-
to-end key negotiation between the client and the server. So
a valid client authentication is performed. All subsequent
messages are now secured end-to-end and the attacker is not
longer able to access them. But then, the stored EVIL-request
that has been sent by the attacker is executed by the server
with the permissions of the authenticated client.

This attack shows on the one hand a weakness of the TLS
protocol due to the missing cryptographic session binding of
the two TLS sessions, i.e. the one established before
performing the session renegotiation, and the one established
as result of the session renegotiation performing also client
authentication. If there would be a session binding, the Web
server would realize that the Client requests does not refer to
a former session in which the original client was not
involved. The consequence is that the Web server is in fact
communicating with two different entities (the attacker and
the client), while it assumes that it is communicating only
with a single entity. On the other hand, the attack shows the
insufficient integration of TLS into the application, as the
web server in this example should have requested an
affirmation of the EVIL request over the renegotiated TLS
session before executing it. This weakness could be
exploited for instance for stealing passwords or cookies from
Web applications. The weakness has been addressed as part
of an update of the TLS protocol using a binding of the
initial session to the renegotiated session in the ClientHello
and ServerHello messages [8]. To achieve this, client and
server store the individually sent verify_data from the
Finished message of the previous handshake and reuse this

information in the ClientHello resp. ServerHello of the
ongoing renegotiation handshake.

V. CHALLENGE BINDING (PRE-CHALLENGE)

The problem of the man-in-the-middle susceptibility of
simple challenge-response component authentication
originates from the fact that the same component
authentication mechanism or the same associated
authentication key respectively is used in different usage
contexts. Following common security design, different keys
would be used for different purposes. Furthermore the
cryptographic material should be bound to the intended
usage context (i.e., to derive context-bound session keys
from the response).

As in important commercially available implementations
of component authentication, the verifier needs access to the
unmodified response; the response value cannot be modified
practically. Therefore, challenge binding is proposed as
countermeasure that can easily be integrated with existing
component authentication mechanisms: When a remote
verifier cannot select an arbitrary challenge value, it cannot
use the authenticating object as oracle to determine responses
for an arbitrary received challenge value.

A. Challenge Binding

The basic idea of challenge binding is to use a derived
challenge value (bound challenge), which in turn is derived
from a challenge value selected by a verifier (pre-challenge).
For this bound challenge the response is calculated. The
derived challenge is bound to a verifier by using an
information of the verifier from which the (pre-)challenge
has been received as derivation parameter. The (pre-)
challenge selected by a verifier is thereby bound to the
verifier context. This binding operation can be performed by
the authenticated object itself or by a (trusted) intermediary
node, see Figure 5.

Authenticated

Object
Challenge Binding at

intermediate node

challenge C-bound

response R

Determine

Response R

Verifier

Create

Challenge C

Verify

Response

challenge C

response R

determine

C-bound:= CDF(C, VCI)

Figure 5. Challenge Binding

Note that the trusted intermediate node should be
physically close to the authenticating object to avoid the

32

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

already described Man-in-the-Middle attack between the
object and the intermediate node.

The challenge C (pre-challenge) selected by the verifier
is sent to the object directly or to an intermediary node in
close vicinity of the object to be authenticated (e.g., a control
unit to which a sensor or actuator is directly connected), see
Figure 5. The challenge derivation can be performed by
both, the object to be authenticated itself, or by a trusted
intermediary node .For the following description, the
challenge binding is performed by an intermediate (trusted)
component. This challenge C is now modified by deriving a
bound challenge value C-bound using a non-invertible
function (challenge derivation function, CDF). Verifier-
dependent context information (VCI) is used as derivation
parameter to bind the challenge to the respective verifier. In
particular, the verifier’s network address, node identifier, or
a session key established between the verifier and the
intermediary can be used.

This modified, verifier-context bound challenge C-bound
is forwarded to the object to be authenticated. The object
determines the corresponding response and sends it back to
the intermediary that forwards the response to the (remote)
verifier. The verifier determines the bound challenge C-
bound as well, using the selected challenge C and the verifier
context information VCI. Note that the VCI can be
determined either by the verifier and the intermediary, if both
are configured in a way to determine the VCI on available
information (like certain address information of the verifier,
see also section B below). Alternatively, the VCI may be
sent as part of the communication from the intermediary or
the verifier.

The remote verifying party can therefore not freely select
the challenge for which a response is computed. Anyhow, it
can be sure about the freshness of the challenge C-bound for
which it received the response as it depends on the pre-
challenge C selected by the verifier.

B. Verifier Context Information

Verifier dependent context information is used as
derivation parameter to bind the challenge to the respective
verifier. There is a variety of parameters that can be used to
specify a verifier context. In particular, the verifier identity,
e.g., IP or MAC address, DNS name or URL, an
(unpredictable) session ID, or a digital certificate or security
assertion may be used. This information can be determined
by the intermediary, without direct involvement of the
verifier. This verifier context is used as parameter to separate
two different verifiers. So in practice it must not be possible
for a verifier to act successfully within a verification context
belonging to a different verifier.

C. Challenge Derivation Function

Requirements on a challenge derivation function are
similar as for a key derivation function, i.e. being non-
invertible and pre-image resistant (see [8] and [9] for more
specific information on key derivation functions). Therefore,
the functions that are typically used for key derivation can be
used as challenge derivation function as well. For example,
the bound challenge C-bound could be derived as HMAC-

SHA1(C, VCI), using the challenge instead of a key, and
using VCI as textual string determining the verifier context.
Alternative key derivation functions may be the higher SHA
methods like SHA256 or SHA512 in combination with the
HMAC or symmetric algorithms like the AES in CBC-MAC
mode [10] or in GMAC mode [19] as already noted in the
overview of section II.

A further approach to be named here is the application of
key wrapping as described for instance in [20] using AES.
Here, the challenge could be used to derive an encryption
key for the key wrapping algorithm. The information
encrypted includes additional information provided by the
verifier and generated by the authenticating component. Both
pieces of information (encrypted part and generated part)
need to be sent to the verifier. By decrypting this information
with the key derived from the challenge, the verifier can
proof if the decrypted content equals with the generated
content. In the positive case, the component was successfully
authenticated. This is depicted in the following figure.

Authenticated

Object

Verifier

Create Challenge C,

create nonce NV

Verify

Response

challenge C, nonce NV

response M, NO

K = KDF(C,VCI)
create nonce NO

M = Key-Wrap(K,NS||NO)

Figure 6. Application of Key Wrapping for Challenge Binding

General recommendations for key derivation functions
using pseudorandom numbers are also provided in [9].

VI. APPLICATION TO IP-BASED SMART OBJECTS

One possible application of protected remote component
identification is IP-based communication within the Internet
of Things. A node communicating with a smart object
(“thing”) over IP-based networks wants to verify the identity
of the smart object or of a component being part of or being
integrated into the smart object. Communication can be
realized e.g., using HTTP-based Web Service protected by
TLS or by IP-based communication protected by IPsec. A
challenge-response based smart object authentication can be
integrated in well-know protected communication protocols,
as HTTP Digest over unilaterally authenticated SSL/TLS, or
EAP (Enhanced Authentication Protocol), or within IKEv2
for IPsec.

However, the challenge is modified using verifier context
information as derivation parameter. Here, besides the nodes
identifier (server name resp. IP address) also the purpose and
the used communication protocol can be used as challenge
derivation parameter (e.g., “DeviceComponent-
Authentication/HTTP-DIGEST/TLS” || Server-IP).

33

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 IoT Client
(Device)

Server

C
e
rt

if
ic

a
te

 b
a
s
e
d
 u

s
e
r

a
u
th

e
n
ti
c
a
ti
o

n
 r

e
q
u
ir
e
d

TLS Session Establishment

 Client  Server

GET… (over TLS)

Server-authenticated
TLS Session

WWW-Authenticate (incl. NONCE (challenge), realm, …)

Derive C-
Bound

Âuthorization (incl. Response)

OK

C-bound

Response

EAE

Figure 7. IoT Device Authentication Using HTTP DIGEST

Figure 6 shows an exemplary use for Internet of Things
(IoT) device authentication. An IoT device includes a low-
cost object authentication IC as embedded authentication
element (EAE). The EAE realizes only a simple challenge
response authentication mechanism. When the IoT device
communicates with another device, e.g., a server, a server-
authenticated TLS session is established. The device
authenticates itself over HTTP using a modified HTTP
digest. From the received NONCE value, i.e. the challenge
value, a bound challenge value C-Bound is derived. The
derivation parameters can include, besides the received
realm, also further context information of the session, e.g.
server IP address, server DNS name, server public key hash
or server digital certificate hash, or the common name
included in the server certificate. Also, the approach
described at the end of section IV for TLS can be leveraged
directly. This would result in the binding to the actual TLS
session context, over which the authentication is being
performed. The bound challenge is sent internally of the IoT
device to the embedded authentication element EAE
included in the IoT device. The received response is
provided to the server for verification. While TLS has been
used as example, also different protocols as datagram TLS
(DTLS) or network / link layer security could be used as
well.

The described IoT device authentication using the
embedded authentication element may be used for device
authentication during regular operation. Advantageous is,
however, its use for automatically setting up the initial
device configuration after the IoT device has been installed.
This automatic security bootstrapping allows the IoT device
to authenticate towards a bootstrapping server that provides
security configuration data that is then used during the
operational phase. Moreover, this bootstrapping server may
additionally provide the functionality of a secure inventory
management, which may need to be contacted by the IoT
device in regular intervals. Thus, the server can check the
component authenticity also regularly.

VII. RELATED WORK

Most similar to our proposal is the binding of an
authentication challenge for a PUF authentication to the hash
of the requesting program, see [11] the verifier selects a pre-
challenge, from which a bound challenge is derived using the
hash of the verifier program as input to the challenge
derivation. Note that the binding to the hash of the verifier
program alone, without address information is weaker, as the
hash is supposed to be the same on different hosts. Thus, an
attacker possessing the verifier program may still perform
the attacks described in section II.

The insecurity of tunneled authentication protocols has
been analyzed [12]. In real-world environments, often an
existing security deployment and authentication shall be re-
used for a different purpose. In particular tunneled EAP
authentication was considered, e.g., based on PEAP
(Protected EAP). The described countermeasure was binding
cryptographically the results (session keys) of the two
authentication runs, i.e., the inner and the outer
authentication, or by binding the session key to an endpoint
identifier.

Performing a key derivation is a basic building block for
designing secure communication. Various required session
keys can be derived from a common master session key.
NIST recommended a key derivation function, using a
usage-describing textual string as derivation parameter [8].
Another example is the pseudorandom function used within
TLS [7], which uses secret keys, seeds and textual strings
(identifying label) as input and produces an output of
arbitrary length. The same approach is taken in the
Multimedia Internet Keying MIKEY [13].

It is also known to bind an authentication to properties of
the used communication channel [14]. Two end-points
authenticate at one network layer and bind the result to
channel properties to prevent against man-in-the-middle
attacks where the attack would result in different channel
binding properties from the viewpoint of the authenticating
nodes.

Furthermore, non-interactive key agreement schemes
allow to derive a common, shared key material between
nodes that have received a key bound to the own identity
[15]. No protocol exchange is required to derive this shared
key, but the key is derived similar as with a key derivation
function. However, the two derivation steps for binding a
root key to two node identifiers can be performed
commutatively.

In the “cuckoo attack”, an attacker causes a user of a
computer including a trusted platform module (TPM) that a
different TPM that the adversary controls resides in the
user’s computer [16]. The adversary’s TPM can therefore
make false assertions about the software running on the
user’s computer. This attack is an example of a man-in-the-
middle attack where the adversary sits between the verifier
and the TPM.

Another option to bind an initial authentication to further
challenges and authorizations tokens is the Kerberos, a well
established security protocol, which has native support in
several operating systems. The general proceeding of

34

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Kerberos is described in [18] and depicted in Figure 8. In the
target use case, the Kerberos server resembles the binding of
an authorization request to a dedicated environment. It
performs as a challenge response three party protocol, while
the solution described in section V binds the challenge “on
the way” to the object without having a three party
(challenge-response) protocol. Furthermore, the solution
proposed in this paper assumes physical closeness of the
binding node to the actual object to be verified.

Figure 8. Kerberos Protocol Overview

An advantage of the proposed solution is that is uses less
message exchanges between the participating nodes to bind
the authentication to a dedicated environment compared to
Kerberos stated above.

VIII. SUMMARY AND OUTLOOK

An attack on component authentication has been
described where a single genuine component is used as
oracle to compute valid authentication responses. A single
malicious verifier may use an obtained valid response value
to authenticate as the genuine component towards other
verifiers. The described attack is made possible by the fact
that the cryptographic solution for component authentication
is used within a different usage environment than it has been
designed for: The attack is relevant when the component
authentication for verifying the genuineness of a component
is performed not only locally, but also remotely. This attack
is also an example that a small functional enhancement –
here making an existing functionality accessible remotely –
can have severe implications on security.

This paper proposed a challenge binding mechanism as
countermeasure for the described attack. The available,
extremely cost-efficient object authentication technology can
thereby been used securely also for a different purpose than
the one it has been designed for originally. An authentication
challenge is bound to the verifier so that a remote verifier
can neither simulate a local, unbound authentication nor can
it simulate an authentication towards a different remote
verifier having a different associated verification context. A
possible application of this general challenge-binding
mechanism is the cost-efficient authentication of devices
within the Internet of Things.

REFERENCES

[1] R. Falk, S. Fries: Protecting Remote Component Authentication , The
Fifth International Conference on Emerging Security Information,
Systems and Technologies SECURWARE2011, 21-27 Aug. 2011,
Nice / Saint Laurent du Var

[2] Atmel CryptoAuthentication,
http://www.atmel.com/products/cryptoauthentication/, last access Jan.
2012

[3] Atmel CryptoAuthentication Product Uses, Application Note, 2009.
http://www.atmel.com/dyn/resources/prod_documents/doc8663.pdf,
last access Jan. 2012

[4] Infineon ORIGA, http://www.infineon.com/ORIGA, last access Jan.
2012

[5] Verayo http://www.verayo.com/products/unclonable-rfids, last access
Jan. 2012

[6] Atmel CryptoAuthentication High level Security Models, Application
note, 2009.
http://www.atmel.com/dyn/resources/prod_documents/doc8666.pdf,
last access Jan. 2012

[7] T. Dierks and E. Rescorla: The Transport Layer Security (TLS)
Protocol Version 1.2, RFC 5246, August 2008

[8] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov: Transport Layer
Security (TLS) Renegotiation Indication Extension, RFC 5746,
February 2010

[9] Lily Chen: Recommendation for Key Derivation Using
Pseudorandom Functions, NIST Special Publication 800-108, 2009,
http://csrc.nist.gov/publications/nistpubs/800-108/sp800-108.pdf, last
access Jan. 2012

[10] John Black and Philipp Rogaway: A Suggestion for Handling
Arbitrary-Length Messages with the CBC MAC,
http://www.cs.ucdavis.edu/~rogaway/papers/xcbc.pdf, last access Jan.
2012

[11] Srini Devadas: Physical Unclonable Functions and Applications,
Presentation Slides (online),
http://people.csail.mit.edu/rudolph/Teaching/Lectures/Security/Lectur
e-Security-PUFs-2.pdf, last access Jan. 2012

[12] N. Asokan, Valtteri Niemi, and Kaisa Nyberg: Man-in-the-Middle in
Tunnelled Authentication Protocols, LNCS3364, Springer, 2005.

[13] J. Arkkom, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman:
MIKEY: Multimedia Internet KEYing, RFC3830, August 2004

[14] N. Williams: On the Use of Channel Bindings to Secure Channels,
Internet RFC5056, 2007

[15] Rosario Gennaro, Shai Halevi, Hugo Krawczyk, Tal Rabin, Steffen
Reidt, and Stephen D. Wolthusen: Strongly-Resilient and Non-
Interactive Hierarchical Key-Agreement in MANETs, Cryptology
ePrint Archive, 2008. http://eprint.iacr.org/2008/308.pdf, last access
Jan. 2012

[16] Bryan Parno: Bootstrapping Trust in a Trusted Platform, 3rd USENIX
Workshop on Hot Topics in Security, July 2008,
http://www.usenix.org/event/hotsec08/tech/full_papers/parno/parno_h
tml/ , last access Jan. 2012

[17] M. Braun, E. Hess, and B. Meyer, “Using Elliptic Curves on RFID
Tags,” International Journal of Computer Science and Network
Security, Volume 2, pages 1-9, February 2008

[18] C. Neuman, S. Hartman, K. Raeburn: RFC4120:The Kerberos
Network Authentication Service, July 2005

[19] Morris Dworkin: Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC, NIST SP 800-
38D, November 2007, http://csrc.nist.gov/publications/nistpubs/800-
38D/SP-800-38D.pdf, last access June 2012

[20] NIST, AES Key Wrap Specification, November 2001,
http://csrc.nist.gov/groups/ST/toolkit/documents/kms/AES_key_wrap
.pdf , last access June 2012

35

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Privacy Preserving Solution for Webmail Systems with Searchable Encryption

Karthick Ramachandran, Hanan Lutfiyya and Mark Perry

Department of Computer Science
University of Western Ontario

London, Ontario, Canada
Email: {kramach, hanan, markp}@csd.uwo.ca

Abstract—In this work, we give an introduction to privacy
issues in Cloud Computing and discuss the state of art in the
privacy enhancing technologies that can be used for Cloud
Computing. We focus on a Software as a Cloud scenario
(webmail services) and propose a privacy preserving archi-
tecture in which users can retain their mail in the servers
of their service providers in a cloud without compromising
functionality (searchability of mails) or privacy. We benchmark
our system and detail the results showing that it is feasible to
architect a privacy preserving solution for webmail systems.

Keywords- privacy-preserving, webmail, encrypted search.

I. INTRODUCTION

Cloud Computing is a model of computing in which
the users can rent infrastructure, platform or software ser-
vices from other vendors without requiring the physical
access to the rented service [1]. There are three main types
of cloud offerings (Figure 1): Infrastructure as a Service
(IaaS), Platform as a Service (PaaS) and Software as a
Service (SaaS). IaaS offers virtualized instances of bare
machines leaving the installation and customization of soft-
wares including the Operating System to cloud computing
customers (eg.: Amazon, Rackspace, Slicehost). In PaaS,
an application framework is provided to the customers
for developers to develop their software with (eg.: Google
App Engine, Microsoft Azure). A SaaS provider offers a
particular application as a web service, which customers can
customize to their needs (eg.: Google Docs, Salesforce etc).
The Cloud Service Provider (CSP) focuses on infrastructure
and software expertise and aims to optimize their utility by
providing centralized services for one or many clients. The
benefit to the cloud service client (CSC) is that the cost
associated with the underlying infrastructure and software
services needed to support the CSC’s application is reduced.
There are two reasons for the cost reduction. One reason
is that the underlying infrastructure and software services
are shared among CSCs. The second reason is that since a
CSP manages data, it can use creative business models like
Contextual Advertising Model [2] for generating revenue
by delivering advertisements to users based on the data.
For example, webmail services such as Google can provide
Gmail for free. As a result, Cloud Computing has been
widely adopted. MarketsandMarkets [3] estimates that the

cloud computing global market will increase from $12.1
billion (US) to $37.8 billion (US) in 2015 at a compound
annual growth rate of 26.2 percent.

Platform as a Service

Infrastructure as a
Service

Software as a
Service

Google App
Engine

Microsoft
Azure

Amazon Web
Services

Rackspace
Cloud

Amazon

Elastic Hosts Google Apps Salesforce.com

Microsoft Online
Services

Figure 1. Cloud Architectures

In spite of this widespread adoption, organizations are still
wary of storing their sensitive data with a CSP. Privacy risk
remains a major concern in the cloud computing environ-
ment [4].

The definition of privacy that we use was defined by
Warren et al. [5] in 1890. Warren et al. described privacy as
the “right to be let alone” with the focus on protecting indi-
viduals. The Universal Declaration of Human Rights states
that “No one shall be subjected to arbitrary interference with
his privacy, family, home or correspondence, nor to attacks
upon his honor and reputation. Everyone has the right to the
protection of the law against such interference or attacks.”
[6]. Modern legislation encompasses these ideas – privacy
is the need to protect and control information about the
individual by that individual.

There are a variety of ways that the privacy of data can
be compromised in a cloud service environment [7]. This
includes the following:

1) Sharing of data with an unauthorized party: The
Cloud provider could compromise the confidentiality of the
data by sharing the data that it stores with unauthorized
parties. This can go against the terms and conditions of the

36

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

service and will qualify as a breach of security and contract.
The end user may never be aware of such a breach.

2) Corruption of data stored: The Cloud Computing
provider’s root access to physical machines allows the Cloud
Provider to have access that allows the Cloud Provider to
modify/delete data. The Cloud Provider could tamper with
the data making the data non-usable or modify the data in a
way that system cannot detect the modification. This poses
a serious threat to the integrity of the application.

3) Malicious Internal Users: The employee of a Cloud
Computing Provider who has root access to these physical
machines, could access the data and use it for their own
advantage.

4) Data Loss or Leakage: When a virtual machine is used
in an infrastructure, it poses a variety of security issues [8],
which could lead to a compromise of the data. Moreover,
when the facility that hosts the user’s data is subjected to a
natural calamity, it could risk the loss of the user’s data.

5) Account or Service Hijacking: Another risk for the
Cloud Computing provider is, if the service is hijacked, or
the computer is hacked into by an intruder, the hacker will
have access to data.

Storing the data in the cloud, can increase the privacy
risks for the following stake holders:

1) Cloud Computing User
2) Organization using the Cloud Service
3) Implementors of Cloud Platforms
4) Providers of application on top of cloud platforms
5) For the data subject

This work focuses on the following threats: (a) Sharing
with an unauthorized party, (b) Malicious internal users,
and (c) Account or service hijacking. Our work applies
to the class of cloud services that stores data and provide
searching as its primary functionality. This includes services
such as webmail, collaborative document authoring (Google
documents) and private blogs. The example used throughout
this paper is webmail.

We proposed Chaavi [9], a webmail infrastructure that
builds on the public/private key model to encrypt email with
a custom implementation of encrypted indices for keyword
searches using the server’s infrastructure. Chaavi is the first
system that addresses the above threats in a real working
environment.

The rest of paper is organized as following. A motivating
example of webmail services is described in Section II.
Section III presents some of state of the art in preserving
privacy for cloud computing services. Section IV reviews
background and related work for searching on encrypted
data. Section V presents the architecture of Chaavi system.
The implementation details are discussed in Section VI.
Section VII presents the experiments conducted to study
the system and we conclude by stating our contribution and
future work in Section VIII.

II. MOTIVATING EXAMPLE: WEBMAIL SERVICES

Webmail services offer user convenience. A username,
password, and Internet access users, are not tied to any
particular equipment or location. Webmail services primarily
offer the following functionality:

1) Mail Storage
2) Organization of mail
3) Keyword Searching
For (1) and (2), the service provider need not know the

exact content of the mail. However, for performing a plain-
text keyword search on email the user needs the service
provider to know the content of the mail, so that the cloud
provider’s infrastructure can be used to index the mail
content, which can in turn be used for the search process.

The usage of webmail services, has the following short-
comings:

1) The need to trust the service provider (e.g., Google,
Yahoo, or Microsoft) as the mail is stored as plain-text
in the service providers’ servers (or using single key
encryption). The mail is then prone to insider attacks
(anyone with the access control will be able to read
the mails).

2) There is an assumption that the provider is honest, and
the security level is sufficient.

3) When the mail is transferred from one domain to
another, it is transmitted through SMTP [10]. SMTP as
a protocol does not support encryption. Technologies
like Transport Layer Security [11] are used to transfer
mail to other domains. However, the data is still
protected only up to the layer at which it reaches
the target mail server. Once it reaches the target mail
server, the mail is again prone to insider attacks in the
new domain.

To address such problems, various client encryption sys-
tems, such as Pretty Good Privacy (PGP) [12], have been
developed. However, encryption using PGP make the mail
non-searchable in the web server.

III. RELATED WORK

Privacy Enhancing Technologies (PET) can be used by
the developers of the application to enhance the individuals
privacy in an application development environment. In this
section, we survey state of the art in PET.

PET technologies include:
1) Privacy management tools that enable inspection of

server-side policies that specify the permissible ac-
cesses to data

2) Secure online access mechanisms to enable individuals
to check and update the accuracy of their personal data

3) Anonymizer tools, which will help users from reveal-
ing their true identity by not revealing the PII (Pri-
vately Identifiable Information) to the cloud service
provider.

37

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Homomorphic Functions: Homomorphic encryption
schemes refer to asymmetric encryption techniques, where
algebraic operations on plain text can be performed directly
on a respective cipher text. This was first introduced by
Goldwasser et al. [13], where the authors performed modular
addition of two bits using multiplication of ciphertexts. The
two kinds of homomorphic functions are the following:

1) Partially homomorphic functions and
2) Fully homomorphic functions
Partial homomorphic functions enable either addition or

multiplication on plaintexts. However, in a fully homomor-
phic scheme, both operations are supported. Fully homomor-
phic functions, allow executions of programs in untrusted
party without revealing the input to the party. The untrusted
party can been seen as a cloud provider.

Craig Gentry [14] described the first fully homomor-
phic encryption scheme based on lattice-based cryptography.
However performing google search on encrypted keywords
using homomorphic encryption based on Gentry’s scheme
will increase the computing time by trillion.

Homomorphic encryption remains in the theoretical realm
as more advanced abstractions need to be created for using
homomorphic functions in practical applications.

Privacy By Secure Computation: The objective of
secure computation is to evaluate a function f that takes
inputs from two parties A and B without revealing the exact
inputs to each other. The Yaos protocol [15] provides some
of the basic techniques to perform a computation in a secure
way without revealing the inputs. The Yaos protocol forces
the expression of a computation problem in terms of logical
circuit using gates. The input of each gate is randomly
encrypted and then the final resulting output is decrypted
to get the exact answer of the computation. The encryption
and the decryption is done at the client’s end. The expression
of a simple problem using the Yaos protocol is found to be
complex. Applications that typically reside in the cloud (e.g.,
mail) are too complex for this.

Privacy By Using Secure CoProcessors: Secure co-
processors are currently the only realistic way to perform
general-computing even when an adversary has direct phys-
ical access to the server. In our case the adversary could be
the cloud service provider itself. It is a very limited computer
with ROM, RAM and battery backup for persistent storage
and an ethernet card. When installed in a computer, co-
processors can be seen as a secure area inside a computer,
which even the main processor cannot access. Privacy as a
Service [16] recognizes these factors and proposes a system
architecture in which a coprocessor is installed in every
Cloud Computing system. The data loaded into the cloud is
classified based on its significance and security by the cloud
user (No Privacy, Privacy with Trusted Provider, Privacy
with Non-Trusted Provider). The data tagged with Privacy
with Non-Trusted Provider level is processed by the secure
co processor.

Figure 2. System Model for Privacy by Secure CoProcessors [16]

Figure 2 [16] is an example of a system built using
secure coprocessors. Cloud customers, Trusted Third Party
and the Cloud Provider are the three main stakeholders of
this system. The coprocessor is signed by secret keys by the
trusted third party and then is supplied to cloud provider.
When a new customer registers with the cloud provider, they
share the secret keys with the trusted third party. The co-
processors can directly contact the trusted third party for the
keys to encrypt the secret data within the coprocessor. The
data channel between the co-processor and the trusted third
party is secured using a mutually agreed upon public/private
key pair during the initial time of supply of co-processors
to CSP by trusted third party. Secure co-processors needs a
separate hardware installation in server. Also co-processors
are expensive and are not yet economical to be used in a
cloud computing environment.

Trusted Program Module (TPM) is a secure cryptoproces-
sor specification introduced by Trusted Computing Group
to standardize the usage of crypto coprocessors [17]. TPM
chips can be used to attest platform integrity, to enable
disk encryption and for secure storage of selective sensitive
entities such as the username and password. It provides
basic function of RSA 2048 bit public key cryptography
protected by hardware. According to Wave Systems Corp.
[18], more than 350 million PC’s are shipped with TPM
as of 2010. TPMs introduce high overhead in the execution
of an application [19]. However Jonathan et.al [19] argue
that, as the usage of TPMs get popular, the future hardware
performance will improve.

Privacy By Encryption: Privacy can be enforced by
encrypting all the data that is stored in the cloud. The main
issue is that the cloud can be only used for storage of the
data. As the data will be unrecognizable to the cloud service
provider, it will not be possible for the cloud service provider
to process the data nor to perform some number crunching
tasks. Searchable encryption uses an algorithm, which allows
users to encrypt the data and then provides the server with
trapdoor information [20], so that the server can search for
a given string through the searchable encryption algorithm.
This part is discussed in detail in Section IV-C.

Privacy-Preserving Multi-keyword Ranked Search over
Encrypted Cloud Data [21] proposes a new encryption
scheme for keyword search over encrypted data in cloud

38

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

computing environment with privacy and performance re-
quirements.

In our work we achieve privacy by encryption by using
searchable encryption scheme for a webmail software. Our
focus is to study how the encryption schemes can be engi-
neered in a real working environment. This is an extension
of our previous work [9] with more details on related work,
implementation and conclusion.

IV. BACKGROUND

In this section, we review the basic elements common to
webmail infrastructures. We also present an introduction to
PGP and searchable encryption.

A. Mail Architecture

The webmail infrastructure is responsible for end to end
delivery of email. Figure 3 presents architectural components
and protocols typically used to support webmail applica-
tions.

bob@a.com
Mail User

Agent

alice@a.com
Mail User Agent

Mail
Transfer

Agent

Mail
Transfer

Agentalice@a.com
Mail User

Agent

Internet

bob@b.com
Mail User

Agent

alice@a.com
Mail User Agent

alice@b.com
Mail User

Agent

SMTP POP
/IMAP

Figure 3. Email Architecture

1) Components: This subsection describes the architec-
tural components.

Mail User Agent: The Mail User Agent (MUA) is
used to manage a user’s email. It acts on behalf of the
user to send and receive mail from the Mail Transfer Agent
(MTA). Popular MUAs include Microsoft Outlook, Mozilla
Thunderbird, Apple Mail. In a webmail system, the MUA
runs in the server and the pages are rendered as HTML pages
for the browser.

Mail Transfer Agent: The Mail Transfer Agent (MTA)
transfers messages from one server to another. It receives
email either from another MTA or MUA. The transmission
of email follows standardized protocols for message trans-
fers.

2) Protocols: This subsection describes commonly used
protocols.

Simple Mail Transfer Protocol (SMTP): SMTP refers
to the standard for the transfer of messages from one server
to another. It is used by MUA to relay mail through MTA
and it is also used by MTA to send and receive mail between
other MTAs. SMTP as a standard does not encrypt messages
(unless Transport Layer Security encryption is used).

Post Office Protocol (POP) / Internet Mail Access
Protocol (IMAP): POP/IMAP are email retrieval protocols
that specify standards for downloading messages from the
MTA for MUA. Examples of use is found with support for
POP version 3 and IMAP as provided by Gmail.

3) Privacy Threats: In webmail systems, there is a server
for webmail introduced into the standard mail system (Fig-
ure 3). It acts as the Mail User Agent for a number of users
and manages email for all the users. The MUA, unlike the
standard model (Figure 3), is centralized at the server. The
webmail server uses POP/IMAP to download messages from
MTA.

There are several privacy concerns with respect to email
systems. If the connection to the webmail server is not
secured using Hypertext Transfer Protocol Secure (HTTPS)
all the data between a user’s browser and the server will
be in plain text. SMTP, unless used with Transport Layer
Security (TLS) layer, is insecure. Even if the TLS layer is
used, the mail will still be accessible by the owner of the
MTA, through which the mail is routed. This is because
TLS is designed to protect data in an insecure network (like
Internet) and not from the communicating parties. Some of
the security threats involved in email systems are identified
by Kangas et al. [22], and Kaufman et al. [23]. These are
detailed below.

Eavesdropping: When email is unencrypted, potential
hackers who have access to network packets flowing through
the network will be able to read the email sent. This can
be achieved by enabling the promiscuous mode on ethernet
cards.

Identity Theft: If the user’s username and password
is obtained, then hackers have full access to all the email
content. Such password information can be obtained by
eavesdropping on the network.

Invasion of Privacy: The recipient of the mail is able to
get more information from the email header information than
what the sender intends to reveal. For example, the header
will reveal the sender’s SMTP IP address and subject of the
email sent.

Message Modification: Anyone who has administrator
access to the webmail server can modify the messages stored
in the server. It is not always possible for a recipient to
determine that email has been tampered with.

False Messages: It is relatively easy to create false
messages and send it as if it is from any person (as evidenced
by spam).

Message Replay: Akin to message modification, the
message created by user can be saved and sent again and
again.

Unprotected Backups: Messages are stored in plain-text
on SMTP servers, and backups will also contain complete
copies of the messages. Even when the user deletes a
message from the server, the backup will still hold the
content.

39

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Repudiation: As email messages can be forged (for
example see your spam box), there is no way of validating
that the email has been in-fact sent by a particular person.
This has serious implications in business communications,
electronic commerce.

B. Pretty Good Privacy

PGP was created by Zimmermann et al. [12], in 1991
to address the security issues with email. PGP encryption
uses a serial combination of hashing, data compression,
symmetric-key cryptography, and public-key cryptography.
Each public-key is bound to an email address. It serves as
the verification mechanism for the origin of the email. As
the email is encrypted using the private key of the user and
the encrypted version is sent into the network, it addresses
many security issues of the email infrastructure. For webmail
systems, software such FireGPG [24] provide a browser
extension that implements PGP. As PGP support enhances
the security of the email system by encrypting the mails, the
mail becomes unreadable by server. Hence the server cannot
perform keyword searches on the mail.

C. Searchable Encrypted Data

Public Key Encryption with Keyword Search (PEKS) [20]
is one of the seminal works in the area of making encrypted
data searchable. The authors of PEKS propose to encrypt the
message using the Public-Private key infrastructure. Along
with this cipher text a Public-Key Encryption with Keyword
Search (PEKS) of each keyword (the words that make up
the message) is appended to the final message. To send a
message M with keywords W1, W2, ... Wm the following
information is transmitted to the server:

EApub
(M) GPEKS(Apub,W1) G... GPEKS(Apub,Wm)

where Apub is the public key of the user, EApub
(M) is the

encrypted message, PEKS is the function that encrypts the
keywords using Apub. To test whether a word W is a part of
the message, a user supplies PEKS(Apub,W) along with
a trapdoor function Tw to the server, that can test whether
W = W ′ (W ′ being the keywords that are stored in the
encrypted form in the server). If W 6= W ′ the server learns
nothing more about W ′.

Public Key Encryption with Keyword Search Revisited
[25] identifies some of the issues with the original PEKS
and proposed a provably secure algorithm. The authors argue
that if in PEKS the server starts learning the trapdoor then
there can be a categorization of mail formed just based on
the learned trapdoor information. The trapdoor information
is the extra information sent to the server along with the
encrypted keyword for the server to test for the existence of
a keyword.

The authors also identify that in PEKS there is an assump-
tion that the communication channel between the sender
and the server is secure. To enable secure communication

through insecure channels the authors propose a Secure
Channel Free Public Key Encryption with Keyword Search
(SCF-PEKS), that uses a server’s public-private key pair for
communication.

V. ARCHITECTURE

This section describes the various components of Chaavi.
Figure 4 gives the overall architecture of the system.

Browser

Browser
Extension

(Encryption
Engine)

Web
Applicat

ion

Web Server

Database

Mail
Server

Encrypted
Mail and

Keywords

Encrypted
Mail

Keywords

Figure 4. Chaavi - Architecture

A. Browser

The browser is responsible for rendering the pages created
by the web application. Its default behavior can be modified
or enhanced by using extensions or plugins in the browsers.
Modern browsers such as Mozilla Firefox, Google Chrome
provide functionality to write extensions/plugins and install
the extensions locally.

B. Browser Extension

A browser extension is used in Chaavi to encrypt the
secure message sent to the server. It is also used to decrypt
the messages that are sent from the server. Additionally it
has key generation and key management functionality. The
extension is composed of the following modules.

Public-Private Key Generation: As stated earlier,
Chaavi uses a public/private key model for securely commu-
nicating messages. In a public/private key model, a public-
private key pair is generated when the system is initiated for
the first time, for a particular user. The messages encrypted
by the public key can be decrypted only by use of the private
key. The public key as the name implies is shared in a public
forum.

Keyword Encryption Key Generation: Public-Private
key pair is used for secure message communication. A
symmetric key is also generated to encrypt the individual
keywords present in the mail. A symmetric algorithm (unlike
the Public-Private key) is used here as the keywords need
not be decrypted by anyone else other than the sender of the
message.

Key Management: Key management is performed using
a graphical user interface (GUI). The GUI enables the user
to add or delete the public keys of the recipients with whom
the user wants to communicate through mails.

40

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Encryption: The functionality of the encryption module
is to encrypt the messages that are sent to the server from
the browser. It also extracts and encrypts the individual key-
words in the message. The encryption module is triggered
from the web application when the user submits a mail to
send it to the web server. This module encrypts the message
using the recipients’s public key and the keywords with the
keyword encryption key.

Decryption: When an encrypted message is sent from
the server to the browser, the decryption module decrypts the
messages using the private key of the user that is generated
during system initialization.

C. Web Application

The webmail application provides graphical user inter-
faces for the users to read, send and search messages.
It comprises of both server-side and client-side (browser)
functionality.

When a user sends a message from the web application
(Figure 5), the Encryption module encrypts the message and
extracts and encrypts the keywords. The web application
sends the encrypted message and keywords to the web
server. On receiving the encrypted message and the key-
words, at the server-side the application saves the encrypted
message alongside the encrypted keywords in a database for
future retrieval. The application then transfers the mail to the
Mail Server (SMTP server) for the mail to be be delivered
to recipient.

Browser Browser
Extension

Webserver +
Database

Mail
Server

Plaintext
Message

Encrypted
Message +
Encrypted
Keywords

Encrypted
Message

Sending
Message

Search
Message

Plaintext
Keyword Encrypted

Keyword

Corresponding
Encrypted
MessagePlaintext

Message

Figure 5. Sending and Searching for a Message

When the user wants to search for a particular keyword
in their inbox, the encrypted keyword is sent to the server-
side. The web application then searches for the mails cor-
responding to that particular encrypted word and then sends
the encrypted mails back to the user.

D. Database

The mail storage and organizational functionality is al-
ready handled by the web application provided by Squirrel-
mail. One custom table, search is added to the database,
which stores the < message id, encrypted keyword >
pair. This database is looked up when the user performs
a keyword search.

E. Mail Server

The mail server sends and receives email communicated
to it through the Internet. The mail server functionality is not
modified by our system. The web application communicates
with the mail server to send and receive messages.

VI. IMPLEMENTATION

The following software is used to implement the different
components in the system:
• Browser - Google Chrome
• Browser Extension - Google Chrome using Javascript
• RSA encryption/decryption library from hanewin.net

[26]
• AES encryption library [27]
• Web Application - Squirrelmail over PHP and MySQL
• Mail Server - Using the POP3 interface of the

csd.uwo.ca mail server
The implementation details of individual modules of the

system are detailed below.

A. Browser Extension
Public-Private Key Generation: The RSA algorithm

[28] is used for the creation of keys. The key requires two
large prime numbers as the input along with a random seed.
All of these inputs are created by the extension randomly
and provided as input for key generation. The keys are
then stored locally along with the user name, for future
retrieval in the local browser database. The key generation
is implemented using the RSA libraries available from
hanewin.net [26].

AES Key Generation: The symmetric AES key algo-
rithm is used to encrypt the individual keywords present in
the mail. The AES key generation algorithm takes as input
a random seed, which is provided by requesting the user to
move the mouse over the browser window. That generates
some random co-ordinates, which is then used to generate
the key.

AES is a natural choice for the symmetric key algorithm
as it has been analyzed extensively and used worldwide [29].
However, unlike PEKS [25], AES algorithm does not support
trapdoor and hence it is susceptible to chosen plaintext
attacks (The attacker has the capability to choose arbitrary
plaintext and the corresponding cipher texts). Moreover
the encryption of the keywords under AES negates the
possibility of performing range searches (e.g., 10 < b <
20) or similarity searches (name staring with ‘ka’).

41

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Key Management: The GUI for key management (Fig-
ure 6) is developed using the options functionality provided
by the Chrome extension framework. It is used to insert the
public keys of the recipients with whom the user wants to
communicate. The private key of the user cannot be managed
using this interface (the system automatically generates it
when the user logs in for the first time). The keys are
stored in the local storage database provided by HTML5.
The local storage enables key-value storage locally managed
by browser.

Figure 6. Key Management

Encryption: The user is provided with a HTML form
from the web application, which contains input fields to
enter the recipient email address, subject and the contents
of the mail. The form submission event (onsubmit event)
is associated with a custom submit event handler, which is
hooked to the encryption module. The encryption module
encrypts the contents of the mail using the user’s public key
and replaces the value in the field (contents of the mail) with
the encrypted message. Along with this, the keywords in the
message are extracted by the keyword extraction function
and each keyword is encrypted using the AES key and stored
in an object. The keyword extraction This object is serialized
in JSON (Javascript Object Notation) and sent to the server
along with the encrypted message.

Decryption: When an encrypted message is sent from
the server to the browser the server adds the attribute value
post−deencrypt to attribute class. The extension identifies
these messages and decrypts the messages using the private
key of the user. This decrypted message replaces the original
encrypted message in the html page so that the user can see
the message in the encrypted mail.

B. Web Application

An open source web application (Squirrelmail) is iden-
tified and it is modified for our application. Squirrelmail
is responsible for storage and organization of the mails.
Our custom module is developed in PHP and added to
Squirrelmail to save the encrypted messages alongside the
encrypted keywords and for the retrieval of the messages
based on the given encrypted keyword.

VII. EXPERIMENTS

The performance of algorithms used in Chaavi (Privacy
Preserving Web Mail with Keyword Searches) is studied in
terms of space and time consumed by the algorithm in the
local client system. Even though the performance of the
encryption algorithms has been studied before, we focus
on the performance of our system. The results presented
in this section are intended to provide some insight on the
overhead provided by the algorithms in a browser based
extension environment. Since encryption and decryption is
performed in the client browser system, the encryption and
decryption is independent of the number of users currently
using the system. Hence, we focus on the performance of
the encryption algorithms for a browser-based extension
environment.

All the experiments are executed in a Pentium IV Core 2
Duo processor using Google Chrome 5.0.375.99 beta.

A. Time Complexity
The following algorithms are studied with respect to the

execution time.
• Key Generation
• Encryption and Decryption (RSA Algorithm)
• Keyword Encryption (AES Algorithm)
1) Key Generation: Key generation is expensive since

it involves finding two large random prime numbers and
finding a product of the prime numbers based on the given
random seed. The length of keys (as measured by bits)
can be of sizes: 128, 256, 512, 1024. The higher the
number of bits used, the more difficult it is to break the
key (According to Schneier et al. [30], for breaking AES
with key size greater than or equal to 256-bit through brute
force will require fundamental breakthroughs in physics and
understanding of universe). However, generating larger keys
is time consuming. We present the average time taken for
key generation for different bit sizes in Figure 7.

As can be seen the keyword bit size increases the creation
time exponentially. The 1024 bit key generation takes around
41 seconds. However, as this is a one time activity (when
the user sets up the system) the usability and inconvenience
is minimal.

2) Encryption and Decryption: When the user wants to
send an email the encryption module is executed each time,
and the decryption module is activated when the user wants
to read an email. This is a frequent activity and therefore
more computation time spent on these modules will impact
usability. The encryption and decryption algorithm is run
over random data (which represents an email message)
set using the Javascript library in Chrome browser. The
performance of RSA algorithm is studied here in a browser
environment. The following are the results using a 512 bit
key (Figure 8).

It can be seen that at a relatively larger message size,
around 212 KB, the time taken for encryption and decryption

42

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Key Generation

Figure 8. Encryption and Decryption

is less than 2 seconds. However as the message size increases
in the order of megabytes, the time is around 16 seconds. A
67 MB message takes around 16 seconds to encrypt and 9
seconds to decrypt, which is still acceptable for sending such
a large message. Moreover, most webmail systems have a
limit of 10 MB on message sizes.

3) Keyword Encryption: In this phase the performance of
AES algorithm is studied (Figure 9). Each word from the
message is extracted and is encrypted using the AES algo-
rithm. There is no decryption phase here, as the encrypted
words are checked against each other.

It can been seen that there is a linear relationship between
the message size and time taken for encrypting keywords. It
has to be also noted that when there are duplicate words the
encryption is not done twice. However, in these experiments
each word was generated at random with a random size (with
maximum as 25 bytes). The probability of the same word

Figure 9. Keyword Encryption Time

repeating is very low for this case.

B. Space Complexity

In our study of the space complexity, we were interested
in the following:

1) Increase in size of the keyword index
2) Increase in the size of the final mail
1) Impact of increase in size on the keyword index: The

AES algorithm is executed over the generated keywords
and the impact of the size of the encrypted keywords on
execution time is examined (Figure 10). There is close to
a 10 times increase in the generated encrypted keywords
compared to the keyword’s actual size. This can pose a
design challenge at the database level on how to store these
keywords for efficient lookups at the server level.

Figure 10. Keyword Encryption Size

43

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Impact of increase on Final Message size: Here we
study the total increase in the email size. The email that is
sent to the server of the recipient will be in this format and
the any increase in size, will increase the overall network
traffic.

Figure 11. Message Size

It can be seen from the graph (Figure 11) that initially,
when the message is transferred, there is not much of an
increase in the encrypted message size (8 bytes to 186
bytes, 18 bytes to 199 bytes, 404 bytes to 722 bytes).
However as the size increases beyond 4MB there is a steep
increase in the difference between the message size and
encrypted message (4MB to 5MB, 8MB to 11MB, 66MB to
90MB). On average, there is a 3 times increase in size when
encrypted using RSA. This is another major factor that has
to be taken into consideration while using this system.

VIII. CONCLUSION

We proposed a privacy preserving architecture for our
webmail system, that enables secure communication of
messages using a public/private key model and privacy
preserving keyword search functionality using AES key
encryption algorithm.

Our approach requires every client to install an exten-
sion to their browser and the cloud computing provider
to modify their webmail application to support encrypted
keyword search. Even though technically this is a possible
solution, economically a cloud provider might not prefer this
approach. Most of the business models in web application
are built around the contextual advertising model, where
the cloud provider relies on the user’s data to deliver the
relevant advertisements to the user. In our case as the
data is encrypted in the server, the cloud provider will not
have access to the user’s data. Works such as Toubiana
et al. [31], try to address this problem by offloading the
keyword extraction in contextual advertising to the client

browser. Approaches like [31] needs to be modified for our
architecture so that our system remains economically viable.

Unlike in PEKS [25], our system does not use a trapdoor
function. This makes our system more susceptible to chosen
plaintext attacks. If a recipient of a mail is also a potential
attacker, the recipient can eavesdrop the encrypted keyword
information sent from the sender to the server, and make a
guess on what keyword represents the encrypted cipher by
analyzing a number of mails sent to the recipient (attacker)
from the same sender. However, our contribution is the
proposal of the framework. The encryption algorithms used
can be modified to utilize more secure alternatives in our
architecture.

Our system makes an assumption that the browser and the
browser extension framework is trustworthy. We believe it
is a fair assumption, as the user can control and monitor the
browser activity and any aberration of browser functionality
can be detected by the user (at-least theoretically).

In our performance study, we see a considerable increase
in the size of the message and the keywords after encryption.
This will have a direct effect in the database storage and the
keyword look up time.

We have also not implemented the functionality to add the
incoming messages to the encrypted search database. Future
work should address this. Future work also involves detailed
study on the strength of the encryption, support to range
and similarity searches, improvements to the algorithms used
whilst maintaining performance.

ACKNOWLEDGEMENTS

The authors would like to thank the IBM Center of
Advanced Studies and NSERC for their funding.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing,” National Institute of Standards and Technology,
Information Technology Laboratory, vol. Version 15, 10-7-09,
p. 2, 2009.

[2] D. Kenny and J. Marshall, “Contextual marketing–the real
business of the Internet.,” Harvard Business Review, vol. 78,
no. 6, p. 119, 2000.

[3] “MarketsAndMarkets.com Cloud computing market - global
forecast (2010 -2015).”

[4] R. Gellman, “Privacy in the clouds: Risks to privacy and
confidentiality from cloud computing,” in World Privacy
Forum, pp. 1–26, 2009.

[5] S. Warren and L. Brandeis, “The right to privacy,” Harvard
Law Review, pp. 193–220, 1890.

[6] “The United Nations Declaration of Human Rights,” The
American Journal of International Law, vol. 43, no. 2,
pp. 316–323, 1949.

[7] “Top Threats to Cloud Computing V1.0,” tech. rep.

44

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] T. Garfinkel and M. Rosenblum, “When virtual is harder than
real: Security challenges in virtual machine based computing
environments,” in Proceedings of the 10th conference on
Hot Topics in Operating Systems-Volume 10, p. 20, USENIX
Association, 2005.

[9] K. Ramachandran, H. Lutfiyya, and M. Perry, “Chaavi:
A Privacy Preserving architecture for Webmail Systems,”
in CLOUD COMPUTING 2011, The Second International
Conference on Cloud Computing, GRIDs, and Virtualization,
pp. 133–140, 2011.

[10] J. Postel, “RFC821: Simple mail transfer protocol,” tech. rep.,
1982.

[11] T. Dierks, “The transport layer security (TLS) protocol ver-
sion 1.2,” 2008.

[12] P. Zimmermann, The official PGP user’s guide. MIT Press,
May 1995.

[13] S. Goldwasser and S. Micali, “Probabilistic encryption {&
how to play mental poker keeping secret all partial in-
formation,” in Proceedings of the fourteenth annual ACM
symposium on Theory of computing, (New York, NY, USA),
pp. 365–377, ACM, 1982.

[14] C. Gentry, A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

[15] A. Yao, “Protocols for secure computations,” in Proceedings
of the 23rd Annual IEEE Symposium on Foundations of
Computer Science, pp. 160–164, Citeseer, 1982.

[16] W. Itani, A. Kayssi, and A. Chehab, “Privacy as a Ser-
vice: Privacy-Aware Data Storage and Processing in Cloud
Computing Architectures,” in 2009 Eighth IEEE International
Conference on Dependable, Autonomic and Secure Comput-
ing, pp. 711–716, IEEE, 2009.

[17] TCG, “Trusted Computing Group (TCG) and the TPM 1.2
Specification,” in Trusted Computing Group, 2005.

[18] “Trusted Computing: An Already Deployed, Cost-Effective,
ISO Standard, Highly Secure Solution for Improving Cyber-
security,” tech. rep.

[19] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter,
H. Isozaki, J. M. McCune, B. J. Parno, A. Perrig, M. K.
Reiter, and H. Isozaki, Flicker: an execution infrastructure
for tcb minimization, vol. 42 of an execution infrastructure
for tcb minimization. New York, New York, USA: ACM, Apr.
2008.

[20] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano,
“Public key encryption with keyword search,” in Advances in
Cryptology-Eurocrypt 2004, pp. 506–522, Springer, 2004.

[21] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-
Preserving Multi-keyword Ranked Search over Encrypted
Cloud Data,” in IEEE INFOCOM, 2011.

[22] E. Kangas and L. President, “The Case for Email Secu-
rity,” Published as a Lux Scientiae Article, available at
http://luxsci. com/extranet/articles/email-security. html (ac-
cessed 1 May 2007), 2004.

[23] L. Kaufman, “Data Security in the World of Cloud Comput-
ing,” Ieee Security And Privacy, vol. 7, no. 4, pp. 61–64,
2009.

[24] “http://getfiregpg.org/s/home (Last accessed on June 23rd
2012).”

[25] J. Baek, R. Safavi-Naini, and W. Susilo, “Public key encryp-
tion with keyword search revisited,” Computational Science
and Its Applications–ICCSA 2008, pp. 1249–1259, 2008.

[26] “http://www.hanewin.net/encrypt/rsa/rsa.htm (Last accessed
on June 23rd 2012).”

[27] “http://www.hanewin.net/encrypt/aes/aes.htm (Last accessed
on June 23rd 2012).”

[28] R. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

[29] H. B. Westlund, “NIST reports measurable success of Ad-
vanced Encryption Standard - News Briefs - National Institute
of Standards and Technology - Brief Article,” Journal of Re-
search of the National Institute of Standards and Technology,
2002.

[30] B. Schneier, “Snake Oil. Crypto-Gram Newsletter
(http://www.schneier.com/crypto-gram-9902.html#snakeoil)
[Online on 05th September 2011],” 1999.

[31] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and
S. Barocas, “Adnostic: Privacy preserving targeted advertis-
ing,” in 17th Annual Network {& Distributed System Security
Symposium, San Diego, CA, USA, Citeseer, 2010.

45

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Organizing Security Patterns Related to Security and Pattern Recognition
Requirements

Michaela Bunke, Rainer Koschke, and Karsten Sohr
Center for Computing Technologies (TZI),

Universität Bremen, Germany
{mbunke|koschke|sohr}@tzi.de

Abstract—Software security is an emerging area in software
development. More and more vulnerabilities are published
and highlight the endangerment of systems. Hence, software
designers and programmers are increasingly faced with the
need to apply security solutions to software systems. Security
patterns are best practices to handle recurring security prob-
lems. The abundance of documented security patterns calls
for meaningful classifications to ease searching and assessing
the right pattern for a security problem at hand. Existing
classifications for security patterns consider only a small
number of patterns and their purpose is often focused on
implementation issues. Therefore, we identify missing aspects in
existing classifications and the similarities between design and
security pattern classifications. Based on that, we introduce two
new classification schemes. The first is based on application
domains formed by a literature survey on security patterns
published in the period of 1997 to mid-2012 to cover the whole
bandwidth of existing security patterns. The second is based
on a subset of the collected patterns that are concerned with
software and combines pattern-recognition needs and security
aspects.

Keywords-Security Patterns, Design Patterns.

I. INTRODUCTION

Existing security pattern classifications are often based
on a few security patterns. Their scope is often limited to
special areas such as implementation patterns. In addition,
the heterogeneity of the published patterns in this context is
very high. In that context, our paper provides a systematic
literature review of published security patterns in the period
of 1997 to mid-2012. We propose two new classification
schemes. The first summarizes all collected security patterns
and organizes them into application domains. The second
shows in detail which security and implementation forces
security patterns with respect to software have. This clas-
sification is an extension of our previous work presented
at the International Conferences on Pervasive Patterns and
Applications (PATTERNS 2011)[1]. We updated our previ-
ous work with new security patterns published till mid 2012,
enhanced it with a comparison of design and security-pattern
classifications and depict challenges in organizing security
patterns.

In the domain of software development, design pat-
terns have been proposed as specific solutions for recurring

problems in software design [2]. These patterns are also
often called software-design patterns. Yoder and Barcalow
summarized some existing patterns targeting security and
introduced the term security pattern [3], only three years
after Gamma et al. [2] proposed their design patterns.
Security patterns are best practices aiming at ensuring
security [4], [5]. Later on we will use the terminology
software-security patterns that describe software-related
security patterns. These patterns describe security aspects
relevant in software design, development, and maintenance.

Existing pattern classifications are mostly based on a
small subset of patterns. Their scope is often limited to
special areas such as implementation patterns. For instance,
Hafiz et al. formed their classification with only 14 security
patterns [6], but there exist many more security patterns.
Another problem, however, is that information-security ex-
perts are rarely development experts [7]. Thus, the usage
of existing security patterns and selecting them by way of a
classification is a difficult task for non-security professionals
who are interested in security aspects.

Therefore, we conducted a systematic literature review
and collected the published security patterns in the period of
1997 to mid-2012. We propose a new classification scheme
that summarizes 415 security patterns, a much longer list
than we found in three surveys [8], [9], [10] and the one
by Yoder and Barcalow [3]. Moreover, we shaped this
classification scheme towards the selection by application
domains, which is relevant for researchers and practitioners
who are interested in security patterns.

Retrofitting security aspects into a software system is
a difficult task [3]. Accordingly, it would be useful to
know which security aspects are already implemented in
a software. For instance, Gamma’s design patterns can be
detected automatically in software systems, but as far as we
know, no such approach exists for security patterns [11].
Design and security patterns seem to be very similar except
for the security factor, but their concrete similarities and
differences are still an open issue in research [11].

Hence, we inspect design and security classifications to
determine their similarities and differences to derive possible
criteria for a classification that reflect pattern recognition
requirements. We use the software-security patterns of our

46

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

application-domain classification as a base for this further
distinction. Furthermore, our classification is inspired by
pattern-recognition needs and combined with the security
issues that these patterns solve. For example, this classifica-
tion can be used by software developers to choose patterns
according to particular security requirements. We will use
this as a basis for our further research in security-pattern
recognition and validation.

The remainder of this paper is structured as follows. An
overview of classifications in general is given in Section II.
Existing classification approaches for security patterns will
be described in Section III. In Section IV, we describe
our literature survey and depict challenges in categorizing
security patterns in Section V. Afterwards, we will in-
troduce our application-domain classification and specific
classification for software-security patterns in Section VI
and VII. In Section VIII we will discuss the two presented
classifications. Finally, we will conclude and give an outlook
in Section IX.

II. REQUIREMENTS FOR CLASSIFICATIONS

The increasing number of patterns makes it necessary to
develop classifications. This section describes requirements
for classifications in general and on security patterns in
particular.

A classification should be based on systematic methods
and techniques to organize a mass of patterns. A classifi-
cation organizes patterns into groups of patterns that share
one or many properties such as the application domain or
a particular purpose. The kind of properties that should be
used is not fixed and can be customized according to one’s
needs. A pattern can have more than one specific property.
Therefore, it may be included in more than one classification
category.

According to Buschmann et al., a pattern classification
scheme should meet some basic properties [12]. It must
both be simple and easy to learn. This should be supported
by using only a few classification criteria to reduce the
complexity for users. In addition, a classification should
reflect the main properties of a pattern to classify. Last
but not least, a classification scheme should provide the
possibility to classify new patterns.

Fernandez et al. pointed out that a classification should
make the application of patterns much easier along the
software life-cycle [13]. Because it is impractical to look
at all details of all patterns during pattern selection for the
problem at hand, a classification should help to understand
the essential nature and value of patterns.

A natural way to classify patterns is to categorize them
according to the criteria shown in Figure 1. A simple and
intuitive classification can provide one or more of these
criteria:

• Discipline - categorize patterns according to the disci-
pline when they are applied such as requirements or

Criteria

Purpose

Scope

Granularity

Paradigm

Domain

Discipline

Figure 1. Intuitive classification.

reverse engineering.
• Domain - differentiate patterns by their application

domain such as network, embedded systems, or dis-
tributed systems.

• Granularity - rank patterns depending on the level at
which they address a system, e.g., they may address
software design or coding patterns.

• Paradigm - sort patterns according to paradigms, e.g.,
programming paradigms such as object-oriented or im-
perative programming.

• Purpose - order patterns by the kind of problem a
pattern solves and the point in time it may be applied.

• Scope - organize patterns with regard to the character-
istic of using them, e.g., class or object representation
(see [2]).

III. EXISTING CLASSIFICATIONS

The presented classification criteria in Section II are
simple, but do not always fit for selecting the right pattern
for a special purpose because of their generality. Therefore,
more specific classification schemata based on one or more
criteria have been developed to meet special purposes. Due
to the fact that security patterns are formed according to
the archetype of design patterns, we will start with clas-
sifications for design patterns and continue with existing
security-pattern classifications. We will close this section
by discussing gaps in security-pattern classifications and
whether design-pattern classifications can be used to classify
security patterns.

A. Design-Pattern Classifications

Gamma et al. introduced the first classification of design
patterns (GoF patterns) [2]. GoF (Gang-of-Four) patterns is
an alternative name for the design patterns introduced by
Gamma. They classified their patterns based on two criteria:
scope and purpose.

As depicted in Figure 2, the “scope” dimension is dis-
tinguished by object composition and class inheritance. The
purpose dimension is split into creational, a structural and a
behavioral criteria. A pattern that is related to an object cre-
ation fits into the creational criteria. If a pattern is concerned

47

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Creational BehavioralStructural

Factory

Singleton

Class Related

Object Related

Purpose

(class based)
Adapter

Facade Iterator

Interpreter

Scope

Figure 2. GoF classification with a few examples [2].

with compositions or structures that are created by classes or
objects, it is called structural. The last criterion behavioral
deals with the way communication or responsibilities are
distributed.

Zimmer organized the GoF patterns according to their
relationships [14]. He classified the relationships in pairs
(X,Y) where X and Y are different design patterns. The
relationships are defined as follows:

• X uses Y in its solution,
• X is similar to Y,
• X can be combined with Y,

With these categories, he introduces a new layer structure
for pattern classification. According to Figure 3 relationships
and structure of patterns are distinguished into three layers:

• Basic design patterns and techniques
• Design patterns for typical software problems
• Design patterns specific to an application domain

Basic design patterns and techniques

Patterns specific to an application domain

Patterns for typical software problems

X is similar to YX uses Y in its solution X can be combined with Y

Interpreter

Composite

Visitor

Decorator

Figure 3. Zimmer’s classification with a few examples [14].

Later on, Buschmann et al. presented another organizing
approach [12]. They state that all patterns reside on different
abstraction layers and it would be more useful to organize
them into criteria that express their abstraction level. There-
fore, the authors divide their own patterns into three kinds
of patterns:

• Architectural patterns: specify the fundamental struc-
ture of applications.

• Design patterns: describe often occurring structures
of software-component communication that solve a
recurring design problem for a specific context.

• Idioms: coding patterns, that is, proven conventions and
techniques used during the implementation phase of an

application.
Some patterns depend on the technology or domain

they are used for and implemented in. These are so-called
domain-dependent patterns, e.g., Java Platform, Enterprise
Edition (JEE) design patterns. These patterns can be used
only in the JEE environment. A system of such patterns has
been described by Alur et al. [15]. The authors want to keep
the classification simple for their patterns, so they assume
“each pattern hovers somewhere between a design pattern
and an architectural pattern“. These patterns can be classified
in the following categories according to their logical tiers
(see Figure 4). The presentation tier is responsible for
creating the presentation used by the client to interact with
the user. The business tier is responsible for executing the
business logic of the application and applies the business
logic to the information received from the integration tier.
The integration tier performs the data-access operations for
the application.

Integration

Business

Patterns Tier

PresentationComposite View

Service Locator

Service Activator

Figure 4. JEE pattern classification with a few examples.

The design patterns we are discussing exist since 1994.
Classifying them is not a highly active research topic in
the design-pattern community. An exception is arising new
technologies like JEE which require new classifications or
the re-evaluation of existing ones. The older ones were not
refined further, except for some theoretical abstractions like
the one by Hasso and Carlson [16]. They use a complex
algebraic structure to classify design patterns.

In 2006, Shi and Olsson identified a lack of classifications
for the need of design-pattern recognition [17]. They decided
with the hidden agenda of detecting design patterns a new
classification approach for the 23 GoF patterns. They suggest
a reclassification related to the need of pattern detection by
using five categories language provided, structure driven, be-
havior driven, domain specific and generic concepts. When a
pattern is implemented in some programming language and
can be identified by looking at the inheritance hierarchy or
specific method names, the pattern is part of the language
provided category. Patterns that are deeply shaped by their
structure and can be identified by their inner-class relation-
ships such as the Bridge or Composite pattern are structure
driven patterns. Patterns that have a structure coupled with
a specific behavior fit in the category behavior driven such
as Singleton or State pattern. Patterns such as Interpreter

48

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or Command serve domain-specific needs. Detecting such
patterns requires domain-specific knowledge. They belong to
the domain specific category. Patterns in the category generic
concepts lack a definite structure and behavioral aspects such
as the Memento pattern.

Their classification allows them to exclude the domain-
specific patterns and generic concepts, which cannot be
found with common behavioral and structural pattern de-
tections. Moreover, they excluded the language-provided
patterns from their detection process because of their easy
detection using name matching, too. Patterns that reside in
the categories behavior driven and structure driven were
used for design-pattern detection in their tool PINOT. After
Shi and Olsson’s classification approach, no new design
pattern schemata have been developed to the best of our
knowledge.

B. Security Pattern Classifications

One of the simplest classifications for security patterns
was used by Kienzle et al. [18]. They presented the struc-
tural and procedural criteria for the differentiation of the
patterns described in their final report. If a security pattern
is concerned with compositions or structures that are imple-
mented in a software product, it is structural. If a security
pattern improves the process for developing secure software
with regard to the organization or management, it is called
procedural.

Konrad et al. [19] proposed a classification method for
security patterns by re-using the classification for design
patterns such as creational, structural and behavioral from
Gamma et al. [2]. They enhanced their classification by
adding further categories such as network, host, and appli-
cation (see Figure 5). In their work, they considered only
the security patterns introduced by Yoder and Barcalow [3].

Creational BehavioralStructural

Application

Host

Network

Session

Session

Check Point

Check Point

Authorization

Check Point

Authorization

Authorization

Purpose

Limited View

Full View with

Errors

Session

Abstraction Level

Figure 5. The classification by Konrad et al. with a few examples [19].

Schumacher’s security patterns book offers a new classifi-
cation system [20]. The classification is based on Zachman’s
framework for enterprise architecture [21]. It is presented
along two dimensions. One dimension represents different
views on the interrogatives “what“, ”how”, “where“, ”who”,
“when“, and ”why“. The second dimension shows different
information model views such as business model or tech-
nology model. Schumacher et al. enhanced this framework
by adding the column security to emphasize the security

view and to be able to address all model levels. They
organized only the patterns contained in the book into their
classification.

According to the JEE pattern classification by Alur et al.
(see Section III-A), Steel et al. classify their JEE security
patterns in a similar way [22]. They separate their patterns in
layers that are typical for the development in the JEE domain
such as Web, Business, and Web Service, and added a fourth
tier that represents the special issue of identity management
(see Figure 6). This classification is designed only for the
special purpose of JEE patterns and does not consider other
types of patterns.

Password Synchronizer Identity

Secure Message Router Web Service

Business

Web

Secure Session Object

Authorization Enforcer

Patterns Tier

Figure 6. The classification by Steel et al. with a few examples [22].

Rosado et al. related security requirements to security
patterns and classified security patterns into two categories:
architectural and design patterns [23].

Hafiz et al. note that simple security-classification con-
cepts are not sufficient to create a partition of security pat-
terns [6]. Their focus is to classify security patterns by their
security impact. Their subset of 14 different security patterns
is organized by a classification of application context, a
Microsoft classification scheme, the CIA [24] and STRIDE
model [25]. The acronym STRIDE contains the concepts
Spoofing, Tampering, Repudiation, Information disclosure,
Denial of service, and Elevation of privilege. Moreover, they
proposed a classification based on a tree structure combined
with the STRIDE model to join the software and security
view in terms of security patterns [6]. The STRIDE model
is normally used for threat modeling including identification
and prioritization of security vulnerabilities. It is a common
tool for security architects who have to prioritize the miti-
gation effort of security techniques.

VanHilst et al. introduced a multi-dimensional matrix
of concerns to classify security patterns [26]. It addresses
the problem coverage and pattern classification. Their idea
was that each matrix dimension represents a well-defined
list of concerns. To classify security patterns, the primary
dimension contains concerns of life-cycle activities, such as
domain analysis or requirements engineering. The second
dimension differentiates security patterns by their compo-
nent source type such as new code, legacy, or wizard-code.

49

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Other dimensions may hold types of security responses
like prevention or mitigation, but they can also be further
customized to a user’s need. Their classification was tested
by different members of their team, who added six different
security patterns to the classification.

Fernandez et al. state that security patterns are architec-
tural patterns [27]. On that account, their approach deals
with two classifications that differ in different viewpoints of
security patterns. On the one hand, they introduced a classi-
fication by a hierarchy of layers and on the other hand, they
proposed a classification based on the relationships between
patterns by using an automatic relationship extraction and
analysis technique. This classification is abstract and regards
only a small number of security patterns.

Washizaki et al. point out that the previously introduced
classifications have only a few dimensions and do not
embrace the relations between patterns [28]. Hence, they
introduce a meta model to express the patterns’ proper-
ties and relations uniformly. The base is an excerpt of
the multidimensional classification dimensions presented by
VanHilst et al. [26]. They selected the dimensions as fol-
lows: Lifecycle stage, Architectural level, Concern, Domain,
Type of pattern and Constraint. In addition, they used the
three UML standard relationship types association, gener-
alization, and aggregation to model relationships between
security patterns, for example, the Firewall pattern [20] is
the generalization of the Address Filter Firewall [29] and
the Application Firewall [30] pattern.

They also propose two instances for the meta model
that represent two points of view, namely pattern-to-pattern
relations, represented as a pattern graph, and pattern-to-
dimension relations modeled as a dimension graph. They
tested their approach with only eight different security
patterns that are close to implementation patterns.

C. Classification Similarity

There exists an evolution of design and security pattern
classifications with respect to the used classification ideas.
We show the influence among security and design-pattern
classifications in Figure 7. Some ideas like the purpose of the
GoF’s design-pattern classification were reused by Konrad
et al.’s security pattern classification. Moreover, the criterion
structural has been adapted by Kienzle et al., whereas the
criterion procedural and behavioral in the GoF classification
have different meanings. Procedural is used with respect
to process patterns for the management or organization of
software development in contrast to behavioral from the GoF
classification where patterns are only software patterns that
will be implemented in a software system.

The criteria architectural and design were proposed by
Buschmann’s classification scheme et al. [12] and picked
up by Rosado et al. [23] and used in conjunction with
requirements for a new classification schema.

The three-tier JEE classification [15] and the four-tier

Kienzle et al.
(2002)

Steel et al.
(2005)

VanHilst et al.
(2008)

Washizaki et al.
(2009)

Gamma et al.
(1994)

Zimmer
(1995)

Buschmann et al.
 (1996)

Shi and Olsson
(2006)

Alur et al.
(2001)

Hasso and Carlson
(2005)

Classifications

D
e
sig

n
 P

a
tte

rn
s

S
e
cu

ri
ty

 P
a
tt

e
rn

s

Fernandez et al.
(2008)

Hafiz et al.
(2007)

Rosado et al.
(2006)

Schumacher et al.
(2005)

Konrad et al.
(2003)

Figure 7. Design and security pattern classification relations – dashed
lines between publications highlight alike ideas.

classification for security patterns [22] are very similar,
too. They differ only in one additional tier by the secu-
rity patterns, which deals with identity information. The
other three tiers have sometimes different names Presen-
tation/Web, Business/Business and Integration/Web Service,
but describe the same criterion (see Figure 4 and 6).

Organizing patterns according to their relationships was
introduced by Zimmer and reused by Fernandez et al. and
Washizaki et al. , but their relations are different. Zimmer
[14] depict a graph with only three predefined types of
relationships and Washizaki et al. focus on the UML stan-
dard to represent pattern relations like generalization or use
relationships [28]. In contrast to that approach, Fernandez
et al. use automatically extracted relationships based on the
pattern description [27].

D. Classification Distinction

We showed that security-pattern classifications were influ-
enced by design-pattern classifications. All published clas-
sifications have one element in common: they take only
a small number of patterns into account. On the security-
pattern side, the used patterns are often very similar to the
patterns first introduced by Yoder and Barcalow [3] and on
the design-pattern side the approaches often consider the
“core” design patterns described by Gamma et al. [2]. Both
subsets of patterns are patterns that will be implemented in a
software system. This may lead to the impression that only a
handful security and design pattern exist and imply that only
programming issues are covered by these patterns. However,
Henninger et al. [31] showed in 2007 that there exist more
than the few patterns published by Gamma et al. [2] and
Buschmann et al. [12]. This statement can also be extended
to security patterns, which can also describe enterprise or
other security related issues.

Most security pattern classifications are more complex to
cover more properties or split purposes or domains into more

50

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

dimensions than design patterns. Because of that, we can
assume that the security pattern community is aware of the
security pattern’s heterogeneity, which reflects the additional
dimensions in the security-pattern classifications. Design-
pattern classifications are often tailored to one group of in-
terest – the software developers. Hence, they are focused on
helping to choose the right pattern in design and developing
to reach a good code quality and system structure. Due to
the fact that the security-pattern audience has more than one
group of interest such as security, software development, or
enterprise-process design, the security-pattern classifications
are built from more heterogeneous criteria than the design-
pattern classifications. Yet, not all interests can be covered
in one classification. Therefore, more security classifications
have been developed till now and developing new ones is
still a current topic in the security-pattern community.

A security view is often added to these classifications
by using common-threat modeling such as CIA [24] or
STRIDE [25]. Adding new views increases the complexity
of a classification. A problem, however, is that information
security experts are rarely development experts [7]. Because
increasing the complexity in security-pattern classifications
can make the usage of a classification more difficult for users
that have no knowledge or experience with security. It may
also lead to difficulties in understanding for other interest
groups within the addressed security-pattern audience.

E. Summary

Security patterns related to software can be categorized
in a way similar to design patterns. Security patterns that
describe other aspects than software-related issues cannot
be distinguished by the criteria the aforementioned design-
pattern classifications offer, such as “tier”, “class related”
or “language provided”. Therefore, we plan to classify the
security patterns in two steps. First, we will look at all
security patterns and organize them according to their appli-
cation domain with respect to their heterogeneity. Secondly,
we will focus on software-related patterns and will develop
a new classification with existing criteria of design-pattern
classifications with respect to software-security patterns.

IV. COLLECTING SECURITY PATTERNS

Existing security classifications are limited by the number
of chosen security patterns. In addition, existing security
pattern surveys are biased by their focus on the same set
of security patterns such as the ones of Yoder and Barcalow
[3]. The SecurityPatterns website, which provides a short
list of security patterns, offers a few more patterns, too,
but mixed with articles that describe the application of
security patterns [32]. This was not an appropriate position
for starting our research activities. Therefore, we decided to
conduct a literature survey to provide a proper background
for our new classification approach, which should cover the
whole range of published security patterns till today. This

Figure 8. Conferences Involved in the Initial Article Selection.

section describes how our literature survey was conducted
systematically following the guidelines by Kitchenham [33],
[34].

A. Article Selection and Discovery Process

We started our literature research with the surveys carried
out by Laverdiere et al. [8], Heyman et al. [9], and Yoshioka
et al. [10]. Their surveys give a good overview of published
patterns, but they refer only to often described security
patterns. Hence, we also considered common pattern-related
conferences (see Table I). and looked for security patterns in
the IEEE Digital Library [35] and the ACM Digital Library
[36] and considered two security patterns books [20], [22].

The discovery process was split into two parts. One part
is the selection of articles published at pattern conferences
and the second part is the search for electronic publications.

1) Searching Through Pattern Conferences: The
aforementioned pattern conferences (see Table I) of the
years 1997 to mid-2012 were skimmed for several keywords,
such as cryptographic, security, software, or secure. At first,
we picked out all publications that contain these keywords.
In this initial selection phase, we found 1268 articles (see
Figure 8). Secondly, we read the abstract if it described the
presentation of a security pattern and made a note of the
authors, publication year, and title. Thereafter, we read the
publications not filtered out previously to verify that they
describe security patterns. In this step, we enhanced our list
with each identified pattern for further readings. Finally, we
scanned the publication references and collected referenced
publications containing the aforementioned keywords. We
stopped the step of cross-reference scanning when we did
not find new publications containing the keywords we
searched for.

2) Searching Through Electronic Publications: On
searching for other electronic publications we used the two

51

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Acronym Description

AsianPLoP Asian Conference on Pattern Languages of Programs
EuroPLoP European Conference on Pattern Languages of Programs
KoalaPLoP Australian Conference on Pattern Languages of Programs
PATTERNS International Conferences on Pervasive Patterns and Applications
PLoP Conference on Pattern Languages of Programs
SugarLoafPLoP American Conference on Pattern Languages of Programming
VikingPlop The Nordic Conference on Pattern Languages of Programs
GRID-STP International Workshop on Security, Trust and Privacy in Grid Systems
ICOMP International Conference on Internet Computing
IFIP WC 11.3 Working Conference on Data and Applications Security
SECURWARE International Conference on Emerging Security Information, Systems and Technologies

Table I
CONFERENCES INVOLVED IN THE INITIAL ARTICLE SELECTION. A GREY BACKGROUND INDICATES THE DISCOVERY BY CROSS-REFERENCES.

digital libraries provided by IEEE and ACM [35], [36]. Both
offer an extensive database search for published publications.
First of all, we used the simple search to find publications
that contain the aforementioned keywords. Due to the fact
that the number of results was very high and too unspecific,
we used the advanced search field provided by the websites
to obtain more localized results. There, we concatenate the
following options with ”and“ and limited them to get better
results:

• The year of publication date has been limited from the
year of the first published security patterns 1997 to mid-
2012.

• The full text must contain the word “pattern”.
• The title must contain one of the aforementioned key-

words.
Unfortunately, these restrictions still provided many un-

wanted results. Therefore, we skimmed the result list from
top to bottom – where the search engines of the digital
libraries provided the ordering based on relevance – and
discontinued if we read more than ten papers that do not
deal with security patterns in their abstract.

Further, we skimmed the collected patterns like the afore-
mentioned conference publications. We verified that they
describe one or more security patterns and then collected
their cross references.

B. Summary

We identified 67 different publications describing security
patterns, including books, journals, proceedings, and tech-
nical reports. Most of them were found by looking at the
Hillside Group [37] pattern conferences such as PLoP and
EuroPLoP (see Figure 9 and Table I) and books. Another
publication type containing many security patterns were
technical reports discovered by cross references. New con-
ferences that have only a few security-pattern publications
are also discovered by cross references (see Table I).

The search at the ACM and IEEE Digital Library pro-
duced many false-positive articles that were at a closer look
no security pattern descriptions, but deal with them in other

Figure 9. Distribution of security patterns across different venues; white
bars denote conferences, the grey bar technical reports, and the black bar
books.

ways like discussing secure software design in practice [38].
Some publications describe more than one pattern. In

total, we got 415 security patterns. This list identified that
some of these patterns have been described more than once.
Hence, we filtered out duplicates and reduced the number
of patterns to 364. These duplicates were identified by the
use of similar names and then comparing their descriptions.
Because of the abundance of patterns, we were not able to
check in depth whether two patterns with different names
relate to the same concept. This was also forced by the
nonuniform descriptions of the patterns, which will be
discussed in the next section.

V. CHALLENGES IN CATEGORIZING SECURITY
PATTERNS

Identifying duplicates is not the only challenge in catego-
rizing security patterns. We agree with Yoshioka et al. [10]
and Heyman et al. [9] that the abstract description of
patterns is another challenge. Because the quality of the
security-patterns descriptions may influence the categorizing
outcome, we spent some time in inspecting the description
forms.

52

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Description Form Inspection

Various descriptive models for security patterns exist
within the security-pattern community [39]. The POSA1

model described by Buschmann et al. is said to be frequently
used to describe the context and usage of security patterns
[12]. Yet, during our literature review we observed that the
patterns are often described in custom styles and do not
follow strictly the POSA model.

Therefore, we gather all used description aspects in the
collected security-pattern publications to review how secu-
rity patterns are described formally. We assume that descrip-
tion aspects that are often used in several pattern descriptions
provide the best clues for selecting and organizing security
patterns.

B. Section Assessment/Examination

There exist 63 different sections or aspects such as Prob-
lem, Intent or Known Use that are used in the 67 collected
security pattern publications. The heterogeneity in naming
the aspects is very high and no mapping between the differ-
ent names exists like the one by Henninger et al. between
the POSA and GoF descriptions [31]. For this reason, we
identified significant sections which can be used to get
a first impression on security patterns and make patterns
comparable (see Table II).

Context is a frequently used description aspect with 49
of 67 hits, but the context description is often very short. In
some publications, it consists only of one or two sentences
(see [40] or [41]). This circumstance makes it hard to
obtain sufficient knowledge or even an idea of what the
pattern is about. Similar findings were made by Laverdiere
et al. for the naming and the section Intent in security-pattern
descriptions [8].

The Problem aspect occurs in about 84 percent of the
publications. In many cases, these problem descriptions are
abstract or describe a simplified problem for the security
pattern (e.g., [40]). Therefore, this description aspect is less
applicable to categorizing security patterns for an applica-
tion domain but suitable to gather the security aspects it
addresses.

The Related Patterns aspect requires a good knowledge
of other security patterns and their application domains to be
used for a distinction. This also applies to the Consequences
aspect where additional knowledge is required to be able
to relate to application consequences in the security area.
Hence, these sections cannot be recommended for novices
in security to accomplish a pattern distinction.

A Known Use aspect depicts where a pattern can be
found in real life. This section often labels software or
software parts like an application login screen, UNIX telnet
or Linux as operating system software. The given keywords

1POSA is the acronym of the design-pattern book series “Pattern-
Oriented Software Architecture” written by Buschmann et al. [12].

Sections Used by # Publications

Solution 58
Problem 56
Related Patterns 50
Consequences 50
Context 49
Known Use 46
Example 33
Forces 27
Example Resolved 25
Structure 25
Implementation 23
Dynamics 21
Intent 22
Also Known As 10
Motivation 10
Participants 8
Applicability 7
Variants 7
See also 7
Collaboration 5
Sample Code 5
Alias 4
Impairments 3
Resulting Context 3
Abstract 3
Benefits 2
Features 2
Properties 2
Preconditions 2
Resultant Context 2
Running Example 2
Alternatives 1
Class-Diagram 1
Classification 1
Conflicts 1
Contradictions 1
Dependencies 1
Design Issues 1
Example Instances 1
Hardware/Software 1
Implementation Factors 1
Implementation Issues 1
Implementation Example 1
Issues 1
Labels 1
Liabilities 1
Non-Security Known-Use 1
Non Software Example 1
Other Example 1
Participants & Responsibilities 1
Rationale 1
Reality Checks 1
Relationships 1
Resolved Example 1
Resulting Context 1
Security Factors and Risks 1
Security Objectives 1
Solution Example 1
Solution Implementation 1
Social Dependencies 1
Specific Context 1
Strategies 1
Trade-Offs 1

Table II
ASPECTS WHICH ARE USED BY SECURITY-PATTERN DESCRIPTION

FORMS. THE OFTEN USED ASPECTS ARE HIGHLIGHTED WITH A GREY
BACKGROUND.

53

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and explanations within this section give a good impression
to which domain this pattern can be applied.

A Solution aspect is used in about 87 percent of the
67 publications. The described solution in the collected
publications is frequently used and provides often a good
depiction of the security pattern and the problem it solves.
Moreover, this section often describes which security aspects
are covered by the pattern and how this could be imple-
mented by software-security patterns. If the description does
not provide a solution aspect, it can hardly be considered a
pattern description. One may argue that the GoF and POSA
description templates neither provide a solution aspect, but
they describe this aspect in a refined manner using the
description aspects Structure, Implementation and Running
Example. This heterogeneity in the form of descriptions is
one aspect that we have to deal with and will be discussed
in the following section.

C. Challenges for our Classification Approach

Besides the high variation in the pattern description
quality, we note that not all often occurring aspects are
equally useful to get a quick access to a pattern’s goal and
application domain.

If one does not have the time to read a whole pattern
description or has a lack of sufficient security knowledge
to understand the described pattern, we propose to look at
first at the Known Use aspect to get an idea of the pattern’s
application domain. On account of the good depiction of the
security pattern and the problem it solves in the Solution
aspect, we can recommend in a second step to look at
this section, if there exists no Known Use section or if
the containing information is not satisfactory. In addition,
the Solution aspect gives hints on how the pattern can be
implemented in software or used for end users or enterprise
processes.

With this strategy, approximately 80 percent of the pat-
terns can be sufficiently understood. The remaining 20
percent can only be organized by reading the full pattern
description because of their insufficient description structure
in comparison to the majority of security publication. So
we decided to read the whole pattern description for each
classification because of the high description heterogeneity
and high varying description quality.

During the pattern description-form examination process
we observed that some description-form aspects are filled in
an insufficient way. An example is the publication by Yskout
et al. where many aspects in the pattern description form
exist, but many of them are filled with one or two words or
with a few sentences [42]. Due to the fact that such an im-
precise description leaves much room for interpretation and
imagination about what the pattern describes, it increases the
difficulty in the distinction process for a new classification.
It may also compromise the correctness of distinction.

Many security-pattern description forms follow in some

aspects the POSA Template, but they are compounded by
different terminology like Problem and Motivation or See
Also and Related Patterns, which describe the same issue in
the publications. A uniform form of description is desirable.
Research should aim at improving the quality of security-
pattern descriptions. Initial work along this line has been
done but only for a small subset of patterns [9], [43].

VI. APPLICATION DOMAIN CLASSIFICATION

The new classification unifies the existing patterns into
a common scheme. In addition, not every task needs infor-
mation about attack surfaces or vulnerability classification
properties like STRIDE or other facets that are introduced
in Section III. On that account, we omit specialized criteria
like STRIDE and focus on universal differences among the
security patterns. With this in mind, we develop a new
classification with a more general perspective based on a
domain criterion (see Section II) and the security patterns
we collected in our systematic literature review (see Section
IV).

A. Organizing by Application Domain

To derive our classification, we first skimmed over the
data and collected keywords for the security patterns such
as user, password, operating system, enterprise or process.
These keywords were gathered by information we found in
the pattern descriptions.

JEE

3
.
S

te
p

2
.
S

te
p

1
.
S

te
p

Webservice

Windows

AIX

Implementation

Threads

Cookie Linux

Web

Software

Operating
System

Figure 10. Proceeding steps in our classification model.

In the next iteration, we went through the pattern list
and extracted keywords for the patterns. On further reading,
these keywords were unified into common groups. For
instance, we united the keywords AIX, Linux and Preforking
to the group Operating System. The result contains a mixture
of purpose and domain criterion. We formed 13 different
groups this way. To further simplify the classification along
the lines described in Section II, these keywords were further
condensed to form an application-domain based distinction,
which is easy to understand and intuitively applicable (see

54

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10). Finally, Figure 11 depicts the five target appli-
cation domains that were discovered: Enterprise, Software,
Cryptographic, User, and Network. They are described in
the following in more detail.

Software

Network

Crypto. EnterpriseUser

Figure 11. Application-domain based classification.

B. The Application-Domain Criteria

Enterprise-security patterns deal with aspects that are im-
portant for enterprises to ensure security in several enterprise
segments such as third-party communication with suppliers.
This means security in processes, physical authentication
to several areas, risk mining or securing communication
in internal and external businesses. A good example of
this pattern type is the Manage Risk pattern introduced
by Elsinga and Hofman [44]. The problem addressed by
this pattern is as follows: “What is the right (combination
of) paradigm(s) to formulate the corporate security strategy
in order to select and implement the appropriate set of
security safeguards?” The pattern suggests to instruct people
and units to pay attention on known and unknown risks to
develop prevention and roll-back strategies.

Network-security patterns address network infrastructures
and their ideal composition. For instance, the Packet Filter
Firewall pattern describes how to shield an internal network
from Internet attacks just by tunneling the communication
traffic through a single controllable instance [20] and the
Virtual Private Network pattern [39] depicts how secure
connections over public networks such as the Internet can be
established. The point-to-point tunneling protocol (PPTP) is
a specific implementation of this pattern [97].

User-security patterns are focused on user behavior or
their awareness of security issues, for example, the Password
Lock Box pattern, which encourages the user to protect
master passwords with the highest level of security [52].
It stresses the significance of protecting master password
files and depicts situations where such a file can be useful.
The Keep It Secret pattern [52] highlights that published
or publicly known passwords pose a potential danger to be
misused by attackers. To minimize this effect, one should
keep a password secret or use Password Salt (another
security pattern) to vary the password [52]. Another pattern
in this domain describes how one can configure the web
browser to control how and when cookies are set and used
[54].

Software-security patterns describe mostly how to struc-
ture parts of software to ensure security requirements.
Sometimes they also describe a specific behavior or way to
manage or control a data flow in a secure way. On one hand,
patterns in this domain can be very specific like JEE patterns,
which can be applied only to Java enterprise applications
[22]. An example is the Container Managed Security pattern
[22], which is a standard way to enforce authentication and
authorization in a JEE application so that no special hard-
coded security policies are necessary. On the other hand,
patterns in this domain can be more general like the Single
Access Point pattern, which models a kind of login structure
that can be found in several software systems like UNIX,
ICQ or Twitter [3]. Patterns of this application domain can
also be called Security Design Patterns along the lines of
the GoF design patterns, which also focus on software.

Cryptographic security patterns depict secure commu-
nication between two applications over a network. They
are often described abstractly. Therefore, it is not clear
whether these patterns reside in the Network or Software
domain. Their implementation or application is possible in
both domains. On that account, we view them as a part
of network and software in our classification (see Figure
11). An example is the Sender Authentication pattern. It
presents the problem and solution how to guarantee that a
received message has been sent by a person one expected
[40]. Obviously, such a pattern can be applied at network
level (level 3 and 4) or at application level, and depending
on that, it resides on the Network or Software application
domain.

The aforementioned classifications in Section III cover
only parts of the fields we discovered. The Network domain
is partly touched by the classification of Konrad et al. [19].
Schumacher et al. [20] factor Enterprise requirements cus-
tomizable with viewpoints in their classification, but they
do not distinguish other domains as our approach does. The
domains User and Cryptographic are not mentioned in the
existing classification approaches, although they represent
approximately one sixth of the patterns (see Table III).

VII. MERGING PATTERN RECOGNITION AND SECURITY
NEEDS

The application-domain classification scheme can be tai-
lored further to practical or research interests by employing,
for example, viewpoints as recommended by Fernandez
et al. [27]. For software engineering in particular, applicable
patterns are located in the category Software, which can
be further divided into specific purposes such as pattern
detection by using the existing pattern classifications by
Shi and Olsson [17]. Developing new viewpoints or finer
grained classifications to cover new needs in terms of
special purposes for one of the application domains is also
conceivable.

An interesting issue for us is the effect of implemented

55

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Application
Domain Publications Describing Security Patterns

Total no. of
Security Pat-
terns

Enterprise [20], [45], [46], [47], [44], [48], [49], [50], [51] 86

User [52], [53], [54] 24

Cryptographic [40], [55], [56], [57], [58] 37

Network [20], [29], [39], [30], [41], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73] 56

Software [3], [18], [20], [22], [42], [47], [50], [54], [55], [57], [59], [63], [64], [67], [74], [75], [76], [77], [78], [79],
[80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94], [95], [96]

161

Table III
PUBLICATIONS AND NUMBER OF SECURITY PATTERNS PER APPLICATION DOMAIN

security aspects in software. The usage of security patterns
can harden and protect a software against common threats
[4], [5]. Halkidis et al. [98] showed that one can determine
architectural risks for a software systems through the fact of
usage or non-usage of security patterns. Therefore, we as-
sume that software which is designed using security patterns
is more secure, and if we are able to detect these patterns, we
can rate the degree of security of a software system by the
usage of security patterns. This is comparable to software
design patterns, which imply a higher code quality when
used appropriately.

A. Classification

Our approach is motivated by searching for security pat-
terns in software to be able to determine the built-in security
mechanisms of a software system. The application-domain
classification scheme indicates which security patterns are
relevant for designing software. Due to the fact that this
classification scheme is very general, we decided to tailor the
patterns in the Software domain further to our research goal.
We chose two dimensions for our classification to show the
pattern’s security impact and its purpose in terms of software
development. The first dimension represents the pattern-
recognition aspects and the second common security aspects
(see Figure 12). All classified software-security patterns in
detail can be found in the Appendix. Our classification
dimensions will be described in depth in the following
sections.

1) Pattern-Recognition Aspects: Early approaches to
design-pattern detection date back to the year 1996 [99].
There exist several specialized approaches of pattern recog-
nition that use different aspects of patterns for their de-
tection, such as structural, behavioral aspects or software
metrics. The common matching techniques are all based on
structural and/or behavioral aspects, e.g., [17], [99], [100],
[101]. Patterns of these aspects need different information

and analyses to be automatically detected in a software
system. Having a distinction for these aspects is very helpful
to define which analyses and what kinds of information are
needed to find a specific pattern.

Some existing security-pattern classifications depicted in
Section III are formed on ideas from formerly published
design-pattern classifications. Thus, they imply that security
patterns are like design patterns. We gave another picture of
the security-pattern landscape with our application-domain
classification. Due to the fact that we extracted software-
security patterns of the whole set of security patterns, we
can use some of the design-pattern classification criteria for
our needs.

Representing information relevant to pattern recognition,
we choose some criteria of the design-pattern classification
of Shi and Olsson [17]. Structural software-security pat-
terns are characterized by their particular class structure.
This structure can be realized by inter-class relationships
like inheritance, association or delegation relationships (see
also [17]). The Single Access Point pattern [3], [20] is such
a structure-driven pattern. It provides a single access to a
protected system. The focus, is on the pattern’s structure in
a software described through static relations rather than its
behavior at runtime. Behavioral software-security patterns
are primarily designed from a behavioral point of view. They
can be easier described and found by their typical behavior
than their structure (see also [17]). An example of such a
pattern is the Secure Logger [22]. It is a class that manages
the logging of data in a secure and centralized manner.
Generic Concept security patterns describe very general
solutions for security problems. Unfortunately, many of the
patterns in this category do not provide implementation de-
tails, UML diagrams or other information, such as example
code snippets, that can be used to distinguish between a
structural or behavioral character of the pattern. An example
is the Password Authentication pattern [18], which describes

56

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the secure management of passwords while designing a user
login.

Shi and Olsson [17] also provide the criteria Domain
Specific and Language/Framework provided but they cannot
be directly used for our security-pattern classification. Due
to the fact that security patterns are mostly written in an
abstract way it is not possible to classify a pattern according
to these two criteria. A similar analysis has to be made
for the language-provided patterns which manifest through a
framework-specific structure or method names for this type
of patterns.

2) Security Aspects: Developers tend to view IT security
in terms of software requirements rather than taking the
perspective of an attacker. Software patterns are usually
chosen by developers with a particular goal in mind. For
this reason, we employ general security goals for our pattern
classification and not the STRIDE model, which focuses
on the attacker’s perspective. In the area of IT security,
the most common goals are confidentiality, integrity, and
availability of data [102]. Confidentiality guarantees the
secrecy of data, whereas integrity makes sure that data are
not modified in an unauthorized way. The Secure Visitor
pattern fulfills the latter aspect. Nodes can only be accessed
by a Secure Visitor who prevents unwanted access and unau-
thorized modifications of nodes in hierarchically structured
data. Availability means that data/services are accessible.
The Keep Session Data in Client pattern [92] provides the
accessibility to a website if the connection between client
and server is interrupted for a short time. Sometimes, non-
repudiation (proving an action to a neutral and trustworthy
third party) and accountability (logging certain actions for
audits) are also of interest. One pattern example of these
two aspects is the Audit Interceptor pattern [22]. It intercepts
audit requests and responses to and from the business tier
in JEE applications and logs them in an appropriate way.
In addition, the identification of principals (e.g., users, ma-
chines, and processes), called ”authentication“, is important
as well as access control, which determines which principal
may access which data. Both aspects are used in the Secure
Visitor pattern [20] where the visitor has to verify a user’s
credentials and check it against the access control rules
for modification. As a consequence, our classification con-
siders confidentiality, integrity, availability, non-repudiation,
accounting, authentication, and access control in the second
dimension.

B. Results

We organized all software-security patterns that we de-
scribed in Section III according to the aforementioned
aspects (see Appendix for details). We detected that the
software-security patterns often describe integrity and con-
fidentiality problems (83 and 62 times, respectively). Au-
thentication and access control issues are often used, too. In
total, 58 and 53 patterns per criterion can be found. Lesser

attention in the software-security patterns have the security
aspects availability, accountability, and non-repudiation with
22, thirteen, and two patterns, respectively, that deal with
these problems. As depicted in Figure 12, we found no
structural-driven pattern that covers accountability and no
generic-concept pattern that handles non-repudiation as-
pects. All other security criteria are matched by a software-
security pattern.

We detected 58 behavioral and 37 structural character-
ized software-security patterns. The majority of the patterns
are generic concepts. Generic concept patterns cannot be
directly used for a pattern recognition approach. Most of
these patterns do not provide implementation information
like example code that could enable a distinction into
structural or behavioral. A distinction can be made if further
inspections on the real usage of these pattern in software
systems have been conducted and concrete implementations
can be found and assessed. With this additional investigation,
it may be possible to detect such patterns in the future and
give designers a better idea of how to design and implement
these patterns in a software system. We also expect that for
some of the generic concept patterns like Red Team The
Design, we will find no implementations in software.

VIII. DISCUSSION

The presented application-domain classification scheme
fulfills the requirements of classifications in terms of ex-
pandability, intuitive use, and is applicable for security
laymen. This approach can be expanded by repeating the
proceeding steps described in Section VI-A for new patterns
if new application domains for security patterns emerge.
The intuitive use and the applicability for security laymen is
supported by the usage of only one criterion – selection by
domain– which is easy to decide for a user. We suppose
that a user knows in what domain she will work with
security patterns, e.g., an enterprise process designer may
select Enterprise as her application domain.

We expect that the application-domain classification helps
other researchers and practitioners with specific application
goals focusing on security patterns. A possible use case
for this classification is, e.g., when an enterprise process
architect is looking for a best practice to administer threats
and risks for his enterprise. Then she can have a look at all
enterprise-related patterns listed in the publications of Table
III and will find patterns like Risk Determination and Threat
Assessment [20] to solve her problems.

Furthermore, the second classification can help software
designers to choose the right security patterns for their
software system according to specific security requirements.
This classification gives also a detailed overview which
patterns can be used in general with respect to software
related issues. Moreover, it allows one to select a software-
security pattern according to its security attributes for the
software design phase or determining security features for a

57

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Recognition

Accountability

Authentication

Availability

Confidentiality

Integrity

Non−Repudiation

Secure Visitor

Secure Visitor

Partitioned Application

Partitioned Application

Password Authentication

Password Authentication

Keep Session Data In Client
Check Point

Subject Description

Subject Description

Single Access Point

Check Point

Subject Description

Password AuthenticationSecure Visitor

Access Control

Password Authentication

Keep Session Data In Client

Secure Logger

Secure Preforking

Secure Preforking

Secure Logger

Secure Visitor

Audit Interceptor

Audit Interceptor

Structural Behavioral Generic Concept
Security

Figure 12. Our software security-pattern classification with a few examples.

security assessment.
Besides the open issue – which concrete similarities

and differences design and security pattern have [11] –
we identified two additional gaps in research. One is that
additional work must be done to define a uniform description
for security patterns to increase the description quality. As
mentioned in Section V, some work has been done in this
area but as we showed, the heterogeneity even by newer
pattern publications is still very high. On account of this, it is
desirable to have all security patterns available from a single
source and presented in a uniform format like other existing
open databases for design patterns (e.g., [103], [104]).

Another open issue is that we found no structural pat-
terns with accountability aspects and no general concept
patterns with non-repudiation properties. The absence of
these aspects indicates a gap in the software-security pattern
landscape.

Additional investigations are necessary for all software-
security patterns not only generic concept patterns. For our
classification, we were able to decide whether a pattern falls
into the category of structural or behavioral patterns, but
the pattern descriptions are often not sufficient and exact
enough to use existing pattern recognitions out of the box for
their detection. It remains a high variability in their possible
implementations.

IX. CONCLUSION AND OUTLOOK

In this paper, we presented our systematic literature review
on security patterns, a comparison of design and security-
pattern classifications, discussed challenges in classifying
security patterns, and introduced two new classification
schemes.

The first classification scheme embraces 364 published
security patterns and exceeds in numbers existing classifi-
cations by far. The second classification unites the focus

of pattern recognition and security aspects. It classifies
161 software-security patterns that we obtained in the first
organization process.

This classification will support our future research by the
determined pattern characteristics and the indicated open
issues (see Section VIII). In particular, we plan to detect
and validate software-security patterns implemented in code.
Automatically detected security patterns can support security
and risk assessments and help in reengineering existing
software systems.

X. ACKNOWLEDGMENTS

This work was supported by the German Federal Min-
istry of Education and Research (BMBF) under the grant
01IS10015B (ASKS project).

REFERENCES

[1] M. Bunke, R. Koschke, and K. Sohr, “Application-domain
classification for security patterns,” in Proceedings of the
International Conferences on Pervasive Patterns and Ap-
plications, IARIA Conferences. XPS (Xpert Publishing
Services), 2011, pp. 138–143.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Object-Oriented Software. Addison
Wesley, 1994.

[3] J. Yoder and J. Barcalow, “Architectural patterns for enabling
application security,” in Proceedings of the Conference
on Pattern Languages of Programs, Monticello/IL, 1997,
pp. 1–31, last access: 23.06.2012. [Online]. Available:
http://hillside.net/plop/plop97/Proceedings/yoder.pdf

[4] S. Haldikis, A. Chatzigeorigou, and G. Stephanides, “A
practical evaluation of security patterns,” in Proceedings
of the International Conference on Artificial Intelligence
and Digital Communications, Aug. 2006, pp. 1–8, last
access: 23.06.2012. [Online]. Available: http://inf.ucv.ro/
∼aidc/proceedings/2006/5%20shalkidis.pdf

58

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] M. Hafiz and R. E. Johnson, “Evolution of the mta ar-
chitecture: the impact of security,” Software—Practice and
Experience, Wiley, vol. 38, no. 15, pp. 1569–1599, 2008.

[6] M. Hafiz, P. Adamczyk, and R. E. Johnson, “Organizing
security patterns,” IEEE Software, vol. 24, pp. 52–60, 2007.

[7] K. R. van Wyk and G. McGraw, “Bridging the gap between
software development and information security,” Security
Privacy, IEEE, vol. 3, no. 5, pp. 75–79, Sep. 2005.

[8] M. Laverdiere, A. Mourad, A. Hanna, and M. Debbabi,
“Security Design Patterns: Survey and Evaluation,” IEEE
Canadian Conference on Electrical and Computer Engineer-
ing, pp. 1605–1608, 2006.

[9] T. Heyman, K. Yskout, R. Scandariato, and W. Joosen, “An
analysis of the security patterns landscape,” in International
Workshop on Software Engineering for Secure Systems.
Washington, DC, USA: IEEE Computer Society, 2007, p. 3.

[10] N. Yoshioka, H. Washizaki, and K. Maruyma, “A survey on
security patterns,” Progress in Informatics, vol. 5, pp. 35–47,
2008.

[11] M. VanHilst and E. B. Fernandez, “Reverse engineering
to detect security patterns in code,” in Proceedings of the
International Workshop on Software Patterns and Quality.
Information Processing Society of Japan, Dec. 2007, pp. 25–
30.

[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System
of Patterns. Chichester, UK: Wiley, 1996.

[13] E. B. Fernandez, N. Yoshioka, and H. Washizaki, “Using
security patterns to build secure systems,” in Proceedings
of the International Workshop on Software Patterns and
Quality. Information Processing Society of Japan, 2007,
pp. 47–48.

[14] W. Zimmer, Pattern languages of program design. New
York, NY, USA: ACM Press/Addison-Wesley Publishing
Co., 1995, ch. Relationships between design patterns, pp.
345–364.

[15] D. Alur, D. Malks, and J. Crupi, Core J2EE Patterns: Best
Practices and Design Strategies. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2001.

[16] S. Hasso and C. Carlson, “A theoretically-based process for
organizing design patterns,” in Proceedings of the Confer-
ence on Pattern Languages of Programs, 2005, pp. 1–22,
last access: 23.06.2012. [Online]. Available: http://hillside.
net/plop/2005/proceedings/PLoP2005 shasso0 3.pdf

[17] N. Shi and R. A. Olsson, “Reverse engineering of design
patterns from java source code,” in Automated Software
Engineering. Los Alamitos, CA, USA: IEEE Computer
Society, 2006, pp. 123–134.

[18] D. M. Kienzle, M. C. Elder, D. Tyree, and J. Edwards-
Hewitt, “Security patterns repository, version 1.0,” 2003,
last access: 23.06.2012. [Online]. Available: http://www.
scrypt.net/∼celer/securitypatterns/repository.pdf

[19] S. Konrad, B. H. Cheng, L. A. Campbell, and R. Wasser-
mann, “Using security patterns to model and analyze secu-
rity requirements,” in International Workshop on Require-
ments for High Assurance Systems, 2003, pp. 13–22.

[20] M. Schumacher, E. B. Fernandez, D. Hybertson, and
F. Buschmann, Security Patterns: Integrating Security and
Systems Engineering. John Wiley & Sons, 2005.

[21] “The zachmann framework for enterprise architecture,”
2012, last access: 23.06.2012. [Online]. Available: http:
//zachmaninternational.com/2/Zachman Framework.asp

[22] C. Steel, R. Nagappan, and R. Lai, Core Security Patterns:
Best Practices and Strategies for J2EE(TM), Web Services,
and Identity Management. Prentice Hall International, 2005.

[23] D. G. Rosado, C. Gutiérrez, E. Fernández-Medina, and
M. Piattini, “Security patterns related to security require-
ments,” in Proceedings of the International Workshop on
Security in Information Systems, 2006, pp. 163–173.

[24] Commission of European Communities, “Informa-
tion technology security evaluation criteria, ver.
1.2,” 1991, last access: 23.06.2012. [Online].
Available: https://www.bsi.bund.de/cae/servlet/contentblob/
471346/publicationFile/30220/itsec-en pdf.pdf

[25] F. Swiderski and W. Snyder, Threat Modeling (Microsoft
Professional). Microsoft Press, 2004.

[26] M. VanHilst, E. B. Fernandez, and F. A. Braz, “A multi-
dimensional classification for users of security patterns,” in
Proceedings of the International Workshop on Security in
Information Systems, 2008, pp. 89–98.

[27] E. B. Fernandez, H. Washizaki, N. Yoshioka, A. Kubo, and
Y. Fukazawa, “Classifying security patterns,” in Proceedings
of the Asian-Pacific Web Conference, Apr. 2008, pp. 342–
347.

[28] H. Washizaki, E. B. Fernandez, K. Maruyama, A. Kubo,
and N. Yoshioka, “Improving the classification of security
patterns,” Database and Expert Systems Applications, pp.
165–170, 2009.

[29] E. B. Fernandez, M. M. Larrondo-petrie, N. Seliya,
N. Delessy, and A. Herzberg, “A pattern language for
firewalls,” in Proceedings of the Conference on Pattern
Languages of Programs, Sep. 2003, pp. 1–13, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2003/Papers/Fernandez-firewalls.pdf

[30] S. R. Nelly Delessy-Gassant, Eduardo B. Fernandez and
M. M. Larrondo-Petrie, “Patterns for application firewalls,”
in Proceedings of the Conference on Pattern Languages
of Programs, 2004, pp. 1–19, last access: 23.06.2012.
[Online]. Available: http://www.hillside.net/plop/2004/
papers/ndelessygassant0/PLoP2004 ndelessygassant0 0.doc

[31] S. Henninger and V. Corrêa, “Software pattern communities:
Current practices and challenges,” in Proceedings of the
Conference on Pattern Languages of Programs, ser. PLOP
’07. New York, NY, USA: ACM, 2007, pp. 14:1–14:19.

59

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[32] “Securitypatterns.org,” 2012, last access: 23.06.2012.
[Online]. Available: http://www.securitypatterns.org/

[33] B. Kitchenham, “Procedures for performing systematic re-
views,” Keele University, Keele, UK, Technical Report
TR/SE-0401, 2004.

[34] B. Kitchenham and S. Charters, “Guidelines for performing
systematic literature reviews in software engineering,” Keele
University, Keele, UK, Technical Report EBSE-2007-001,
2007.

[35] IEEE, “IEEE Digital Library,” 2012, last access: 23.06.2012.
[Online]. Available: http://www.computer.org/portal/

[36] ACM, “ACM Digital Library,” 2012, last access: 23.06.2012.
[Online]. Available: http://portal.acm.org/

[37] The Hillside Group, “The hillside group website,” 2012, last
access: 23.06.2012. [Online]. Available: http://hillside.net

[38] P. H. Meland and J. Jensen, “Secure software design in
practice,” in Proceedings of the International Conference on
Availability, Reliability and Security, Mar. 2008, pp. 1164–
1171.

[39] M. Schumacher and U. Roedig, “Security engineering
with patterns,” in Proceedings of the Conference on
Pattern Languages of Programs, 2001, pp. 1–17,
last access: 23.06.2012. [Online]. Available: http:
//www.hillside.net/plop/plop2001/accepted submissions/
PLoP2001/mschumacher0/PLoP2001 mschumacher0 1.pdf

[40] A. M. Braga, C. M. F. Rubira, and R. Dahab, “Tropyc: A
pattern language for cryptographic software,” in Proceedings
of the Conference on Pattern Languages of Programs, 1998,
pp. 1–27, last access: 23.06.2012. [Online]. Available:
http://hillside.net/plop/plop98/final submissions/P25.pdf

[41] E. B. Fernandez, J. C. Pelaez, and M. M. Larrondo-
Petrie, “Security patterns for voice over ip networks,” in
International Multi-Conference on Computing in the Global
Information Technology, ser. ICCGI ’07. Washington, DC,
USA: IEEE Computer Society, 2007, p. 33.

[42] K. Yskout, T. Heyman, R. Scandariato, and W. Joosen, “A
system of security patterns,” K.U.Leuven, Department of
Computer Science, Report CW 469, Dec. 2006, last access:
23.06.2012. [Online]. Available: http://www.cs.kuleuven.be/
publicaties/rapporten/cw/CW469.abs.html

[43] S. T. Halkidis, A. Chatzigeorgiou, and G. Stephanides, “A
qualitative analysis of software security patterns,” Comput-
ers & Security, vol. 25, no. 5, pp. 379–392, 2006.

[44] B. Elsinga and A. Hofman, “Security paradigm pattern
language,” in Proceedings of the European Conference on
Pattern Languages of Programs. UVK - Universitaetsverlag
Konstanz, 2003, pp. 363–380.

[45] G. Dallons, P. Massonet, J.-F. Molderez, C. Ponsard, and
A. Arenas, “An analysis of the chinese wall pattern for guar-
anteeing confidentiality in grid-based virtual organisations,”
in International Workshop on Security, Trust and Privacy in
Grid Systems. IEEE, 2007, pp. 217–222.

[46] P. Dyson and A. Longshaw, “Patterns for managing internet-
technology systems,” in Proceedings of the European Con-
ference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, 2003, pp. 459–492.

[47] B. Elsinga and A. Hofman, “Control the actor-based access
rights,” in Proceedings of the European Conference on
Pattern Languages of Programs. UVK - Universitaetsverlag
Konstanz, 2002, pp. 233–244.

[48] A. M. Ernst, “Enterprise architecture management patterns,”
in Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2008, pp. 1–20.

[49] E. B. Fernandez, J. Ballesteros, A. C. Desouza-Doucet,
and M. M. Larrondo-Petrie, “Security patterns for physical
access control systems,” in Working Conference on Data and
Applications Security. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 259–274.

[50] S. Romanosky, “Security design patterns part 1,” Nov.
2001, last access: 23.06.2012. [Online]. Available: http:
//www.cgisecurity.com/lib/securityDesignPatterns.html

[51] A. P. Moore, M. Hanley, and D. Mundie, “A pattern
for increased monitoring for intellectual property theft
by departing insiders,” in Proceedings of the Conference
on Pattern Languages of Programs, 2011, pp. 1–
17, last access: 23.06.2012. [Online]. Available: http:
//www.hillside.net/plop/2011/papers/D-6-Moore.pdf

[52] D. Riehle, W. Cunningham, J. Bergin, N. Kerth, and
S. Metsker, “Password patterns,” in Proceedings of the
European Conference on Pattern Languages of Programs.
UVK - Universitaetsverlag Konstanz, 2002, pp. 279–288.

[53] S. Romanosky, A. Acquisti, J. Hong, L. F. Cranor, and
B. Friedman, “Privacy patterns for online interactions,” in
Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 12:1–
12:9.

[54] M. Schumacher, “Security patterns and security standards -
with selected security patterns for anonymity and privacy,”
in Proceedings of the European Conference on Pattern Lan-
guages of Programs. UVK - Universitaetsverlag Konstanz,
2002, pp. 289–300.

[55] A. Cuevas, P. E. Khoury, L. Gomez, and A. Laube, “Security
patterns for capturing encryption-based access control to
sensor data,” in Proceedings of the International Conference
on Emerging Security Information, Systems and Technolo-
gies. Los Alamitos, CA, USA: IEEE Computer Society,
2008, pp. 62–67.

[56] S. Lehtonen and J. Pärssinen, “A pattern language for crypto-
graphic key management,” in Proceedings of the European
Conference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, 2002.

[57] S. Lehtonen and J. Pärssinen, “A pattern language for
key management,” in Proceedings of the Conference
on Pattern Languages of Programs, 2001, pp. 1–13,
last access: 23.06.2012. [Online]. Available: http:
//www.hillside.net/plop/plop2001/accepted submissions/
PLoP2001/slehtonen0/PLoP2001 slehtonen0 1.pdf

60

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[58] K. Hashizume and E. B. Fernandez, “Symmetric encryption
and xml encryption patterns,” in Proceedings of the Con-
ference on Pattern Languages of Programs, ser. PLoP ’09.
New York, NY, USA: ACM, 2009, pp. 13:1–13:8.

[59] B. Blakley, C. Heath, and members of The Open Group
Security Forum, Security Design Patterns. The Open
Group, Apr. 2004, last access: 23.06.2012. [Online].
Available: www.opengroup.org/onlinepubs/9299969899/toc.
pdf

[60] A. Cuevas, P. E. Khoury, L. Gomez, A. Laube, and
A. Sorniotti, “A security pattern for untraceable secret hand-
shakes,” in Proceedings of the International Conference on
Emerging Security Information, Systems and Technologies,
Jun. 2009, pp. 8–14.

[61] N. Delessy and E. B. Fernandez, “Patterns for the
extensible access control markup language,” in Proceedings
of the Conference on Pattern Languages of Programs,
2005, pp. 1–20, last access: 23.06.2012. [Online].
Available: http://www.hillside.net/plop/2005/proceedings/
PLoP2005 ndelessyandebfernandez0 1.pdf

[62] M. Schumacher, “Firewall patterns,” in Proceedings of the
European Conference on Pattern Languages of Programs.
UVK - Universitaetsverlag Konstanz, 2003, pp. 417–430.

[63] N. Delessy, E. B. Fernandez, M. M.Larrondo-Petrie, and
J. Wu, “Patterns for access control in distributed systems,”
in Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2007, pp. 1–11.

[64] L. B. Jr, F. L. Brown, J. Divietri, G. D. D.
Villegas, and E. B. Fernandez, “The authenticator
pattern,” in Proceedings of the Conference on Pattern
Languages of Programs, 1999, pp. 1–8, last access:
23.06.2012. [Online]. Available: http://hillside.net/plop/
plop99/proceedings/Fernandez4/Authenticator3.PDF

[65] E. B. Fernandez and R. Warrier, “Remote authenticator /
authorizer,” in Proceedings of the Conference on Pattern
Languages of Programs, 2003, pp. 1–8, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2003/Papers/Fernandez-remote-authenticator.pdf

[66] M. Hafiz, “A collection of privacy design patterns,” in
Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 1–13.

[67] T. Okubo and H. Tanaka, “Web security patterns for analysis
and design,” in Proceedings of the Conference on Pattern
Languages of Programs. New York, NY, USA: ACM, 2008,
pp. 1–13.

[68] M. Sadicoff, M. M. Larrondo-Petrie, and E. B.
Fernandez, “Privacy-aware network client pattern,”
in Proceedings of the Conference on Pattern
Languages of Programs, 2005, pp. 1–6, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/2005/proceedings/PLoP2005 msadicoff0 0.pdf

[69] B. Schleinzer and N. Yoshioka, “A security pattern
for data integrity in p2p systems,” in Proceedings of
the Conference on Pattern Languages of Programs,
Oct. 2010, last access: 23.06.2012. [Online]. Available:
http://www.hillside.net/plop/2010/papers/schleinzer.pdf

[70] P. Sommerlad, “Reverse proxy patterns,” in Proceedings of
the European Conference on Pattern Languages of Pro-
grams. UVK - Universitaetsverlag Konstanz, Jun. 2003,
pp. 431–458.

[71] S. Romanosky, “Enterprise security patterns,” 2002,
last access: 23.06.2012. [Online]. Available: http:
//www.romanosky.net/papers/EnterpriseSecurityPatterns.pdf

[72] A. Kumar and E. Fernandez, “A security pattern for a virtual
private network,” in Proceedings of the Latin American
Conference on Pattern Languages of Programming, 2010.

[73] I. A. Buckley, E. B. Fernandez, and M. M. Larrondo-Petrie,
“Patterns combining reliability and security,” in Proceedings
of the International Conferences on Pervasive Patterns and
Applications, IARIA Conferences. XPS (Xpert Publishing
Services), 2011, pp. 144–150.

[74] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and
K. Togashi, “Secure design patterns,” Carnegie Mellon
University, Software Engineering Institute, TECHNICAL
REPORT CMU/SEI 2009-TR-010, Oct. 2009, last access:
23.06.2012. [Online]. Available: www.cert.org/archive/pdf/
09tr010.pdf

[75] E. B. Fernandez and J. Sinibaldi, “More patterns for operat-
ing systems access control,” in Proceedings of the European
Conference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, Jun. 2003, pp. 381–398.

[76] E. B. Fernandez and T. Sorgente, “A pattern
language for security models,” in Proceedings of
the Conference on Pattern Languages of Programs,
2001, pp. 1–13, last access: 23.06.2012. [Online].
Available: http://www.hillside.net/plop/plop2001/accepted
submissions/PLoP2001/ebfernandezandrpan0/PLoP2001
ebfernandezandrpan0 1.pdf

[77] E. B. Fernandez, “Patterns for operating systems access
control,” in Proceedings of the Conference on Pattern
Languages of Programs, 2002, pp. 1–18, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2002/final/OSSecPatt7.doc

[78] E. B. Fernandez, T. Sorgente, and M. M. Larrondo-Petrie,
“Even more patterns for secure operating systems,” in
Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 1–9.

[79] E. B. Fernandez and D. laRed Martinez, “Patterns for the
secure and reliable execution of processes,” in Proceedings
of the Conference on Pattern Languages of Programs. New
York, NY, USA: ACM, 2008, pp. 1–16.

[80] E. B. Fernandez and G. Pernul, “Patterns for session-based
access control,” in Proceedings of the Conference on Pattern
Languages of Programs. New York, NY, USA: ACM, 2006,
pp. 8:1–8:10.

[81] V. Gondi, “Multiple secure observers using j2ee,” in
Proceedings of the Conference on Pattern Languages of
Programs, 2010, pp. 1–13, last access: 23.06.2012. [Online].
Available: http://www.hillside.net/plop/2010/papers/gondi.
pdf

61

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[82] M. Hafiz, “Secure pre-forking - a pattern for performance
and security,” in Proceedings of the Conference on Pattern
Languages of Programs, 2005, pp. 1–9, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/2005/proceedings/PLoP2005 mhafiz0 2.pdf

[83] M. Hafiz, R. E. Johnson, and R. Af, “The security
architecture of qmail,” in Proceedings of the Conference
on Pattern Languages of Programs, 2004, pp. 1–9, last
access: 23.06.2012. [Online]. Available: http://www.hillside.
net/plop/2004/papers/mhafiz1/PLoP2004 mhafiz1 0.pdf

[84] D. M. Kienzle and M. C. Elder, “Final technical report: Se-
curity pattern for web application development,” Tech. Rep.,
2002, last access: 23.06.2012. [Online]. Available: http:
//www.scrypt.net/∼celer/securitypatterns/final%20report.pdf

[85] S. R. Kodituwakku, P. Bertok, and L. Zhao, “Aplrac: A
pattern language for designing and implementing role-based
access control,” in Proceedings of the European Conference
on Pattern Languages of Programs. UVK - Universi-
taetsverlag Konstanz, 2001, pp. 331–346.

[86] Q. H. Mahmoud, “Security policy: A design pattern for
mobile java code,” in Proceedings of the Conference
on Pattern Languages of Programs, 2000, pp. 1–8, last
access: 23.06.2012. [Online]. Available: http://hillside.net/
plop/plop2k/proceedings/Mahmoud/Mahmoud.pdf

[87] H. Mouratidis, P. Giorgini, and M. Schumacher, “Security
patterns for agent systems,” in Proceedings of the European
Conference on Pattern Languages of Programs. UVK -
Universitaetsverlag Konstanz, Jun. 2003, pp. 399–416.

[88] P. Morrison and E. B. Fernandez, “The credentials pattern,”
in Proceedings of the Conference on Pattern Languages of
Programs. New York, NY, USA: ACM, 2006, pp. 1–4.

[89] P. Morrison and E. B. Fernandez, “Securing the broker
pattern,” in Proceedings of the European Conference on
Pattern Languages of Programs. UVK - Universitaetsverlag
Konstanz, 2006, pp. 513–530.

[90] J. L. Ortega-Arjona and E. B. Fernandez, “The secure
blackboard pattern,” in Proceedings of the Conference on
Pattern Languages of Programs. New York, NY, USA:
ACM, 2008, pp. 1–5.

[91] T. Saridakis, “Design patterns for fault containment,” in Pro-
ceedings of the European Conference on Pattern Languages
of Programs. UVK - Universitaetsverlag Konstanz, 2003,
pp. 493–520.

[92] K. E. Sørensen, “Session patterns,” in Proceedings of the
European Conference on Pattern Languages of Programs.
UVK - Universitaetsverlag Konstanz, 2002, pp. 301–322.

[93] M. Weiss, “Credential delegation: Towards grid
security patterns,” in Proceedings of the Nordic
Conference on Pattern Languages of Programs,
2006, pp. 65–70, last access: 23.06.2012. [Online].
Available: http://hillside.net/vikingplop/vikingplop2006/
VikingPLoP2006 Proceedings.pdf

[94] Y. Zhou, Q. Zhao, and M. Perry, “Policy enforcement
pattern,” in Proceedings of the Conference on Pattern
Languages of Programs, 2002, pp. 1–14, last access:
23.06.2012. [Online]. Available: http://www.hillside.net/
plop/plop2002/final/ZZPerry PLOP.pdf

[95] E. B. Fernandez, S. Mujica, and F. Valenzuela,
“Two security patterns: Least privilege and secure
logger/auditor,” in Proceedings of the Asian Conference
on Pattern Languages of Programs, 2011, pp.
1–12, last access: 23.06.2012. [Online]. Avail-
able: http://patterns-wg.fuka.info.waseda.ac.jp/asianplop/
proceedings2011/asianplop2011 submission 7.pdf

[96] O. Ajaj and E. B. Fernandez, “A pattern for the
ws-trust standard for web services,” in Proceedings
of the Asian Conference on Pattern Languages of
Programs, 2010, pp. 1–11, last access: 23.06.2012. [On-
line]. Available: http://patterns-wg.fuka.info.waseda.ac.jp/
asianplop/proceedings2010/11-WS-Trust march02-10.pdf

[97] The Internet Society, “Point-to-point tunneling protocol
(pptp),” 2012, last access: 23.06.2012. [Online]. Available:
http://tools.ietf.org/html/rfc2637

[98] S. T. Halkidis, N. Tsantalis, A. Chatzigeorgiou, and
G. Stephanides, “Architectural risk analysis of software
systems based on security patterns,” IEEE Transactions on
Dependable and Secure Computing, vol. 5, no. 3, pp. 129–
142, 2008.

[99] C. Kramer and L. Prechelt, “Design recovery by auto-
mated search for structural design patterns in object-oriented
software,” in Working Conference on Reverse Engineering.
Washington, DC, USA: IEEE Computer Society, 1996, p.
208.

[100] R. K. Keller, R. Schauer, S. Robitaille, and P. Pagé, “Pattern-
based reverse-engineering of design components,” in Inter-
national Conference on Software Engineering. New York,
NY, USA: ACM, 1999, pp. 226–235.

[101] L. Wendehals, “Improving design pattern instance recogni-
tion by dynamic analysis,” in International Conference on
Software Engineering, May 2003.

[102] R. J. Anderson, Security Engineering: A Guide to Building
Dependable Distributed Systems, 1st ed. New York, NY,
USA: John Wiley & Sons, Inc., 2001.

[103] Yahoo! Inc., “Yahoo! Design Pattern Library,” last access:
23.06.2012. [Online]. Available: http://developer.yahoo.com/
ypatterns/

[104] Microsoft, “Microsoft patterns & practices,” last access:
23.06.2012. [Online]. Available: http://msdn.microsoft.com/
en-us/practices/default

APPENDIX

The tables IV, V, VI and VII depict our classification
of all software-security patterns that we collected during
the literature-review process. The first dimension ”Matching
Aspects“ is highlighted in light grey and a magnifier icon

62

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Access Control List (ACL) [63]

Administrator Hierarchy [78]

Capability [63]

Check Point [3], [20]

Checkpointed System [59], [83], [42]

Controlled Process Creator [75], [20]

Container Managed Security [22], [42]

Credential [88]

Encrypted Storage [18]

Execution Domain [77], [20]

Full Access With Errors [20]

Input Validation [74]

Multilevel Security pattern [76], [20]

Obfuscated Transfer Object [22], [42]

Pathname Canonicalization [74]

Partitioned Application [18]

Policy [59]

Protected System [59]

Roles [3]

Role-Based Access Control (RBAC) [76], [20]

Role Hierarchies [85]

Sandbox [87]

Secure Pipe [22], [42]

Secure Communication [59], [42]

Security Context [59]

Secure Directory [74]

Secure Process / Thread [78]

Secure Service Facade [22], [42]

Secure Session Object [22], [42]

Secure Service Proxy [22]

Session-Based Attribute-Based Authorization [80]

Session-Based Role-Based Access Control [80]

Single Session [85]

Single Access Point [3], [20]

Subject Description [59]

Symmetric Encryption [58]

XML Encryption Pattern [58]

A Pattern for WS-Trust [96]

Access Controller [87]

Account Lockout [18]

Agent Authenticator [87]

Agency Guard [87]

Audit Interceptor [22]

Table IV
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (1).

63

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Authenticator [64], [59], [20]

Authentication Enforcer [22]

Authorization Pattern [76]
Authorization Enforcer [22]
Assertion Builder Pattern [22]

Controlled Object Factory [20]

Controlled Object Monitor [75] [20]

Controlled Virtual Address Space [75]

Credential Delegation [93]

Credential Tokenizer [22]

Defer to Kernel [74]

Dynamic Service Management [22]

File Authorization [77], [20]

Full View With Errors [3]

Grant-Based Access Control Pattern (GBAC) [55]

ID/Password Authentication [67]

Information Obscurity [20]

Intercepting Validator [22]

Intercepting Web Agent [22]

Known Partners [20]

Limited Access [20]

Limited View [3]

Message Inspector [22]

Message Interceptor Gateway [22]

Multiple Secure Observers Using J2EE [81]

Network Address Blacklist [18]

Password Synchronizer Pattern [22]

Policy-Based Access Control [63]

Policy Delegate [22]

Policy Enforcement Pattern [94]

Privilege Separation (PrivSep) [74]

Protected Entry Points [79]

Protection Rings [79]

Secure Base Action [22]

Secure Logger [22]

Secure Message Router [22]

Single Sign-on Delegator Pattern [22]

Session [3]
Security Policy: A Design Pattern For Mobile Java
Code [86]
Secure Broker Pattern [89]

Security Session [20]

Session Timeout [92], [42]

Table V
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (2).

64

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Sealed And Signed Envelope [57]

Sealed Envelope [57]

Security Association [59]

Secure Builder Factory [74]

Secure Chain of Responsibility [74]

Secure Factory [74]

Secure State Machine [74]

Secure Strategy Factory [74]

Secure Visitor [74]

Secure Preforking [82]

Virtual Address Space Access Control [77]

Access Session [80]

Access Control requirements [20]

Actor and Role Lifecycle [47]

Address Book [57]

Administrator Objects [85]

Alice And Friends [57]

Authenticated Session [18]

Authorization [20]

Build The Server From The Ground Up [18]

Clear Sensitive Information [74]

Client Data Storage [18]

Client Input Filters [18]

Choose The Right Stuff [18]

Compartmentalization [83]

Content Independent Processing [83]

Controlled Execution Environment [77]

Demilitarized Zone [20]

Directed Session [18]

Distributed Responsibility [83]

Distrustful Decomposition [74]

Document The Security Goals [18]

Document The Server Configuration [18]

Enroll By Validating Out Of Band [18]

Enroll Using Third-Party Validation [18]

Enroll With A Pre-Existing Shared Secret [18]

Enroll Without Validating [18]

Face-To-Face [57]

Fault Container [91]

Front Door [20]

Hidden Implementation [18]

Input Guard [91]

Table VI
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (3).

65

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Matching Aspects Security Aspects

Pattern Name

St
ru

ct
ur

al

B
eh

av
io

ra
l

G
en

er
ic

C
on

ce
pt

A
ut

he
nt

ic
at

io
n

A
cc

es
s

C
on

tr
ol

In
te

gr
ity

C
on

fid
en

tia
lit

y

N
on

-R
ep

ud
ia

tio
n

A
va

ila
bi

lit
y

A
cc

ou
nt

ab
ili

ty

Keep Session Data In Client [92]

Keep Session Data In Server [92]

Key In The Pocket [57]

Load Balancer [92], [42]

Log For Audit [18]

Minefield [18]

Multilevel Secure Partitions [79]

Output Guard [91]

Password Authentication [18]

Password Propagation [18]

Patch Proactively [18]

Privilege-Limited Role [85]

Reference Monitor [77]

Red Team The Design [18]

Resource Acquisition Is Initialization (RAII) [74]

Role Based Access [85]

Role Validator [85]

Secure Access Layer [3]

Secure Assertion [18]

Secure Channels [20]

Server Sandbox [18]

Session Failover [92], [42]

Session Management [67]

Session Scope [92]

Seal Ring Engraver [57]

Signed Envelope [57]

Share Responsibility For Security [18]

Subject Descriptor [20]

Test On A Staging Server [18]

The Forged Seal Ring [57]

The Real Thing [57]

There Is Somebody Eavesdropping [57]

Trusted Proxy [18]

Unique Entry of Information [83]

Validated Transactions [18]

Virtual Address Space Structure Selection [78]

Table VII
SOFTWARE-SECURITY PATTERNS CLASSIFIED BY SECURITY ASPECTS AND RECOGNITION NEEDS (4).

66

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

indicates that a pattern belongs to the aspect of this
dimension. The second dimension ”Security Aspects“ is
highlighted with a grey background and a lock shows
which security aspects a pattern addresses. Some patterns
were described by more than one publication. Therefore,
we put all publications that describe the pattern with this
name in the order of their publication year behind the pattern
name.

67

International Journal on Advances in Security, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/security/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO, BIOSYSCOM,
BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE,
CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS, ENERGY, COLLA, IMMM, INTELLI,
SMART, DATA ANALYTICS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING, MOBILITY, WEB

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM, BIOINFO,
BIOTECHNO, SOTICS, GLOBAL HEALTH

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE COMPUTATION,
VEHICULAR, INNOV

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD
COMPUTING, COMPUTATION TOOLS, IMMM, MOBILITY, VEHICULAR, DATA ANALYTICS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL, INFOCOMP

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA, COCORA, PESARO, INNOV

issn: 1942-2601

