

The International Journal on Advances in Security is published by IARIA.

ISSN: 1942-2636

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Security, issn 1942-2636

vol. 2, no. 4, year 2009, http://www.iariajournals.org/security/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Security, issn 1942-2636

vol. 2, no. 4, year 2009,<start page>:<end page> , http://www.iariajournals.org/security/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2009 IARIA

International Journal on Advances in Security

Volume 2, Number 4, 2009

Editor-in-Chief

Stefanos Gritzalis, University of the Aegean, Greece

Editorial Advisory Board

 Vladimir Stantchev, Berlin Institute of Technology, Germany

 Masahito Hayashi, Tohoku University, Japan

 Clement Leung, Victoria University - Melbourne, Australia

 Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan

 Dan Harkins, Aruba Networks, USA

Quantum Security

 Marco Genovese, Italian Metrological Institute (INRIM), Italy

 Masahito Hayashi, Tohoku University, Japan

 Vladimir Privman, Clarkson University - Potsdam, USA

 Don Sofge, Naval Research Laboratory, USA

Emerging Security

 Nikolaos Chatzis, Fraunhofer Gesellschaft e.V. - Institute FOKUS, Germany

 Rainer Falk, Siemens AG / Corporate Technology Security - Munich, Germany

 Ulrich Flegel, SAP Research Center - Karlsruhe, Germany

 Matthias Gerlach, Fraunhofer FOKUS, Germany

 Stefanos Gritzalis, University of the Aegean, Greece

 Petr Hanacek, Brno University of Technology, Czech Republic

 Dan Harkins, Aruba Networks, USA

 Dan Jiang, Philips Research Asia – Shanghai, P.R.C.

 Reijo Savola, VTT Technical Research Centre of Finland, Finland

 Frederic Stumpf, Technische Universitat Darmstadt, Germany

 Masaru Takesue, Hosei University, Japan

Security for Access

 Dan Harkins, Aruba Networks, USA

Dependability

 Antonio F. Gomez Skarmeta, University of Murcia, Spain

 Bjarne E. Helvik, The Norwegian University of Science and Technology (NTNU) – Trondheim,

Norway

 Aljosa Pasic, ATOS Origin, Spain

 Vladimir Stantchev, Berlin Institute of Technology, Germany

 Michiaki Tatsubori, IBM Research - Tokyo Research Laboratory, Japan

 Ian Troxel, SEAKR Engineering, Inc., USA

 Hans P. Zima, Jet Propulsion Laboratory/California Institute of Technology - Pasadena, USA //

University of Vienna, Austria

Security in Internet

 Evangelos Kranakis, Carleton University, Canada

 Clement Leung, Victoria University - Melbourne, Australia

 Sjouke Mauw, University of Luxembourg, Luxembourg

 Yong Man Ro, Information and Communication University - Daejon, South Korea

International Journal on Advances in Security

Volume 2, Number 4, 2009

CONTENTS

Self-organization supported algorithms for wireless sensor networks

Jian Zhong, Royal Melbourne Institute of Technology, Australia

Peter Bertok, Royal Melbourne Institute of Technology, Australia

298 - 311

Performance, survivability, and cost aspects of Business Continuity Processes According

to BS 25999

Wolfgang Boehmer, Technische Universitaet Darmstadt, Germany

312 - 324

Formalization of Security Properties: Enforcement for MAC Operating Systems and

Verification of Dynamic MAC Policies

Jérémy Briffaut, ENSI de Bourges - Université d’Orléans, France

Jean-François Lalande, ENSI de Bourges - Université d’Orléans, France

Christian Toinard, ENSI de Bourges - Université d’Orléans, France

325 - 343

Analysing security requirements formally and flexibly based on suspicion

Nuno Amálio, University of Luxembourg, Luxembourg

344 - 357

Development of Measurable Security for a Distributed Messaging System

Reijo M. Savola, VTT Technical Research Centre of Finland, Finland

Habtamu Abie, Norwegian Computing Center, Norway

358 - 380

Self-organization supported algorithms for wireless sensor networks

Jian Zhong
School of Computer Science and Information Technology

Royal Melbourne Institute of Technology
Melbourne, Australia

E-mail: jian.zhong@rmit.edu.au

Peter Bertok
School of Computer Science and Information Technology

Royal Melbourne Institute of Technology
Melbourne, Australia

E-mail: peter.bertok@rmit.edu.au

Abstract—Self-organization is an important issue in wireless
sensor networks because of the inherent unreliability of the
network. Besides, variable threats in the networks can not be
ignored. Extending battery life and enhancing robustness under
variable threats are two essential aspects which need to be
considered when a self-organization scheme is explored. In order
to address these issues, a Redundant Nodes Selection scheme and
a variable Threats Probability Estimation scheme are proposed in
this paper. RNS is able to select redundant nodes that can be
switched off without affecting overall sensing coverage. TPE is
able to help a sensor node to choose the most suitable path and
avoid high-threat neighbors in order to reduce packet loss. The
scenario with RNS extended battery life by 30% to 50%, and
postponed the occurrence of first partitioning in the network by
27% to 140%. TPE decreased packet loss by 225% to 400% when
a high threat level was involved.

Keywords-wireless sensor networks; self-organization;
variable threats; battery life; robustness

I. INTRODUCTION

For the constraint of wireless sensor networks (WSNs),
some threats can not be ignored, such as environment
changes, sensor damage, information lost and sensor attacks
etc. There are some key areas which need to be explored,
such as [2] network organization, routing, security, node
localization, clock synchronization, power management and
key management etc. This focuses on network self-
organization.

For wireless sensor networks, organizing typically begins
with neighbor discovery [3]. Nodes send rounds of messages
(packets), build local neighbor tables and organize clusters
centered around a cluster head. The tables include
information on each neighbor’s ID and location. However,
during operation some sensors become inactive due to
battery exhaustion which may result in network partitioning,
and packets can be lost due to various threats. Extending
battery life, postponing the occurrence of first partitioning
and reducing packet loss are significant aspects of self-
organizing.

A self-organization scheme supported by a redundant
nodes selection algorithm (RNS) and variable threats

This paper is based on the conference article “A Variable Threats Based
Self-Organization Scheme for Wireless Sensor Networks”, presented at the
SENSORCOMM 2009 conference.

probability estimation (TPE) is proposed here to extend
battery life and reduce packet loss. RNS is designed to scan
all sensor nodes and select redundant nodes that can be
switched off so that the whole area will still be covered. The
redundant nodes will be used as backups and replacements to
extend the effective network lifetime without any coverage
loss.

The second method TPE, improves the scheme originally
proposed in [7], by allowing nodes to choose a more reliable
neighbor as a default path to the data sink and blocking high-
threat nodes to reduce packet loss. The whole proposed
scheme provides a solution for WSNs to extend battery life
and avoid variable threats.

II. BACKGROUND

Due to the physical constraints of wireless sensor
networks, sensors organization, resilience to node capture
attack and power-saving are essential aspects. This chapter
discusses the work done by some of the researchers on
wireless sensor network self-organization, coverage
exploration, static attack probability and related aspects. In
the first section, deployment and topologies will be presented.
Then the self-organization issue will be discussed.
Furthermore, previous works related to power saving and
resilience will be detailed. In the end of this chapter, a
summary of the essential literature is given.

A. Topologies and Network Architecture

For a wireless sensor network, the topology and network
architecture always need to be considered first. In the
literature, there are some wireless sensor network topologies
and architectures proposed for the uniform and non-uniform
deployment. The most common topologies and architectures
are described by Bhaskar Krishnamachari [13], which are
shown in Fig. 1.

Figure 1. Different topologies in wireless sensor networks [13]

Fig. 1(a) shows the simplest topology, in which all
sensors directly report the collected data to the cluster head

298

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

(CH). Fig. 1(b) shows a tree topology and the collected data
is sent to the data sink via different paths depending on some
factors, such as power-save path, most-secure path,
reputation-based path etc. Fig. 1(c) shows a grid topology
which is also used in an experimental model [7]. A more
complex scenario is depicted in [13] with two-tiered
architecture, as shown in Fig. 2.

Figure 2. Topology in WSNs [13]

The biggest circle denotes the data sink (DS), which
gathers reports from the cluster heads (CH). The small white
circles indicate wireless sensors, which can collect data from
their sensing ranges. In this typical topology, sensor nodes
can directly connect to a cluster head which acts as a group
leader.

In our research, we consider a clustered organization,
when individual nodes are connected to a cluster head, and
data from the cluster is relayed by the head towards the
destination. However, in a number of cases there is no
guarantee that all cluster heads can directly connect to the
data sink or all sensor nodes can directly connect to a cluster
head. For such cases, a random non-uniform architecture has
been mentioned in [9], which is shown in Fig. 3.

Figure 3. A two-tiered architecture [9]

In Fig. 3 [9], a small number of high-end nodes, called
Aggregation and Forwarding Nodes (AFNs), are deployed
together with numerous low-end sensor nodes, called Micro
Sensor Nodes (MSNs). In addition, the network includes a
globally trusted base station (BS), which is the ultimate
destination for data streams from all the AFNs. The BS has
powerful data processing capabilities, and is directly
connected to an outside network. Each AFN is equipped with

a high-end embedded processor, and is capable of
communicating with other AFNs over long distances.

The deployment and topology in [9] are more reasonable
for random scattering, and foremost, this architecture can
adjust to the changes in topology during runtime, i.e. new
nodes can be added into the network or some working nodes
can be compromised.

Accordingly, a two-tiered wireless sensor network model
will be used in our proposed method, and AFN will be called
Cluster Head (CH), BS will be called Data Sink (DS) and
MSN will be called Sensor Node (SN) in the rest of the
paper.

B. Threats and Threat Model

There are many kinds of threats for WSNs, such as
mentioned in [20]. In this paper, node failure will be
discussed, including node capture, physical damage, battery
exhaustion and any condition making the sensors unavailable.
My proposed attack model does not include the scenario in
which adversaries not only steal the data stored in the sensor
nodes but also put the captured sensor nodes back into the
WSNs as agents for collecting messages.

C. Self-Organization

After a sensor network has been deployed, self-
organization comes. It will be separated into four different
aspects: clustering and neighboring, power consumption,
resilience, and sensor addition.

1) Clustering and Neighboring
To organize wireless sensors, Falko Dressler et al. [14]

described a solution which involved a mobile robot that
helps to organize the network. The model is shown in Fig. 4.

Figure 4. Challenges in the sensor networks [14]

Fig. 4(a), Self-organization, shows that the active sensor
nodes can transfer their collected data to the robot via
different paths and the monitor merely need to receive data
from two robots. Fig. 4(b) shows that, for energy awareness,
some sensors are switched to an inactive mode. A critical
event is still can be gathered and transferred to the monitor,
which is illustrated in Fig. 4(c). The method relies on mobile
robots to maintain the whole network. However, in many
cases, a mobile robot is not available.

Another self-organization mechanism for both uniform
and non-uniform was described. The location-based
mechanism [3] is relying on a special node named “server
node”. This will raise the cost of the whole network and if
this server node is compromised or damaged, all nodes under
its control will be affected. If this function is embedded in
each cluster head, the power consumption will increase, due
to most of the key management and delivery being

299

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

performed by the server node. To reduce the memory
overhead as well as maintain security for the network, a new
approach is proposed in [9], which is called Survivable and
Efficient Clustered Keying (SECK). However, a new issue,
high-threat networks cannot be ignored in the path selection
algorithms.

2) Power Consumption
To reduce WSN power consumption switching off some

nodes has been introduced. Nevertheless, when switching off
redundant nodes, how to maintain wireless network coverage
and rerouting existing connections become new issues.

In [6], the proposed notion is that “if any parameter on a
point can be reliably estimated, then this point can be
claimed to be information covered”.

Figure 5. Illustration of physical and information coverage [6]

As shown in Fig. 5, although the sensing area of the node
marked by a star is not covered, it may be “information
covered” as long as the estimation error is small enough. The
information coverage is based on parameter estimation,
which means that for an unknown or uncovered point/area θ,
there is a set of K sensor nodes for estimation. Each related
sensor node has estimation for the non-physical covered
point, which is (1),

.,2,1, Kkn
d

x k

k

k 


 (1)

Where xk denotes the output of the estimation; θ denotes
the parameter of the non-physical covered point; dk denotes
the distance between a sensor k and a location with
parameter θ; dk

α denotes the attenuation with the distance
where α denotes the attenuation exponent; nk denotes the
additive noise. The mean squared error (MSE) is used for
the evaluation of the estimation for K related sensor nodes.

To try to achieve the sleep/wake up scheme, the authors
[15] provided an information coverage estimation for
redundant nodes selection named Distributed Node and Rate
Selection (DNRS). In the proposed scheme, the redundant
nodes can be switched off to save power by measuring the
distortion. Distortion is any undesired change in the data
transmitted such as signal strength and signal format etc. As
described in the paper [15], the proposed scheme focused on
an area. However, for some applications, such as tracking
etc, the proposed scheme will not work properly. Besides, if
two sensors are both information covered and rely on each
other, which one will be switched off should be discussed.

These proposed methods [6, 15] are based on information
coverage and can reduce the impact from transmission
distortion. For large density of sensing nodes, a number of

adjacent nodes may be available, but the computation
overhead will rise. How many samples are enough for one
event and how to choose the reporting sensors need to be
considered. Besides, in [6] the balance of power-saving and
information distortion should be carefully evaluated. In my
proposed method, physical coverage will be considered and
this situation will be improved.

3) Resilience
Being deployed in a hostile environment, failure/attack

probability can not be ignored. Besides, researchers have
pointed out that there is no sure and efficient way to readily
detect a node capture [16, 17]. Thus, threat probability
should be concerned.

In [7], the authors proposed a non-uniform sensor
deployment algorithm based on static attack probability to
improve the resistance of sensor nodes to node capture. The
main algorithm is for estimating the number of keys, called
the degree of each sensor node. Let di,j denote the sensor
nodes in the deployment group Gi,j. In the proposed method
[7], the authors claimed that “the higher probability that a
deployment group to be attacked implies that di,j should be
set to be a higher value”. In other words, the degree of a
node in each deployment group should be proportional to its
attack probability. Thus, di,j calculation is the core algorithm
of the proposed method. In [7], DI (pi,j) denotes the inner
group degree determination function used to calculate the
degree of a node in group Gi,j, which means di,j = DI (pi,j).
When DI (·) takes input as pi,j, it maps pi,j into one of (Ω+1)
values. Formally, DI (·) can be represented as

(2)

Therefore, if pi,j ≤ pi’,j’ holds then di,j ≤ di’,j’ holds. In [7],
DI (pi,j) was designed to be a threshold function.

},,,{ 21   is a set of threshold values and

},,,{ 121   is a set of (Ω+1) values. The values

},,,{ 121   are given such that after the assignment of

keys based on the setting, sensor nodes can resist attacks in
the corresponding groups. These values are assigned based
on experience. In the formula (2), pi,j denotes the normalized
attack probability with respect to a deployment group Gi,j and
pi,j is defined as:




'' ''
, ,

,

,

ji ji

ji

jip


 (3)

In equation (3),
ji, denotes the attack coefficient

associated with Gi,j. It is a value by considering all of factors
and can be calculated as:

 
 




 


1),()

~
,(

,,,,,

,','','

'''''')~~
(

jijiji
Gbb

jijijijiji gbgbbb (4)

where Ψ(Gi,j, ρ) is a set of pairs of the base coefficient
bi’,j’ for Gi’,j’ and base coefficient for data sink

'' ,

~
ji

b satisfying

that Gi,j and Gi’,j’ are at a distance from ρ deployment groups.
In [7],

g denotes attack influence factors for sensor nodes

and
g~ denotes attack influence factors for the data sink.

300

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Also, bi,j denotes the basic attack coefficient for sensor
nodes, representing the threat from adversaries and

jib ,

~ is that

for the data sink. Accordingly, the coefficient bi,j and
influence factors

g will be used for computing the

parameter di,j that was specified at the beginning of this
paragraph.

In [7], bi,j and
g are both static. The proposed method

had a good result when attack probability remained
unchanged. An obvious improvement was presented not only
on memory overhead but also on connectivity maintenance.
For the algorithm, the higher attack the probability of the
deployment group, the more keys were kept by group
members to maintain connectivity. Although it had good
performance in the described scenario without node failures,
the paper did not consider the effect of nodes being
compromised. Besides, static attack probability is not good
enough for real scenarios, variable attack and failure
probability should be considered. Thus, threat probability
should be a concern.

D. Assumptions: The model considered in this thesis

In this paper, the deployment area is set to 2-dimensional
and all sensors are randomly scattered. There are one data
sink and three cluster heads with fixed location. In the
model, a point u is covered (monitored) by a node v if their
Euclidian distance is equal or less than the sensing range R.
Sensor density (D) is defined as D = m/(πR2). Assume there
are m nodes on average in each sensor’s signal range and R is
the radius of the signal range [18].

High threat probability estimation indicates nodes with
“high threat” status, which have a high probability to lost
packets and may affect their neighbors. In the model, four
threat levels are used which are “no threat”, “low threat”,
“high threat” and “compromised”. Node attacks may raise
the sensors’ threat level. A “no threat” node will pass all
packets without any packet loss. A “low threat” node may
lose packets in a very low probability while sensors with
“high threat” may lose packets in a very high probability.
“Compromised” sensors will not forward any packets. Also,
a sensor connecting to a “high threat” node may raise its
threat level. Besides, no transmission error is included in the
model.

In this paper, three different sensor distribution and three
traffic distribution models are employed. Uniform
distribution is used for normal environment monitoring.
Normal distribution (Gaussian distribution) is used for some
special usage such as monitoring forest fire. Zipf distribution
is used for simulating some environment changing such as
sensors are blown away by strong wind etc.

E. Summary

For WSNs organization, a self-organization mechanism
for non-uniform distribution of sensor nodes is proposed in
[14], and a location-based scheme for both uniform and non-
uniform was described [5]. The mechanism in [14] offers
good performance for non-uniform distribution, and an
isolated part of the network can be reconnected by mobile
sensors/devices. The method can find the optimum path to

connect to the data sink efficiently. The solution in [14]
relies on mobile robots to maintain connectivity in the
network, but in some cases a mobile robot is not available.
The location-based mechanism [5] is relying on a special
node named “server node”. This will raise the cost of the
whole network and if this server node is compromised or
damaged, all nodes under its control will be affected. If this
function is embedded in each cluster head, the power
consumption will increase, due to most of the key
management and delivery being processed by the server
node. To reduce the memory overhead as well as maintain
security for the network, a new approach is proposed in [9],
which is called Survivable and Efficient Clustered Keying
(SECK). However, a new issue, default path selection
becomes a problem in high-threat networks.

For the WSNs power consumption issue, an information
coverage concept [6] has been proposed. In [6], a balance
between coverage and sensor density has been explored. In
some cases data can be estimated reliably, in other cases it
cannot, and estimation cannot be a replacement of actual
data.

For resilience, the attack probability estimation algorithm
in [7] has a good experimental result for static attack
probability estimation and connectivity maintenance. As
mentioned before, a variable attack and failure probability is
more realistic for WSNs.

For SN addition, a cluster and network-oriented scheme
is proposed in [9]. However, the issue of connection between
new sensors and existing cluster heads needs to be
considered.

This paper focuses on the sensor node organization
issues, and a neighbor-oriented self-organization mechanism
will be proposed. Four aspects will be described respectively
and then the integrative proposed scheme will be detailed.

III. PROPOSED METHOD

To extend the life for wireless sensor networks,
redundant nodes can be switched off to save power, and later
switched back on to replace failure nodes. Redundant nodes
are those that can be switched off and the whole area will
still be covered.

In this chapter, the proposed self-organization scheme is
examined from three aspects, namely clustering and
neighboring, battery life extension, network resilience and
new sensor node addition. The self-organization mechanism
addresses network maintenance, and is based on Redundant
Nodes Selection scheme (RNS) and variable Threats
Probability Estimation scheme (TPE). RNS is employed to
select the redundant nodes in order to save power. TPE is
used to help a sensor node to choose the most suitable path
and avoid high-threat neighbors in order to reduce packet
loss.

The proposed scheme not only extends battery life, but
also enhances network robustness and maintains
connectivity. In addition, the proposed scheme can be
applied to both uniform and non-uniform distributions.

301

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

A. Redundant Node Selection (RNS)

As mentioned in the background chapter, the authors [13]
employed a similar system named Distributed Node and Rate
Selection (DNRS). The method in [13] is aiming to measure
whether a node is redundant by calculating the distortion.
However, this method has a limited effect when the objects
are appearing random, or sensor density is high.

All in all, less than full coverage will bring in some new
problems. For instance, when tracing an object, in the non-
covered area we will lose track of the object. Although it
may be estimated from related information, it is still not
precise.

RNS algorithm has two steps. One is to select redundant
nodes and the other is to check whether the redundant nodes
can be switched o.

Notion 1: It is a redundant node, if and only if there are
no changes in the covered area when it has been switched to
sleep mode.

A simple sketch map is shown in Fig. 6. In the
simulation, the sensor density is much higher. In the Fig. 6,
SN1 can be switched to sleep mode because its original
sensing area is covered by other sensor nodes, namely by
SN2, SN3, SN4 and SN5. Thus, even if SN1 has been switched
off, there are no changes in the covered area.

Figure 6. The redundant node

1) The RNS Algorithm and Proof
Assume that every node has its own location information

which will be the coordinate in this algorithm and all radio
range (radius) will be R. Assume that all sensor nodes are in
the same 2-dimensional area. In this thesis, assume a point u
is covered (monitored) by a node v if their Euclidian distance
is equal or less than the sensing range, i.e., Ruv|| . Define

the sensing circle C(u) of node u as the boundary of u’s
coverage region.

Notion 2: Let SNx be a set of sensor nodes. A sensing
area is fully covered if and only if for)(),(1SNCyxZ  ,

there exists at least one)(kSNC (k > 1), that)(),(kSNCyxZ 

is true.
Theorem 1: A sensing area of SN1 is fully covered by a

group of nodes if and only if, for)(),(1SNCyxZ  , there

exists a set of nodes group },,{ 32 kN SNSNSNG  that

)()()(32 kSNCSNCSNCZ  is true.

Proof: Assume for)(),(1SNCyxZ  , there exists a set of

nodes group },,{ 32 kN SNSNSNG  that

)()()(32 kSNCSNCSNCZ  . Without loss of generality,

there must be a kjSNC j 2),(that)(jSNCZ  is true.

The algorithm has the following steps:
1. Put a node SN1 at the origin of the coordinate system.
2. Assume there is a node SN2 in C(SN1) which means

node SN2 is in node SN1’s radio range, vice versa. Without
loss of generality, let SN2 be on the X-axis, shown in Fig. 7.

3. The X-axis and circle C(SN2) intersect at P’. C(SN1)
and C(SN2) intersect at Q’ and Q”.

4. To find the next circle.
4.1 If there is a node SN3 in the area Q’SN1W and

SN2Q’ ≤ R, then go to step 3 and replace SN2 by SN3. If
SN2 could be the next circle, then node SN1 can be switched
to sleep mode, as shown in Fig. 8.

4.2 If there is a node SN3 in the area Q’SN1W and
SN2Q’ > R, as shown in Fig. 9, there will be a small area
A’B’Q’ which is not covered. If there exists a node SNE that
SNEA’ ≤ R, SNEB’ ≤ R, SNEQ’ ≤ R, then return to step 3
and replace SN2 by SN3. If there is no such SNE, the node
SN1 will not be switched off, as shown in Fig. 10.

4.3 If there is not any nodes in the area Q’SN1W:
Assume that there is a node SNA which is outside the area
Q’SN1W, as it is shown in Fig. 11, and SNASN1 < 2R,
SNASN2 ≤ 2R, and SNAQ’ < R. The C(SNA) and the
C(SN1) intersect at C’ and C’ is in the area Q’SN1W. Then,
go to step 4.3 and replace Q’ and SN2 by C’ and C”. If Q” is
in the next circle, then node SN1 can be switched to sleep
mode. If there is no such node SNA, the node SN1 can not
be switched off.

Figure 7. Put both nodes in the coordinate system

Figure 8. Step 4.1

302

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Figure 9. Step 4.2

Figure 10. Step 4.2

Figure 11. Step 4.3

Notion 3: If there exists a set of nodes R = {SNm1,
SNm2,…SNmn},n∈N, for any SNmk(1≤k≤n) that SNmk is a
redundant node, but if any node SNml(1≤l≤n) from among
them is switched off, there will be at least one node
SNmp(1≤p<n) that is no longer redundant, then the node SNml

and all SNmp are defined as redundant related nodes (RR
nodes or RRNs) and SNml is defined as redundant related
seed (RRS).

Especially, there may be only one SNmp related with SNml

and both of them are RRS for each other. Then, these two
nodes are defined as twin redundant related nodes (TRRNs),
shown in Fig. 12.

Theorem 3: Only one of the TRRNs can be switched off.

Figure 12. Twin redundant related nodes

The algorithm of switching the RR nodes is to separate
them into TRRNs. First, select a RRS from RR nodes and
search all of the SNmp that whether there is a twin node for
the RRS. If there is, switch one of them off and put the other
one back. Besides, the selection algorithm, from step one to
step four, does not cover all coverage probabilities because
the computation overhead still need to be considered.

The selection for the TRRNs is based on the Variable
Threats Probability Estimation algorithm which is specified
in the following section. The higher threat probability
estimation node will be switched off.

Besides, for any sleeping node SNs, let a point in the
deployment area be Z=(x, y). If there exists

siRZSNRZSNZ si  ,||,||, , SNs will be switched

on.

B. Variable Threats Probability Estimation

“There is no sure and efficient way to readily detect a
node capture.” The authors mentioned in [10] and [11].
Accordingly, a threats probability estimation algorithm is
employed in the self-organization scheme.

The algorithm proposed here is an extension to the one
originally described in [7], in which variable attack and
failure probability will be involved. Consider that sensor
nodes are deployed in groups, as shown in Fig. 3. The
authors [7] proposed an algorithm based on static failure or
attack probability for key predistribution. In their study, they
also consider that a sensor node can play the role of data
sink.

In our proposed method, a new deployment model is
used. Compared with that in [7], the attack and failure
probability does not focus on groups but on individual
sensors. A new algorithm is proposed to keep the whole
network connected and avoid key threats.

In the paper, we assume that the data sink is chosen
before the network is deployed and will not be replaced. It is
the same with cluster heads. Moreover, my proposed
algorithm focuses on sensor nodes rather than on deployment
groups which was proposed in [7]. The sensor nodes will not
distinguish between an attack from a neighbor and one from
an adversary. For security of Trusted Neighbors, I refer to
Reputation-based Framework for High Integrity Sensor
Networks [10].

303

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

In our proposed algorithm, the sensor nodes reporting to
the same cluster head are defined as in one group. Assume
that all deployment groups are in the same 2-dimensional
area. Assume that all sensor nodes will automatically record
threats’ times and levels. Assume that only sensor nodes will
be under threat. The algorithm for cluster heads can be
derived similarly and will be discussed in the future work
section.

In the following, the estimation of node threat level is
described. It follows the general PID controller principle
[19], and adjusts the estimate threat level according to three
correction factors. The whole algorithm can be described as:
if there are no threats detected by a node, the threat value of
this node will drop gradually; if threats are detected by a
node, there will be a correction value (derived from three
correction factors) added on this node’s threat value to
estimate the threat level.

In my proposed algorithm, a sensor node)(NiSi  is

associated with a basic failure coefficient
iSb representing the

threat from the environment and
iSb is predistributed value by

experience. Let w be the variable attack and failure weight,
which is obtained by experience. Let  be threshold threat

level and let
D be the detected attack level. Then w is

defined as

1,

,

,

,

22

11

































 n

Dw

Dw

Dw

w

nn 













(5)

Here n denotes the number of threat levels. Let

},,,{ 21 n  be a set of threshold values and NT shows how

many times a certain threat level has been detected. For a
certain threat level, the failure estimate is

TwNF  . The

difference between the failure estimates at time k and that at
time (k-1) can be defined as

)1()()( kFkFke
ii SS (6)

which is the first correction factor. Here)(kF
iS

denotes the

estimate failure of Si at time k. Then the second correction
factor Mc, relative threat value, can be defined as

)(

)(
)(

)(kF

kF
kM

i

i

SC

S
c  (7)

where θ is a constant coefficient.)()(kF
iSC

denotes the sum

of failure estimate of Si 's neighbors, which can be defined as





)(

)()()()(

ij

jii

SCS

SSSC kFkFkF (8)

The third correction factor is connectivity detection,
which is the number of sensors that have at least an available
path to a cluster head. It can be defined as

))()(
)(

1()(kCNTCNT
CNT

kCNT
kCD

ii

i

i

i SS
S

S

S  (9)

Here)(kCNT
iS

denotes the connectivity of Si at the time k

and
iSCNT denotes the connectivity when the network first

deployed. If 0)(kCD
iS

, it means some nodes are

compromised or unavailable at the time k.
The first correction factor measures the diversity between

different time intervals. The second factor measures the
relative threat. The third factor measures the connectivity for
a sensor and its neighbors. The total correction measurement
derived from (6), (7) and (9) can be defined as

))()(())(

))((
1

)()()(()(

kMke
dk

d
dkkM

kekCDkMkekM

cc

scA i



 




 (10)

Here  ,, are constants and will be set based on

experience. Let  , a constant, be the decreasing threat value,
which means if no failure/attack problems are detected, bsi

will gradually drop down. Then bsi can be defined as
)()1()(kMkbkb ASiSi

  (11)

If 0)(kb
iS

, then let 0)(kb
iS

. The)(kb
iS

is the real

time threat estimate and this will also be used in RNS
algorithm for TRRNs.

TABLE I. PARAMETERS IN TPE

After real time threat estimate bsi is calculated, the degree
of a sensor node can be derived. A degree of a sensor node
denotes the number of available connections for a sensor
node (number of shared keys with neighbors). Given a set of
threshold 2},,,{ 21 nn  for any sensor nodes, the

degree can be calculated by

2,

,

,

,

)(
22

11

































 n

b

b

b

SK

ns

s

s

i

i

i

i









(12)

Here K(Si) denotes the degree of a sensor node in a
deployment group. In the formula (12), for ,,, jiji  if

ji   , then
ji   . In my proposed method, differently

from that in [5], the higher attack/failure probability a sensor
has the fewer keys it has.

C. Organizing

In this section, a neighbor-oriented clustering and
neighboring scheme is described which is supported by RNS
and TPE. As it has been mentioned in the background
chapter [13], the sensor nodes may be scattered randomly
e.g. scattered from an airplane. Thus, there is no guarantee
that all cluster heads can directly connect with the data sink
or all group nodes can directly connect with their respective

304

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

cluster head. Routing with no threats is described in section
1), while in section 2) variable threats are involved.

1) Normal Routing
In this section, the thesis considers the routing algorithm

only between sensor nodes without any threats. To discover
a primary cluster head (CH), each sensor node (SN) wants to
discover the ID of the closest CH.

In our proposed scheme, let SNID be the ID of a SN, DP
be Default Path, DD be the Depth of Default Path, DTD be
Distance to Default Path, SLP be the status (sleeping or
active), TL be Threat Level, NL be a Neighbor List. Then,
we give each SN an expression (13):

)}(,,,,,,{ NLTLSLPDTDDDDPSNIDSNi  (13)

Where ω is the index of SN’s neighbors. SN’s parameters
are expressed with dotted notation, for instance, SN.DP
denotes the SN’s Default Path.

After deployment, the RNS algorithm (detailed in the
next section) is activated. SNs which are redundant will be
set to SLP = 1. At the same time, all SNs discover all their
neighbors and store in NL. Then they will wait for
connection from their neighbors which can connect to cluster
heads and the algorithm is described as follows. At first, each
CH will search SNs within its sensing range. Each SN within
CH’s sensing range will update its expression (14).

)}(,0,,0,{ NLSLPDTDDDCHDPupdateSN  (14)

Then these SNs continue to tell their neighbors they can
communicate with a cluster head by sending a path message
(15):

}0,,0,,{  SLPDTDDDCHDPSNSNIDPathInfo (15)

The SNs who receive the path message (15) will update
their expression (16).

)},,,{ SLPDTDDDDPupdateSN  (16)

If a SN receives more than one path message, it will
calculate the power consumption (PC) on these different
communication paths. As mentioned above, the proposed
scheme is neighbor-oriented. The default path selection
algorithm is described in (17).

)},,({ DTDDDDPPCupdateSN  (17)

Here PC denotes the power consumption function.
Before give the expression for total power consumption,
assume power consumption is proportional to the square of
distance with a coefficient θ and each hop will consume λ.
Thus, the power consumption function can be described as

DDDTDindexNLDTDindexNLSNPC  )).(())(,(22 (18)

NL(index).DTD denotes the distance between a
neighbor’s default path and the neighbor. The paths from a
SN to a CH are called communication links. For instance,
SNi need to send messages to SNj, and SNj need to forward
to SNk then finally to the CH, the link CHkji  is

called a communication link.
Theorem 2: For any SNs, if there exists

PC1(SN,NL(index1)) < PC2(NL(index2)), the power
consumption of the communication link on NL(index1) is
less than that on NL(index2) is true.

Proof:

))(()(

))1().(()(

)).(())(,(

1

2
1

2

2
1

2
1

indexNLPCSNPC

DDDTDindexNLDTD

DDDTDindexNLDTDindexNLSNPC











PC(SN) denotes the power consumption between the SN
and its default path and PC(NL(index1)) denotes the power
consumption between the node of SN’s default path and the
node of SN’s default path’s default path. For any available
communication links, we define a searching function (SF),
that SF(SN) = SN.NL(index1) if for any n (1 < n ≤ N, N is
the number of SN’s neighbor), there is PC1(SN,NL(index1))
< PCn(NL(indexn)), where SN.NL(index1) denotes the SN’s
neighbor with index1. We define SF(SF(SN)) = SF2(SN),
then the most power-saving path will be the communication
link 1.2)()( DDSNSFSNSFSNSFSN  . Thus, for

any SNs, if there exist PC1(SN,NL(index1)) <
PC2(NL(index2)), that the power consumption of the
communication link on NL(index1) is less than that on
NL(index2) is true.

Lemma 1: For any SNs, if there exists
PC1(SN,NL(index1)) < PCn(NL(indexn)),(1 < n ≤ N, N is the
number of SN’s neighbors), the NL(index1) is the minimum
power-saving link for SN.

Based on Lemma 1, all SNs can find the minimum power
path. If a sleeping node is on a minimum power path, then it
will be switched on. An example of the normal routing is
shown in Fig. 13.

Figure 13. Normal routing

Fig. 13 shows the normal routing scheme. In RNS, SN3,
SN4, SN5 and SN10 are candidates of redundant nodes. SN1
and SN2 are both in CH’s sensing range and they have the
default path DP = CH and DD = 0. Then, they start to send
path messages to neighbors. Both SN3 and SN11 receive a
path message from SN1 and a path message from SN4 is
received by SN3 as well. Then based on Lemma 1, SN1 is
set as the default path for SN3 and SN4 is set as backup. The
rest may be deduced by analogy. After the default path
searching, SN3, SN4 and SN5 are all on the minimum power
link, thus, only SN10 will be switched off.

305

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

2) Routing with Variable Threats
In this section, variable threats are assumed, and attack

threats and sensor failure will be discussed.
Based on TPE, each SN has a property called Threats

Level (TL). In the routing scheme under variable threats, we
assume there are three threat levels. Let level 0 be no threats,
level 1 be low threats, level 2 be high threats. Thus, there are
three different cases.

SN.TL = 0. Under this circumstance, the neighbor with
TL = 0 and lowest power consumption is a priority selection.
If there is no SN with TL = 0, the one with TL = 1 and
lowest power consumption is a priority selection.

SN.TL = 1. Under this circumstance, the solution is the
same with SN.TL = 0. For a more complex scenario, the
balance between threats level and power consumption is
mentioned in the future work.

SN.TL = 2. Under this circumstance, the SN has a high
probability of failure or of being compromised. In the
proposed method, TPE, this “high threat” SN may be totally
isolated because it will be disconnected from “low threat” or
“no threat” neighbors and only neighbors with TL = 2 can be
used in the default path to the sink.

Besides, a SN will delete neighbors with TL = 2 from
SN.NL.

For a failed SN, its neighbor will delete its index from
SN.NL. If a CH becomes unavailable, such as due to
physical damage or battery exhaustion, the SNs in its group
will join another group using a backup path. Fig. 14 shows
the scheme under variable threats.

Figure 14. Routing with variable threats

In Fig. 14, we assume SN5 has a higher threat level than
SN4, thus, SN4 will select SN6 as default path. If SN5 has a
TL = 2, it will be isolated by SN4, SN3, SN6 and SN8 in
order to avoid key and packet loss. If assume that CH1 is
unavailable and SN5 has a normal threat level, then the

backup path between SN1 and SN2, SN3 and SN5, SN9 and
SN10 will be set as default path and all SNs in group 1 will
join group 2 or group 3.

D. Sensors Addition

Throughout the lifetime of a WSN, it may be necessary
to deploy additional SNs. In my proposed scheme, the
network is flexible to receive additional SNs. We assume the
additional SNs are randomly deployed in the monitored area.
Based on the scheme specified and Lemma 1, new SNs will
join a suitable group.

E. Proposed Scheme

The 3.A, 3.B and 3.C will work as an integrative and the
entire proposed scheme is outlined as follows: after
scattering on the wild area, the RNS is activated. Each
cluster head will search the data sink within its
communication range. When a cluster head receives an
available path to the data sink, 1) the cluster head will start to
search other cluster heads within its sensing range
(neighbors); 2) the cluster head will start to search sensor
nodes around it to organize a group; 3) the sensor nodes will
calculate the threshold)0(

iSb . If a sensor node receives no

available path or message to become a group member, it will
be switched to sleep mode. If a redundant node is the only
available path or the minimum power path for a sensor node,
it will not be switched off.

If the environment changes: 1) if a cluster head becomes
unavailable, all of its group members will join other groups
via the algorithm specified; 2) if a sensor node SN has
detected a high threat level, all sensor nodes connecting to
SN will reroute to the first backup path; 3) if new sensor
nodes join the network, they will follow 3.C; 4) in case of a
node pair (Si and Sj), when only one of the pair can be
switched to sleep mode, the following calculation is used. If

Si’s)(kb
iS is higher than the sleep one Sj’s, Si will be

switched to sleep mode and Sj will be waked up, vice versa.

Algorithm: Proposed Scheme
Sensors do RNS algorithm;

for)1(NiCH i  do

search data sink;

if iCH find data sink then

register at the data sink(iCH);

search neighbors(iCH);

search sensor nodes(iCH);

end if
end for

for)1(MjS j  do

if jS can access to a cluster head then

search neighbors(jS);

organize network;
end if

end for

306

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

for)1(MjS j  do

if RNS(jS)is true and jS is not the only path for

another node then

switch(jS ,sleep);

end if
end for

if)1(NiCH i  cannot access to data sink then

switch(iCH ,sleep);

end if

if)1(MjS j  cannot access to cluster head then

switch(jS ,sleep);

end if

for)1(MjS j  do

if jS default path is sleep or unavailable then

load the top of the stack and set as default path;
end if

end for

Thus, after the deployment, the network will be
automatically organized and redundant nodes will be
switched to sleep mode to save power. When some nodes
become unavailable, some of the sleep nodes will be set as
replacements and maintain the network.

IV. ANALYTICAL AND SIMULATION RESULTS

In this section, simulation results are given for total
energy consumption and total packages lost in the network.
The latter indicates network robustness, that is, the ability of
the network to continue operating after variable threats.

In the simulation, a JAVA based wireless sensor network
simulator was used. Compared with other simulators, such as
OMNeT++, the JAVA simulator proved to be more flexible
for environment configuration and implementation of the
proposed solutions.

A. The Impact of Sensor Failure on Network Integrity

The proposed model, RNS can reduce partitioning in the
network. An example illustrating the RNS algorithm when
some sensor nodes are unavailable is shown in Fig. 16. In
this example, there are 15 sensor nodes, the topology and
deployment group is shown in Fig. 16. If the sensor nodes in
the ellipse are unavailable, the default path will be blocked.
However, the node which is switched to passive and sleep
mode is not affected by the attack, and when the default path
for the first forwarding sensor is blocked the sleeping node
will be woken up to reconnect to the cluster head.

Figure 15. Message delivery from a sensor to the cluster head

Figure 16. The impact of sensor failure

However, the problem of resistance to attacks becomes
more delicate when the location of cluster heads is taken into
consideration, and this will be detailed in the following
section.

B. Resilience Against Node Failure

In this section, resilience against node failure between
deployment groups is described.

An example illustrating the RNS algorithm in the case a
cluster head fails is shown in Fig. 17. In this example, first,
cluster head 1 is damaged and default paths for node 1 and 2
are blocked. In my proposed scheme, the isolated nodes will
search for an available path to a new cluster head in order to
join a new deployment group. As shown in Fig. 17, node 9 is
switched to its backup path that connects to node 10, and
node 7 and node 9 will join to cluster head 3, meanwhile,
node 2, node 1 and node3 will join to cluster head 2. If
cluster head 2 fails, all these sensor nodes will join group 3
via the backup path. Although this may raise communication
overhead, it can maintain coverage over the whole
monitoring region.

307

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Figure 17. Resilience against node failure

C. Test Environment

In this section, simulation results are given for total
energy consumption and total packages lost in the network.
The latter indicates network robustness, that is, the ability of
the network to continue operating after variable attacks.

In the simulation, a JAVA based wireless sensor network
simulator was used. Compared with other simulators, such as
OMNeT++, the JAVA simulator proved to be more flexible
for environment configuration and implementation of the
proposed solutions. The tests can be grouped into two parts.
The first part describes the total energy consumption before
and after implementing the Redundant Nodes Selection
scheme (RNS). The second part depicts the robustness of the
sensor network under variable threats with the proposed
Threats Probability Estimation Scheme and with the shortest
path first (SPF) scheme [9]. Robustness is examined with
three different kinds of sensor distributions. Sensor Density
in uniform distribution is 8 and in other distribution is 6,
because in the simulator, the uniform distribution has a fixed
template, and the number of sensors was the same in all
simulation.

D. Power Consumption

Uniform sensor distribution and uniform traffic
distribution was used when examining the total energy
consumptions between before and after implementing
proposed method. In the simulator, each hop costs 0.0005%
battery life, around 0.00006% per simulation meter and
0.001% per working sensor.

Simulations with different parameters produced similar
results. A typical set of results is presented here. There were
100 sensors with three cluster heads and sensor density is 8.
The sensors were arranged in a 10 × 10 matrix. Fig. 18
shows the total battery consumption without proposed
scheme and Fig. 19 shows the total consumption under the

same circumstance but with self-organization scheme
activated.

Figure 18. Total power consumption in uniform distribution without RNS

Figure 19. Total power consumption in uniform distribution with RNS

Then we look at the differences in normal distribution.
Fig. 20 shows total power consumption without RNS scheme.
Fig. 21 shows the total consumption under the same
circumstance but with RNS activated. In the scenario with
Zipf distribution, Fig. 22 and Fig. 23 show the improvement.

Figure 20. Total power consumption in normal distribution without RNS

Figure 21. Total power consumption in normal distribution with RNS

308

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Figure 22. Total power consumption in Zipf distribution without RNS

Figure 23. Total power consumption in Zipf distribution with RNS

The charts prove that the RNS scheme could reduce
energy consumption of the network, and thereby extend the
network’s lifetime.

E. Robustness

Node captures in hostile environments are inevitable.
Robustness is a kind of ability to help WSN recover from
variable threats. This thesis describes a Threats Probability
Estimation (TPE) scheme to support the key management
method described in Chapter 3.B. For comparison, the
default key management scheme is shortest path first (SPF).
There are total 100 sensors were deployed in such area and
average sensor density is 6. One fourth of the sensors are set
as “high threats” and random attacks are launched six times
in each scenario. In the simulator the process of detecting an
attack was not modeled, but rather the attack event was
directly passed on to the sensors.

1) Normal sensor distribution with normal traffic
distribution

First, we look at the scenario when sensors are deployed
in a normal distribution (Gaussian distribution). The traffic
distribution is also normal, to simulate centralized events,
such as fire in a forest. The Fig. 24 shows the robustness of
the network with SPF scheme and Fig. 25 shows that with
TPE algorithm.

The curves illustrated above indicate the TPE scheme
could enhance the robustness of the network, by reducing
packet loss from 15% to 2%.

Figure 24. Robustness of the network with SPF in normal distribution

Figure 25. Robustness of the network with TPE in normal distribution

2) Uniform sensor distribution with uniform traffic
distribution

Fig. 26 shows robustness of the network with SPF
scheme when sensor deployed and network traffic follows
uniform distribution. Fig. 27 shows the robustness of the
same circumstance but with the same distribution, but with
TPE activated.

Figure 26. Robustness of the network with SPF in uniform distribution

Figure 27. Robustness of the network with TPE in uniform distribution

In uniform distribution, the TPE scheme improves the
robustness by reducing packet loss from 14% to 4%.

3) Zipf sensor distribution with Zipf traffic distribution
Fig. 28 shows the robustness of the network with SPF

when sensor deployed and network traffic follow Zipf
distribution. Fig. 29 shows the robustness of the same
circumstance but with the same distribution, but with TPE
activated.

Figure 28. Robustness of the network with SPF in Zipf distribution

Figure 29. Robustness of the network with TPE in Zipf distribution

309

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

In Zipf distribution, the TPE scheme improves the
robustness by reducing packet loss from 13% to 4%.

With high threats in the network, TPE can be considered
as an effective scheme to improve the robustness by reducing
packet loss.

4) Sensor Addition
In the scenario with proposed method, new sensors were

successfully added to the network as long as there was at
least one available “no threat” neighbor or “low threat”
neighbor. Obviously, adding new sensors will improve
network connectivity and coverage.

Discussion and evaluation will be detailed in the
following Chapter.

V. DISCUSSION AND CONCLUSION

Power consumption and robustness are two important
aspects of self-organization for wireless sensor networks.
Throughout the lifetime of a wireless sensor network, a
partitioning inevitably occurs after a certain period of time,
because of finite battery power. Extending the battery life
and postponing the occurrence of the first partitioning are the
problems of the former aspect. The latter aspect describes the
ability of a WSN to recover from different attacks.

In the proposed method, Redundant Nodes Selection
scheme (RNS) and variable Threats Probability Estimation
scheme (TPE) are designed to improve network performance
on these two aspects. RNS is proposed to select redundant
nodes and switch them off to save power, and set them back
to active mode when a partitioning occurs. A node is
redundant if after switching it off, its sensing area is still
covered by neighbors. TPE is designed to enhance the
routing algorithm and avoid high threats sensors in order to
reduce packet loss.

The experimental results presented in the previous
chapter showed that the battery life is extended dramatically.
In uniform distribution, the total remaining battery power
dropped to 80% after around 6 simulation hours without
RNS, while under the same circumstance but with RNS
activated, it took approximate 9 simulation hours, which
represents a 50% improvement. The figures show that the
battery consumption curve for the scenario with RNS has a
gentler slope. Besides, from about 6.25 simulation hours, in
the scenario without RNS a partitioning appeared because of
sensor exhaustion. After that, connectivity and coverage also
went down. However, in the scenario with RNS, sleeping
nodes replaced the exhausted ones and maintained
connectivity, and the first partitioning occurred at around
11.25 simulation hours, which is an 80% improvement.

Similarly, in normal distribution, the total remaining
battery power dropped to 80% after around 5.75 simulation
hours without RNS, while under the same circumstance but
with RNS activated, it took approximate 7.5 simulation
hours, which represents a 30% improvement. In addition, it
took approximate 3.75 simulation hours to meet the first
partitioning in the scenario without RNS. Compared with
that, scenario with RNS has around 8.25 simulation hours
without partitioning, which is a 140% improvement.

In Zipf distribution, the total remaining battery power
dropped to 80% after around 6 simulation hours without

RNS, while under the same circumstance but with RNS
activated, it took approximate 8 simulation hours, which
represents a 33% improvement. In addition, it took
approximate 7.25 simulation hours to meet the first
partitioning in the scenario without RNS. Compared with
that, the scenario with RNS has around 9.25 simulation hours
without partitioning, which is a 27% improvement.

For the implementation of RNS, redundant nodes are
switched off to save power and then switched on to replace
power-exhausted sensors. This can help the WSN to extend
battery life and postpone the occurrence of first partitioning.
The calculation for the redundant nodes was only executed
once, after network deployment. Thus, there was not much
computation added during runtime and we ignored the
computation overhead in the simulation.

On the other hand, variable threats, such as node capture
attacks and nodes failure in hostile environments are
inevitable. A sensor with high threat level indicates a high
packet loss probability when packets are received or sent.
TPE scans all neighbors and helps sensors to avoid high-
threat nodes to reduce packet loss. The scenario with my
proposed scheme, TPE, is also showed a distinct
improvement. In the simulation with sensor normal
distribution, the scenario without TPE had approximate 15%
packet loss on average while in the network with TPE, it had
around 3% packet loss during simulation times, which is a
400% improvement.

Similarly, in uniform distribution, the scenario without
TPE had approximately 14% packet loss on average while in
the network with TPE, it had around 4% packet loss during
simulation times, which is a 250% improvement.

In Zipf distribution, the improvement is also significant. I
observed 13% packet loss in the scenario without TPE while
under the same circumstance but with TPE, it had 4% packet
loss, which is a 225% improvement.

In the simulation, the level of packet loss in the scenario
without TPE usually stayed at a high level, although it
fluctuated sometimes. On the other hand, in the scenario with
TPE it always dropped quickly to a low level and stabilized,
despite sometimes having a small rise at the beginning. TPE
helps routing by avoiding higher threat neighbors, thus, a
lower packet loss is obtained when variable threats are
involved.

In my proposed method, the improvement by RNS
depends on sensor density, the higher the density, the more
improvement. Low sensor density networks will not benefit
significantly from RNS. TPE is designed to counter variable
threats and there will not be much improvement on the
scenario without variable threats. Also, TPE may slightly
raise the communication overhead and memory overhead
because of rerouting to a safer neighbor. When a network
was in low threat, the communication overhead was the same
as the scenario without TPE. However, as the threat level
goes up, the communication overhead was rising. In the
simulation, the communication overhead was approximately
0% to 12% more than in the scenario without TPE, which
was the price for significantly lower packet loss.

310

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

ACKNOWLEDGMENT

I would like to thank my parents and my friend Rui Rui
Zhang for their understanding and support.

REFERENCES

[1] Jian Zhong and Peter Bertok, “A Variable Threats Based Self-
Organization Scheme for Wireless Sensor Networks,” 3rd Intl. Conf.
on Sensor Technologies and Applications, 2009 (SENSORCOMM
'09), pp. 327-332, doi: 10.1109/SENSORCOMM.2009.57

[2] J. A. Stankovic, “Self-organizing Wireless Sensor Networks in
Action,” J. of Networking and Mobile Computing, vol 3619/2005,
doi: 10.1007/11534310_1

[3] B. Karp, “Geographic routing for wireless networks,” PhD
Dissertation, Harvard University, October 2000. URL http://
actcomm.dartmouth.edu/papers/karp:paper.pdf

[4] R. Di Pietro, L. V. Mancini and A. Mei, “Energy efficient node-to-
node authentication and communication confidentiality in wireless
sensor networks,” Intl. J. on Wireless Netowrks, vol 12, pp 709-721,
doi: 10.1007/s11276-006-6530-5

[5] D. Liu and P. Ning, “Efficient distribution of key chain commitments
for broadcast authentication in distributed sensor networks,” In Proc.
of the 10th Annu. Network and Distributed Sensor Networks
(NDSS03) , 2003.

[6] B. Wang, K. C. Chua and V. Srinivasan, Wei Wang, “Sensor density
for complete information coverage in wireless sensor networks,” Intl.
J. of EWSN2006,vol 3868/2006, pp. 69-82, doi: 10.1007/11669463.

[7] C. Yu, C. Li, C. Lu, D. Lee and S. Kuo, “Attack probability based
deterministic key predistribution mechanism for non-uniform sensor
deployment,” In Proc. of the 27th Intl. Conf. on Distributed
Computing Systems Workshops, pp 18, doi:

10.1109/ICDCSW.2007.24.

[8] C. Karlof and D. Wagner, “Secure routing in wireless sensor
networks,” University of California at Berkeley, 2002. URL
http://webs.cs.berkeley.edu/papers/sensor-route-security.pdf

[9] M. W. Chorzempa, “Key management for wireless sensor networks in
hostile environments,” Paper submitted to the Faculty of the Virginia
Polytechnic Institute and State University, 2006. URL
http://scholar.lib.vt.edu/theses/available/etd-05022006-
171402/unrestricted/chorzempapaper_v2.pdf

[10] Saurabh Ganeriwal and Mani B. Srivastava, “Reputation-based
Framework for High Integrity Sensor Networks,” SASN’04, October
25, 2004, Washington, D.C., USA

[11] G. Jolly, M. Kusu, and P. Kokate. “A hierarchical key management
method for low-energy wireless MSN networks,” In Proc. of the 8th
IEEE Symposium on Computers and Communication (ISCC), pp.
335–340. Turkey, July, 2003.

[12] S. Zhu, S. Setia and S. Jajodia. “LEAP: efficient security mechanisms
for large-scale distributed MSN networks,” In Proc. of the 10th ACM
Conf. on Computer and Communication Security (CCS), pp. 62-72,
Washington DC, October 2003.

[13] B. Krishnamachari, “An introduction to wireless sensor networks,”
Tutorial Presented at the Second Intl. Conf. on Intelligent Sensing and
Information Processing (ICISIP), Chennai, India, 2005.

[14] F. Dressler, B. Krüger, G. Fuchs and R. German, “Self-organization
in sensor networks using bio-inspired mechanisms,” In Organic-
computing, 2005. URL http://www.organic-computing.org/

conferences/arcs2005/dressler-article.pdf

[15] B. Atakan and Özgür B. Akan, “Immune system-based energy
efficient and reliable communication in wireless sensor networks,” In
Next Generation Wireless Communications Laboratory, 2007. URL
http://www.springerlink.com/index/14g2255603256jn6.pdf

[16] G. Jolly, M. Kusu, and P. Kokate, “A hierarchical key management
method for low-energy wireless MSN networks,” In Proc. of the 8th
IEEE Symposium on Computers and Communication (ISCC), pp.
335–340. Turkey, July, 2003.

[17] S. Zhu, S. Setia and S. Jajodia, “LEAP: efficient security mechanisms
for large-scale distributed MSN networks,” In Proc. of the 10th ACM
Conference on Computer and Communication Security (CCS), pp.
62-72, Washington DC, October 2003.

[18] D. Liu and P. Ning, “Location-based pairwise key establishments for
static sensor networks,” Cyber Defense Laboratory, Department of
Computer Science, North Carolina State University, 2003

[19] Documentation for the Bytronic Process Control Unit version 3,
Bytronic International Ltd., 2002.

[20] F. Xiujun, W. Fan, T. Bihua and L. Yuanan, “Wireless sensor
networks security analysis,” School of Telecommunication
Engineering, Beijing University of Posts and Telecommunications,
Beijing, 2007 URL http://www.paper.edu.cn/downloadpaper.php?

serial_number=200704-597

311

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Performance, survivability, and cost aspects of
Business Continuity Processes According to BS

25999
Wolfgang Boehmer∗

∗Technische Universitaet Darmstadt, Germany, Hochschulstr. 10, 64289 Darmstadt
Email: wboehmer@cdc.informatik.tu-darmstadt.de

Abstract—A new model is presented for evaluating the perfor-
mance of a Business Continuity Management System according to
BS 25999. Performance is based fundamentally on the system’s
Business Continuity Plans and Disaster Recovery Plans. Typi-
cally, the performance of these plans is inadequately evaluated
using a number of specific exercises at various intervals and, in
many cases, with a variety of targets. Consequently, it is difficult
for companies to give ex-ante statements of their survival in the
case of a disaster.

Two key performance indicators are presented that allow the
performance of a Business Continuity Management System to be
evaluated according to BS 25999. Using these key performance
indicators, the probability of survival can be estimated before
extreme events occur. However, the two key performance indica-
tors compete and their use invokes a trade-off: an alignment in
favor of one key performance indicator is necessarily done at the
expense of the other. A key performance matrix with four ranges
is presented according to the Business Continuity Management
System. The best range is the strategic balance in which both
key performance indicators support the economic strategy and
a suitable cost/benefit relationship is achieved. Moreover, if a
company is already in the range of the strategic balance, a further
improvement, which yields minimal turnover, may be possible.
This improvement can be obtained via a combinatorial optimiza-
tion between the two competing key performance indicators.

Index Terms—BS 25999; BCMS; Business Continuity Plan
(BCP); Knapsack-Problem; Branch & Bounding.

I. I

This contribution is inspired by [1] which addresses mea-
surement of performance indicators for effectiveness and
economic efficiency of a Business Continuity Management
System (BCMS). However, in this article the evolution of key
performance indicators is interpreted as a trade-off between the
conflicting goals of effectiveness and economic efficiency. This
trade-off is analogous to a 0-1 knapsack problem. Furthermore,
it is proposed that a management system (BCMS) can be
interpreted as a control loop with a steady state based on
systems theory for Discrete Event Systems (DEVS). If this
interpretation is acceptable, then DEVS knowledge can be
transferred to a management system.

The BS 25999-1:2006 standard sets out the code of practice
for a BCMS [2]. After extensive review by the British Stan-
dard Institution (BSI), specifications for Business Continuity
Management (BCM), BS 25999-2:2007, were published in
November 2007 [3]. During that review, more than 5000 indus-
trial ideas and suggestions were integrated into the standard,

thereby establishing a high level of maturity. The standard
BS 25999-2:2007 provides requirements that a management
system must meet if critical business processes (value chain)
are to remain stable in the face of acceptable levels of disasters.
The fundamental idea is that BCM aims to manage various
types of uncommon business risks that would have a huge
impact on a company. A BCMS is capable of responding
satisfactorily in extreme situations (catastrophic events) with
pre-defined plans (Business Continuity Plans; BCP). The con-
tinuation of the value chain at an acceptable level for a defined
period (∆t) is then ensured. A BCMS includes vital business
processes. Recovering only the working infrastructure, e.g.,
replacing a failed IT infrastructure by an emergency one, will
not meet a BCMS, as an IBM report clearly points out [4].

The BS 25999 standard requires implementation of a man-
agement system in accordance with the PDCA cycle (Plan–
Do–Check–Act) as well as those systems already required
in other standards, such as ISO/IEC 27001, ISO/IEC 20000,
ISO/IEC 9001, and ISO/IEC14001. However, those standards
describe only what to do rather than how to do it.

The PDCA1 cycle is based on the idea of imperfection and
thus follows a continuous improvement process. For example,
in the Check phase, managers examine whether the plan’s
objective set is still in agreement with the rest of the system.
If it is not, corrections are implemented in the Act stage.

During the initial Plan phase of a PDCA cycle, BS 25999 re-
quires identification of critical business processes and analysis
of dependencies between key stakeholders and key services.
Following this, a risk analysis must be performed. For each
risk of high impact and low probability, a response [i.e., a
Business Continuity Plan (BCP)] must be developed. The
response is aimed, on the one hand, at continuing business
processes on a defined level (BCPs) and, on the other, at
initiating those countermeasures that will restore the original
state (Disaster Recovery Plan, DRP).

As in the ISO 27001 standard, risk plays a central role in BS
25999 [5][3]. However, the measures for implementing ISO
27001 are oriented toward risk-prevention, while those for BS
25999 (BCP and DRP) are reactive. That is, BCM is a reactive
model that becomes active only after a disaster has occurred.

1The PDCA cycle was developed by W. E. Deming in the late 60s of the
last century.

312

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

In this context, the maximum allowable downtime (Maximum
Tolerable Period of Disruption; MTPD), which starts after
a disaster occurs, increases considerably in importance. The
MTPD is determined from the length of time that critical
activities in the value chain require to begin working again
after a disaster. This period of time is an ultimate boundary
for a company and decides the company’s survival. If this
ultimate limit is exceeded, the company is irretrievably lost.
Consequently, the goal of every company must be to optimize
the performance of the restoration so that the time required
for restoration (Recovery Time of Objective; RTO) is reduced.
Thus, a company must do everything to ensure that RTO ≤
MTPD can be achieved. However, the efficiency of restoration
measures must not be ignored.

The relation between critical activities and the value chain
is determined by the Business Impact Analysis (BIA). Within
the BIA, the dependent critical resources (key stakeholders,
key products, key services) and their importance to critical
activities (core processes of the value chain) are analyzed.
Any BCMS includes those business processes that are vital.
A BCMS is capable of responding satisfactorily in extreme
situations (catastrophic events) with pre-defined plans and
emergency processes (Business Continuity Processes, BCP).
This raises the question as to how well the performance of
emergency processes are. However, performance, as in CobiT
and in ISO/IEC 9004:2009, is also understood here [6].

In the literature, three basic methods are generally available
for measuring the performance of processes.

1) It one method, performance is related to the maturity
of processes, and tools such as Spice (ISO/IEC 15504)
or CMMI, developed at Carnegie Mellon University,
are used to measure process maturity. This maturity
approach is gaining support across a wide range of tech-
nical environments, including production environments
as well as management systems such as ITIL (ISO/IEC
20000) and ISO/IEC 27001.

2) A somewhat newer method is to describe the state space
of processes using process algebra. In the development
carried out at the TU Eindhoven, classical process alge-
bra was not used, but a tool (mcrl2) has been developed
by which process algebra can be applied in a simple
manner. Then, if modal logic is applied in the form
of a µcalculus on the state-space, the process algebra
generated by state sequences and state transitions of
all processes allows safety issues and the liveness of
processes to be analyzed. Essentially, model checking
is performed based on a specification. First thoughts
were published in [7] and a study of this method
applied to a business continuity process (BCP) has been
published [8]. An extensive explanation can be found in
the Technical Report of the TU Eindhoven [9]. Note that
this method is distinct from symbolic model verification
(SMV) used in such tools as νSMV and SMV.

3) Another method is to estimate performance on the basis
of appropriate indicators (KPI). The challenge is to
define appropriate metrics, which have a corresponding

significance. Suggestions for the handling of such indi-
cators are to be found in [10] and in [11]. A performance
measurement system for a BCMS is developed in [12].
It rests upon the methodology of the BORIS, which
contains a set of different tools. In that article, traditional
security variables (integrity, availability, confidentiality)
and business indicators, appear to be necessary [12]. A
similar approach to a performance measurement system
has been applied in [1] for business continuity man-
agement (BCM) and a forerunner of this approach was
published in [13].

In a previous article by Boehmer, it was demonstrated how
the management system of ISO 27001 can be measured using
effectiveness and efficiency as indicators [13]. As mentioned
above, a measurement takes place in the Check phase. In the
present paper, this idea of measuring the quality of these two
KPIs is applied to a BCMS. Measurements of these KPIs
provide the status of a BCMS; that status maps into one of
four quadrants. The worst state is one in which a BCMS is
neither effective nor efficient; this is called a strategic dilemma
[13]. In a strategic dilemma, the probability of a catastrophe
occurring in which the company will not survive is very high.
Conversely, the survival probability increases if the ratio of
the effectiveness and efficiency of the KPI is ideal and the
majority of all the exercises carried out has RTO ≤ MT PD.

This paper is divided into seven sections. The following
section integrates relevant work from the literature. The third
section contains a discussion of the structure of a process-
oriented evaluation system based on circumstantial evidence
and key indicators. In the fourth section, the development
of two KPIs is discussed; these KPIs are used in the fifth
section to look at survival probability. Survival probability
is closely linked to a functioning BCP. In the sixth section
trade-offs between the KPIs of effectiveness and efficiency are
discussed within the context of the 0-1 knapsack problem. Our
contribution finishes with a brief summary and prospects for
future work.

II. RW

An empirical study by Knight and Pretty shows that those
companies with a BCMS are more likely to survive a disaster
than those that have taken no precautions [14]. Nevertheless,
the study also shows that, despite the use of a BCMS, a
company’s chance of survival is not guaranteed, and a small
number of such companies have been reported as failing to
survive. Conversely, the study also reports a very small number
of companies that survived a disaster even though they had no
BCMS [14]. This latter phenomenon may simply be luck.

Looking at those cases of companies that used a BCMS and
still did not survive, it appears the quality of their BCMS or
BCP and DRP needs to be taken into account. It is clear from
the study that the application of a standard is not, by itself,
enough: the standard must be applied properly.

The literature has so far focused on the topic of BCMS
primarily in practical terms, e.g., [15],[16],[17]. Nemzow dis-
cusses the need for various strategies to protect an organization

313

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

from natural and manmade disasters [15]. He also explains the
difference between a BCP and a DRP. Quirchmayr discusses
the Business Continuity Management Lifecycle and its content
[16]. Landry and Koger discuss the lessons learned from
2005’s hurricane Katrina [17]. Again, the importance of a
DRP is stressed. Similar ideas are set out in the study by
IBM on hurricane Katrina, including claims that a BCP and
DRP must contain more than simple aspects of the company.
For example, company members remaining in the disaster area
should also be taken into account in the BCP [4]. Similarly,
Saleem et al. [18] note the importance of an adequate Busi-
ness Continuity Information Network on an effective DRP.
A similar issue is also highlighted by Shklovski et al. [19].
The importance of a Business Impact Analysis (BIA) and the
restoration point of objective after a disaster is discussed by
Quirchmayr et al. [20]. These issues are related to the MTPD.
Meanwhile, many of these aspects influenced the BS 25999-
2:2007.

However, solely from the results of Knight and Pretty, a
more detailed review can be posited [14]. This review must
relate to a BCMS as well as to the function and performance
of its BCP and DRP. Only after the quality of performance
has been measured can a statement be made concerning a
business’s survival probability.

III. B CM S (BCMS)

The fundamental idea of a BCMS is that Business Con-
tinuity Management (BCM) is meant to manage those rare
business risks that can have a huge impact on a company.
The BCMS is capable of responding adequately in extreme
situations (catastrophic events) with pre-defined plans (BCP).
In the next section, the goal of a management system is
discussed using a simple example, then this goal is transferred
to a BCMS.

A. Concrete example–a weight management system

A simple real-world example is used here to illustrate the
concept of a management system. Consider a person who
wants to manage his or her weight using a management system
that focusses on consumed and burned calories. A possible
objective could be to balance these values, as illustrated in
Figure 1. Another objective could be to reduce the weight
of a person. In this case more calories must be burned than
consumed. The measuring instrument is the weighing machine
(scales). The ideal state is maintained by burning as many
calories as are consumed. Then the system is in a dynamic
equilibrium and energetic costs are balanced. Equilibrium is a
state of a system that does not change with respect to one or
more state variables over some period of time; i.e., on average,
the weight remains constant over a long period.

In Figure 2 the weight management system is interpreted as
a feedback system. Every time the person diverges from the
ideal weight, an adjustment is made by the actuator (calories
are burned). This behavior of the weight management system
can be interpreted as a linear feedback system. This linear
feedback system can be described with a Discrete Event

loss in weight(calories)(Plan Phase) gain in weight(calories) (Check Phase)

W
eight M

anagem
ent

Act

Do

dream weight

Fig. 1: Weight management system attempts to control gains
and losses in a person’s weight

System Specification (DEVS); it is a control loop that contains
sensors (s), controller (c) and actuators (a) arranged to regulate
in discrete (k)-steps a process variable (p) with respect to a
reference signal w(k) (see Figure 2).

burning calories daily behavior

plant

consuming calories

 y(k)

process (p)actuator (a)

scales
comfortable

weight

controller (c)

w(k)

yp(k)

 ys(k)

(-)

(+)

reference signal

process value

ua(k)
control signal

sensor (s)

 e(k)

uc(k) = w(k) - e(k)

Fig. 2: Weight management system reinterpreted as a control
loop for the weight of a person

The basic objective is to control the value of the process
variable yp(k). This is done by measuring its value y(k) and
determining e(k) its variance (+/−) relative to the desired
reference value w(k). This variance uc = w(k) − e(k) is used
by the actuator to generate an appropriate correcting control
signal ua(k) that modifies the system’s behavior and changes
the value of yp(k) appropriately. A closed loop is created by
the feedback of the controlled variable to the sensor and its
conversion to a control signal, as in Figure 2.

Inside an atomic DEVS, an arbitrary formalism can be
used. A DEVS can be viewed as a framework that unifies a
number of other formalisms in a consistent, systems theoretic,
state-centered fashion. Discrete Event System Specifications
(DEVS) are dynamic systems whose state changes serve as a
basis for discrete events.

A similar behavior is achieved through the PDCA cycle
in a Business Continuity Management System (BCMS). As
mentioned above, a PDCA cycle is based on imperfection
and follows a continuous improvement process. The controlled

314

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

variables are the KPIs related to the effectiveness and effi-
ciency of a business continuity process (BCP). The reference
signal is the balance (equilibrium) between effectiveness and
efficiency of each business continuity process (BCP) and each
Diaster Recovery Process (DRP).

The PDCA cycle can be applied to each element of the
BCMS; this results in a PDCA cycle for the BCP and DRP
as well as for the BCMS itself. In Figure 3 a PDCA cycle is

s1

s4

s2

s3

Plan Do

CheckAct

y1 u2

y2 u3

y3 u4

y4 u1

σ0

Fig. 3: PDCA cycle as a DEVS

modeled as a discrete deterministic finite automaton (A). In
this representation, the finite automaton can be defined as a
6-tuple,

A (S ,U,Y, δ, g, s(0)) (1)

Three finite sets occur:

S = {s1, ..., sn} ; set of states (2)
U = {u1, ..., un} ; set of input alphabet (3)
Y = {y1, ..., yn} ; set of output alphabet (4)

with two functions:

δ : S × U −→ S ; transition function (5)
g : S × U −→ Y; output function (6)

Furthermore, the initial state is called s(0) ∈ S . A single state
is determined by s ∈ S , and its successor state s′ is formed
with the help of a transition function δ by s′ = δ(s, u).

The four states in Figure 3 can be identified in accordance
with BS 25999:
s1= establishing and managing
s2= implementing and operating
s3= monitoring and reviewing
s4= maintaining and improving

The state transition function is δ, k is the time independent
counter, and g is the output function2. The automaton equa-
tions are then

s(k + 1) = δ(s(k), u(k)) k = 0, 1, ... (7)
y(k) = g(s(k), u(k)) k = 0, 1, ... (8)

Therefore an automaton (A) is generated by an infinite state
sequence and modeled by the continuous improvement of the

2For more details we refer to the literature [21]

PDCA cycle. If, after a certain time, alterations in the state no
longer occur, so that a state change (k + 1) leaves the system
in the old state with s = y(s), then the state is an equilibrium
one. This equilibrium condition expresses the balance between
effectiveness and efficiency in the events of a BCMS for a
BCP and DRP. In this case δ′ is an extended state transition
function for all absorbing states3. This condition is called a
state of equilibrium [21].

Therefore, a BCMS with inherent PDCA cycles can be
described with the system theory of discrete-event systems.
States in the PDCA cycle for a BCP and DRP are measured by
two key indicators, E f k and E f z. It is important to distinguish
between an indicator and a key indicator. In the next section
we show how this approach can be mapped onto the concept
of a Business Continuity Management System.

B. Basic idea of a BCMS according BS 25999

A company that wants to safeguard its critical value chain
should focus on securing revenues by taking adequate risk
countermeasures. Since 2007, the BS 25999-2:2007 [3], pub-
lished by the British Standard Institution (BSI), is available.
It is an industry-wide recognized best-practice method that
governs the creation of a BCMS. It encompasses a BCP
and a DRP (Disaster Recovery Plan). The standard requires
implementation of a management system in accordance with
the PDCA cycle (Plan-Do-Check-Act), as well as those already
required in standards ISO 27001, ISO 20000, and others.

Figure 4 illustrates the operational view of a PDCA cycle
within an underlying BCMS. A BCMS is a framework that
helps balance risks (potential disasters and impacts on the
critical business process) against available countermeasures
(business continuity processes and business recovery pro-
cesses) while recognizing the MTPD as a real-world side
constraint.

BCP & DRParrangements(plan phase) Disaster & BIAgo bankrupt(check phase)

BCM
S

act

do

MTPD

Fig. 4: Business Continuity Management System (BCMS) with
ups and downs as a seesaw

Figure 5 shows a qualitative timeline of events following a
disaster that strikes at time t0. Immediately after occurrence
of the disaster, turnover collapses. At time t1 the processes of
the BCP (emergency operation) begin, and turnover starts to
increase. A little later, at time t2, recovery processes start, and

3Absorbing states are states that do not have successor states, and can be
considered as final states.

315

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

at time t4 the company is back to its normal level of operation.
The dash dotted line in the figure shows the increase in costs
after the disaster. In the event that no countermeasures (BCP,
DRP) are taken, or that the countermeasures do not work, the
costs continue to increase (see curve 2). The ideal situation is
that the Business Continuity Plan and the Disaster Recovery
Plan work so well that costs remain bounded, as in curve 1.

If no action (BCP, DRP) has been taken at or before the
time t3 in Figure 5, then costs will increase until insolvency
is reached. Costs are determined by the obligations of the
company. These consist of personnel, technical expenses, and
the cost of delivery, performance, or possibly storage costs, etc.
Thus t3 identifies the maximum allowable downtime (Maxi-
mum Tolerable Period of Disruption; MTPD), ∆Tmax = t0− t3.

BC
P

St
ar

tin
g

po
in

t

DR
P

St
ar

tin
g

po
in

t

time (t)

m
on

ey

calculate standing charge

calculate turnover

Ca
ta

st
ro

ph
e

t0 t1 t4

M
TP

D

ba
ck

 to
 n

or
m

al

calculate standing
chargeBusiness Continuity based on a BCP

Disaster Recovery based on a DRP

t2 t3

Insolvency
(go bankrupt)

calculate advanced standing charge

calculate turnover

(2)

(1)

Fig. 5: Illustration of aspects of a catastrophe (t0) and the
reaction (t1, ..., t4)

It is in the self interest of a company to keep the BCPs and
DRPs operational. Usually, this is tested on a regular basis
by simulating that something goes astray within the ordinary
business process. Because these tests are expensive, they are
not executed very often and generally they only address certain
aspects of the recovery plans. Such testing provides a rather
haphazard prediction of the effectiveness of recovery plans
when a true disaster strikes. To improve the quality of the
analysis of BCPs and DRPs, one should model these and the
ordinary business process such that they can be simulated. The
first ideas of how to do this have been presented in [7].

IV. P I   BCMS   BS
25999

This section shows how the key indicators of effectiveness
and economic efficiency are developed. The controlled vari-
ables are the KPIs related to the effectiveness and efficiency
of a business continuity process (BCP). The reference signal is
the balance (equilibrium) between effectiveness and efficiency
of each business continuity process (BCP) and each Diaster
Recovery Process (DRP). In Figure 6 we see how a BCMS
acts as a control loop, but to measure the performance of a
BCP and a DRP, a number of indicators are required.

A number of indicators will be formed for each key in-
dicator. An indicator and a key indicator can be defined as
follows:

BCP / DRP value chain
(business process)

plant

catastrophy
(incident)

 y(k)

process (p)actuator (a)

incident
sensorBCMS

controller (c)

w(k)

yp(k)

 ys(k)

(-)

(+)

reference signal

process value

ua(k)
control signal

sensor (s)

uc(k) = w(k) - e(k)

 e(k)

deviation
 signal

Fig. 6: BCMS Control loop for the emergency processes

Def. 1: An indicator (I) is a variable subject to a
metric.

Def. 2: A Key Performance Indicator (KPI) is a key
indicator formed from several more general
indicators and provides a significant statement
about a certain set of circumstances (see Eq.
18 and Eq. 22).

It is possible to make a significant statement using a key
indicator, but this statement is supported by several more
general indicators. The quality of a BCMS is reflected in the
preparation, handling, and testing of the BCP and DRP in the
Check phase (see Figure 4). For the system’s effectiveness,
this means that the indicator’s

• existence (Iex),
• enforcement (Iop) and
• completeness (Ico)

form a set on the system effectiveness (E f k):

E f k = {Iex, Iop(BCP,DRP) , Ico}. (9)

These indicators are derived about λ1, ..., λ4 from the pyramid-
level documents (see Figure 7). This pyramid structure was de-
rived by Alan Calder from practical experience and published
in the ISMS Toolkit [22].

For the assessment system, performance values (KPI) can
be defined for a BCMS. The documentation required by the
standard plays a crucial role. From the required documen-
tation, success measurements can be derived, and a lower
boundary can be defined for the implementation of a BCMS.
Below this boundary, a BCMS is inadequately implemented,
and the effectiveness (are we doing the right things?) cannot
be measured. Furthermore, an upper boundary is defined by
the economic efficiency of the BCMS (are we doing things
right?). This consists of a cost/benefit relationship and follows
the standard requirement (Clause 2.1.4 of the standard). This
limit postulates that no more than the value of the critical
business process should be invested in countermeasures.

316

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

level 1
documents

BCP, DRP
Scope

 policies
policies, controls

level 2
documents

level 3
documents

level 4
docu-
ments

procedures
process of controls

who, what, when, whom,

description and task,
what has to be done working instructions,

check lists

objective evidenceobjective evidence for level 3 documents

(λ1)

(λ2)

(λ3)

(λ4)

Fig. 7: Pyramid-level documents of a BCP and DRP

Figure 7 shows how the volume of documents from the top
(λ1) (peak) down increase. This structure shows the natural
history based on a directive toward their technical implementa-
tion (procedures (λ2), checklists (λ3)), which provides a series
of activities for implementing the directive. At the lowest level
(λ4) is the evidence (objective evidence), as described by Alan
Calder [22]. This pyramid structure is now a condition for the
existence of a lower boundary, as recommended in [13]. Below
this boundary, the implementation of the management systems
is not measurable. If the lower limit is exceeded, the quality
of the BCMS and BRP and DRP can be measured on the basis
of indicators.

The first key performance indicator (KPI1) relates to the
effectiveness (see Eq. 9) and can be determined by three
indicators. On the one hand, the existence of the policies
per BCP (Business Continuity Plan) can be evaluated with
indicator Iex. On the other hand, the degree of enforcement
of policies is considered using indicator Iop relative to the
BCP and DRP. Completeness (coverage) will be used as the
third indicator, Ico. This indicates the coverage of the BIA as
compared with the resources in relation to the scope of the
BCMS.

The indicator Iex evaluates the existence of control points
(checkpoints; CP) or non-existent control points (NoCP) rel-
ative to a BCMS, according to BS 25999. The clauses of
BS 25999 applied in the BCMS should be proven with
control points; otherwise, no statement can be made about
implementation of the standards. This case of the existence or
non-existence of control points per document level (λ1, ..., λ4)
can be expressed as

Iex =

∑n
i=1 CPλl −

∑m
j=1 NoCP j(BCP)∑n

i=1 CPλl
(10)

Thus, the indicator of control points Iex is on the range between
0 and 1:

Iex =


1, i f NoCP = 0
0, i f ∀ CPλl = 0; l = {1, 2, 3, 4}
otherwise.

(11)

For ideal implementation of each standard in a business, the
indicator should satisfy Iex ≈ 1 for each standard. This means

that there are no deviations (NoCP ≈ 0) between the control
points (clauses) of the standards and the actual existing control
points. When Iex � 1, too few of the standard clauses have
been applied and optimization is needed.

The existence of policies says little about whether they
are actually present or whether they exist only on paper.
Thus, Eq. 11 is a necessary but insufficient condition. This
is precisely where the indicator of the degree of enforcement
(Iop(BCP) , Iop(DRP)) is applied.

The indicator of the degree of enforcement (Iop(BCP)) is
based on the result of BCP Assessments, practical exercises,
and deviations from the planned controls. For a BCP, the
nonexistent measures (NoC j(BCP)) are related to the necessary
measures (Cλl(BCP)) relative to the pyramid-level documents
(see Figure 7). Whether adequate controls for a particular risk
scenario are available for the continuation of critical business
processes is determined. For each identified risk to critical
business processes, there is a BCP and DRP. Here, the risk
scenarios could be completely different. For example, a BCP
and DRP for the risk of a pandemic scenario looks quite
different than a scenario for the risk that a major supplier
(key stakeholder) fails unexpectedly.

The indicator of the degree of enforcement (Iop(BCP)) per
document level (Eq. 12) checks the extent of discrepancies
in the assessments between the action in BCP (Cλl(BCP)) and
the actual sequence (NoC j(BCP)) in an exercise,

Iop(BCP) =

∑n
i=1 Cλl(BCP) −

∑m
j=1 NoC j(BCP)∑n

i=1 Cλl(BCP)
(12)

Thus, the indicator of the control points Iop(BCP) is on the range
between 0 and 1 and is analogous to Eq. 11,

Iop(BCP) =


1, i f NoC(BCP) = 0
0, i f ∀ Cλl(BCP) = 0; l = {1, 2, 3, 4}
otherwise.

(13)

The BCP and DRP are closely linked to the standard
but must be considered separately to allow for a granular
approach. The indicator of the degree of enforcement (Iop(DRP))
with relation to the DRP is based on the results from the
assessments or exercises and the deviations (NoC j(DRP)) of the
proposed DRP (Cλl(DRP)) controls,

Iop(DRP) =

∑n
i=1 Cλl(DRP) −

∑m
j=1 NoC j(DRP)∑n

i=1 Cλl(DRP)
(14)

Thus, the indicator of the control points Iop(DRP) is on the range
between 0 and 1 and is analogous to Eq. 11. This indicator
assesses the difference between planned activities and actual
exercises,

Iop(DRP) =


1, i f NoC(DRP) = 0
0, i f ∀ Cλl(DRP) = 0; l = {1, 2, 3, 4}
otherwise.

(15)

Equation 15 ensures that the value of the practical experience
gained during exercises for disaster recovery is recognized.

317

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Key to effectiveness is the question of whether in fact all
critical business processes in terms of resources have been
considered with a BIA in relation to the scope of the BCMS.
This observation is carried out using the indicator to assess
coverage. The indicator (Ico) of the coverage of a BIA in
relation to resources (key products, stakeholders, etc) within
the scope leads to

Ico =

∑n
i=1 Resi(BIA) −

∑m
j=1 Res j(NoS P)∑n

i=1 Resi(BIA)
(16)

Equation 16 places the critical resources (Res) within the BIA
that must be treated with non-existing policies (NoS P) in
relation to resources,

Ico =


1, i f Res(NoSP) = 0
0, i f ∀ Res(BIA) = 0
otherwise.

(17)

Thus, the indicator (Ico) is on the range between 0 and 1 and
is analogous to Eq. 11. The fewer the number of analyses that
are present (BIA) for the critical resources, the smaller the
coverage of the Ico � 1 critical processes, and the lower the
effectiveness.

Finally, the indicators of effectiveness can be calculated with

E f k = Iex × Iop(BCP) × Iop(DRP) × Ico (18)

This indicator (E f k) fluctuates between 0 and 1 and represents
a point in a specific space spanned by the indicators. This key
indicator says something about the effectiveness of the BCMS
and the quality of the BCP and DRP. It provides a significant
statement about a situation on the basis of the underlying
indicators. Furthermore, E f k satisfies Def. 2 and is a key
performance indicator for a company.

If the indicator is determined by numerous exercises and at
a regular time interval t0 and t3 (see Figure 5), a conclusion
may be drawn about the likelihood of survival in the event of
a disaster. This aspect is discussed in the next section.

V. E   S   B

In this section, the survival probability of a business is
discussed. It is assumed that the business has implemented
a BCMS in accordance with BS 25999 and that the indicators
of effectiveness E f k and economic efficiency E f z have been
identified. However, when economic efficiency is considered
in advance (preventive or reactive controls) of a balance
of controls, the indicator E f z is not used to consider the
likelihood of survival.

After a disaster, the likelihood of survival of an enterprise
is determined by the ratio of effectiveness. The effectiveness
(E f k) can be understood as a random variable X in the interval
(a,b) (see Figure 8). Figure 8 shows only the part between
t0 and t3 (cf. Figure 5). Here, (a) can be identified as the
entry point at the time of a disaster and then (b) is the date
defined by the MTPD. Figure 8 relates the interval (a,b) to
time (a = t0, b = t3). If the two markers (a=1, b=0) are set, the
result of (x) lies in this interval if the exercises (assessments)

of the BCP and DRP are used and an exercise gives a result
of (x). If (x = 1) in the ideal case, then (t0) and (t1) almost
coincide and the starting point of the BCP is immediately
after the occurrence of the disaster. The reverse is also true:
the smaller (x � 1) is, the longer before time (t1) occurs, and
the later the starting point of the BCP. If (t1 ≥ t3 = MT PD),
the business is irretrievable.

If there are enough exercises and assessments of the BCP
and DRP, so that the effectiveness (E f k) can be measured and
projected onto the interval (a,b), the probability P(a ≤ X ≤ b)
for the interval a ≤ X ≤ b can be given, where X takes on a
value from the interval. Then, the likelihood function of the
random variable X is known. Thus, the distribution function
F(x) = P(X ≤ x) can be determined. A distribution function
of something like F(x) = x−1 would be ideal for a business,
because then the majority of the exercise results are in the
interval (a, b) between 1 and 0.5. This is the case represented
by the curve E f kI in Figure 8.

time (t)

Ca
ta

st
ro

ph
e

t0 t1

BC
P

st
ar

tp
oi

nt

DR
P

st
ar

tp
oi

nt

t2 t3
M

TP
D

a b

Efk
I

Efk
II

1 0

Fig. 8: Efk as a random variable within the interval a,b

In contrast, the curve E f kII in Figure 8 represents an un-
favorable curve for the indicator of effectiveness. In this case,
the majority of the exercises are near the MTPD, i.e., near time
t3. Businesses that have displayed such an unfavorable course
of effectiveness are not adequately equipped for a disaster and
can probably survive only because of fortunate circumstances.
This conclusion is in agreement with the empirical studies by
Knight and Pretty [14].

Therefore, the closer a business’s exercise results are to x =

1, the higher the probability that this business will survive a
catastrophic event. However, these statements are valid only
when plans such as BCP and DRP already exist when the
disaster occurs and when these plans have been enacted,
practiced, etc. Otherwise, measurements of indicators and key
indicators–if no BCP or DRP is available–are meaningless.
In that case, the cost curve is similar to curve 2 in Figure 5.
Thus, an ex-ante statement would be possible only if sufficient
information is available. Sufficient information is available if
enough exercises in the BCP and DRP have been carried out.

318

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

The advantage to this method lies in the structured analysis
of indicators and key indicators. This can also inform a board
of management as to how a company is likely to respond to
a disaster.

A. Key performance indicator of economic efficiency

The literature discussing cost considerations with regard
to the security of information is controversial. A number
of articles classify the calculation of the expenditure for
security countermeasures in a Return of Security Investment
(ROSI), often involving (perimeter) defensive techniques [23],
[24], [25], [26]. A possible profit-loss of the organisation
is confronted with the protection of IT assets and the costs
of a successful attack are weighed against the security costs
(countermeasures).

Other considerations in the literature deal with profit-loss as
a loss of productivity; e.g., if a file server becomes unavailable,
productivity declines because a number of employees become
incapable of working [27]. Analysis of such problems are
confounded because suitable material for a benchmark still
does not exist [27].

Considerations of the profit-loss are aimed at increases in
operating expenses and at influences on business processes.
These impact economic efficiency. However, when considered
in isolation, security costs represent only part of the economic
efficiency of an BCMS.

Elsewhere it is argued that a cost consideration could not
be successful with the ROSI model [28]. Further, it has been
suggested that companies often apply a fear, uncertainty, and
doubt (FUD) strategy for investments in security countermea-
sures [29]. A good overview of different approaches to the
ROSI model is available in [25].

Note that the above approaches include neither indirect costs
nor operating expenses in cost evaluations. In addition, direct
costs are only partially taken into account. From the point of
view of critical processes of an BCMS, the above approaches
consider only partial aspects. With the efficiency of an BCMS,
the focus is on the economic aspects of the BCPs and DRPs.
For each rare risk that would have an huge impact on the
value chain there must exist a BCP and DRP as well as all
the processes and documents listed in Figure 7. Therefore,
economic efficiency is to be thought of, in principle, as a
cost/benefit relationship. To successfully plan the budget for
the critical processes of an enterprise, the costs of all BCPs
and DRPs must be considered.

A Total-Cost-of-Ownership (TCO) model provides an ad-
equate look at the costs [30]. In the TCO model, three cost
drivers are identified: direct costs (DC), indirect costs (IC), and
operating expenses (OC). At first glance, the TCO model seems
to be sufficient for the interests of an BCMS when considering
infrastructure costs. The three cost categories can be defined
as follows:
• Sum of direct costs (

∑n
i=1 DCi): Employees, hardware,

software, external services, physical environments (build-
ings, etc.) in which data processing should take place
under secure conditions for an organisation. Moreover, in

addition to the acquisition costs of the devices (security
appliances), their depreciation also has to be calculated.

• Sum of operating expenses (
∑m

j=1 OC j): Costs that must be
considered when calculating the maintenance, servicing,
and repair of the components listed as direct costs above.

• Sum of indirect costs (
∑p

k=1 ICk): These expenses originate
as a result of unproductive time from the end user.

The general TCO model would have to be adapted to the scope
of an BCMS, that is, to the critical processes. In addition,
the TCO model should not be of a static nature; instead, in
the interest of increasing efficiency, it should be subject to a
Deming cycle in accordance with ISO 9001.

As a modification, the TCO model, referencing a fiscal
year, e.g., Fy0 at t0, could calculate the costs based on the
infrastructure controls of the critical business processes of an
BCMS. With this, the infrastructure costs of a BCMS in a
fiscal year can be expressed as follows:

Fy0 =

n∑
i=1

DCi +

m∑
j=1

IC j +

p∑
k=1

OCk (19)

Then we can calculate a change (Iteration) from one fiscal
year (Fy0) at time t0 to the next fiscal year (Fy1) at time t1.
Besides the infrastructure costs, the expenses for the BCPs
and DRPs need to be considered. An essential benefit of a
BCMS is that it aims to establish a connection between cost
and the recognized rare risks. In trying to define the economic
efficiency of the risk defence with a BCP and DRP, a series of
questions arise: According to Figure 7, the whole costs for all
BCPs exercises (BCPcosts) and DRPs exercises (DRPcosts) for
a BCMS can be derived from the pyramid carried out in one
fiscal year, e.g. (Fy0). This management is strictly carried out
according to economic conditions. If, in the next fiscal year,
a BCP/DRP exercise is again carried out at the time Fy1, an
optimization must have be done in between, because
• The processes for a BCP or a DRP can be optimized.
• The processes and controls, procedures, checklists can be

optimized.
• The expenses for transferring the risks have changed

(increased, decreased).
• In different (that is, in more then one) BCP and DRP the

same controls, procedures, and checklists can be used.
As a result, a possible difference arises for the whole exer-
cise cost of

∑
BCPcosts and for the whole exercise cost of∑

DRPcosts, which can be explained by a change in the cost
of dealing with the BCP and DRP exercises and the increasing
experiences. This means that the cost for a control that is used
for one BCP/DRP could differ from that for a control that is
used in more than one BCP/DRP.

So, for the KPI of the efficiency (Efzk), which can be under-
stood as the economic component with reference to an interval
(∆t), when we consider the difference (∆F ≥ 0 = Fy0 − Fy1)
between the total BCP/DRP expenses for two fiscal years, we
obtain

Efzi =

(∑n
i=1 BCPiCost + Fy0

)
−

(∑n
i=1 BCPiCost′ + Fy1

)∑n
i=1 BCPiCost + Fy0

(20)

319

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Efzj =

(∑n
j=1 DRP jCost + Fy0

)
−

(∑n
j=1 DRP jCost′ + Fy1

)∑n
j=1 DRP jCost + Fy0

(21)
Equations 20 and 21 show that Efzi,j ∈ R could be either
a positive or a negative indicator. Nevertheless, in Eqs. 20
and 21, it is postulated that in the fiscal year Fy1, a smaller
budget is required for rare risk defence than in fiscal year Fy0.
Therefore, the key indicator is typically positive. Otherwise,
if a larger budget is allocated than in the previous year, a
negative indicator results.

The second key performance indicator (KPI2) is related to
the efficiency (E f z) of a BCMS. As mentioned above, a BCMS
is a reactive model; in contrast, the ISO/IEC 27001 standard
requires preventive controls related to the possible risks. Both
a BCMS and an Information Security Management System
(ISMS) according to ISO 27001 have risk management as a
central component.

Bass and Robichaux discuss the different forms of handling
preventive, detective, and corrective controls in connection
with a baseline assurance [31]. If the ideas of [31] are applied,
the question arises as to which of the recognized potential
risks require preventive or reactive (corrective) actions. The
present paper posits that this is merely a question of cost:
it does not involve technical or organizational issues. Risk
management corresponds to cost management and we know
that a Business Continuity Management System (BCMS)
according to BS25999 contains risk management. A similar
result is found in [32].

In the case of a BCMS, this means that the reactive controls
of each BCP and each DRP are cheaper to use than the
value of business processes (value chain), and they are as
cost effective as potential preventive (Prev) controls. Thus, a
cost inequality arises. Over a fiscal year (Fy0), the inequality
involves these four costs: the cost of a each BCP (BCPcost)
and each DRP (DRPcost), the additional costs (Advcost), and
the cost (Prev−Controlcost) for preventive controls,

E f z = BCPcost + DRPcost + Advcost � Prev−Controlcost � RevFy0
(22)

Here (Rev) is the business profit. The inequality (22) does not
display static behavior. It provides a boundary condition for
an ISMS in accordance with ISO 27001 and for a BCMS in
accordance with BS 25999; however, the boundary conditions
are temporal and must be periodically reviewed. It may well
be that a potential risk can be dealt with more cheaply using
a preventive action rather than a corrective/reactive one.

As an example, consider a company that is known to be
located in a flood zone or an earthquake zone (see Figure 9).
According to an ISMS, a preventive action would be to move
the company. In contrast, a BCMS (BCP, DRP) would initiate
action only after flooding or an earthquake occurred. The costs
in light of the probability of risk must be balanced against each
other, and this is precisely the inequality that is described by
Eq. 22.

The indicators of effectiveness and economic efficiency have
been determined in this section. In the next section, using the

Riskscenario
(ISO 27005)

BCMS, BS 25999ISMS, ISO 27001

preventive controls
(before a scenario strikes)

reactive, corrective controls
 (after a rare scenario strikes)

Fig. 9: Risk scenarios and the difference between ISMS and
BCMS

indicator of effectiveness, the performance will be determined.

B. Key performance matrix of effectiveness and efficiency

To determine the quality of a BCMS, the KPI of the
effectiveness of a BCP must be placed in relation to the effi-
ciency of a BCP. This takes into equal consideration both the
efficiency (economic) and the effectiveness of a BCMS. These
key indicators are two properties that should be kept strictly
separated qualitatively and should not be aggregated into a
single key indicator. The actual security countermeasures for
critical business processes and their efficient realization can
be shown in a matrix. Within the matrix, the KPIs of the
effectiveness of the BCMS span one axis and the key indicators
of efficiency span the other. The key performance indicators
of effectiveness and of efficiency are bounded: 0 ≤ Efkk ≤ 1
and −1 ≤ Efzk ≤ 1. The following can be defined as a first
arbitrary linear approximation for effectiveness:

E f kk =

{
yes = 0.5 < 1
no = 0 ≤ 0.5 (23)

If the key indicator is above 0.5, the BCMS lies in the positive
area (yes); if it is below 0.5, a (no) is assigned. A similar
distinction can be defined for the key indicator of efficiency:

E f zk =

{
yes = 0 < 1
no = −1 ≤ 0 (24)

In principle all four possible combinations of Eq. 23 and Eq.
24 are observable; the four (a, b, c, d) are shown in Figure
10.
Case (a) can be described as an ideal state of a BCMS.

effective

efficient

yes

no

yes no

a): BCMS is effective
and efficient

b): BCMS is effective
but not efficient

d): BCMS is not
effective but efficient

c): BCMS is not
effective nor efficient

Fig. 10: Performance matrix of an BCMS

320

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

a: BCMS is effective and efficient
This case can be defined as a strategic balance. Safe-
guarding critical business processes is in a strategic
balance such that implementations of security controls
are completely efficient. The BCMS supports the IT
strategy efficiently with the right security controls, and
the security controls are marked by an optimum cost/
benefit relationship.

In addition to the strategic balance, three kinds of imbalance
exist for an IMS4 [33]. Transferred onto a BCMS, the three
correspond to the cases b, c, and d that appear in Figure 10.

b: BCMS is effective but not efficient
This situation corresponds to a strategic waste. The
enterprise situation has high effectiveness due to the
operation of an information security management sys-
tem, but efficiency has not been achieved. In fact, in
case (b), the achievement potential of an BCMS is
effectively exhausted; however, exhaustion takes place
uneconomically.

c: BCMS is neither effective nor efficient
This situation corresponds to a strategic dilemma. The
operation of a BCMS and its achievement potential
are neither effective nor efficient. Although considerable
investments are expended in information security, the
achievement potential is barely exhausted, and effective
security countermeasures for critical business processes
are not realized. Dissipation and waste of valuable
resources exist.

d: BCMS is not effective, but it is efficient
This situation corresponds to a strategical dissipation.
The efficiency of the BCMS is high, but its effectiveness
is very low. The achievement potential of the BCMS is
not properly recognised nor exhausted. Every control in
information security is considered unique and, hence, is
often misjudged.

If a performance (E f kk; E f zk) measurement finds any im-
balance (b, c, d), the BMCS must act as in Figure 11. The
actuator initiates the check-and-act phases of the PDCA cycle
so that corrective and preventive actions are performed. This
process should continue until a balance between effectiveness
and efficiency is attained, i.e., until case (a) is realized. Figure
11 shows this operation within a control loop according to a
deterministic finite state machine.

Moreover, even if a company is already in the range of the
strategic balance, further improvements may be possible, lead-
ing to minimal turnover. This improvement can be obtained via
a combinatorial optimization between the KPI of effectiveness
and the KPI of efficiency for each BCP. We present this idea
in detail in the next section.

VI. T-    

To perform a cost benefit analysis of information security,
this article proposes two KPIs. For each KPI, suitable mea-
surable indications are defined. The KPI of effectiveness and

4IMS is the abbreviation for an information management system

 controls, process,
procedures

emergency
processes

plant

process (p)actuator

effectiveness
& efficiency

BIA/ ISO27005
BCPlan/DRPlan

controller (c)

w(k)

yp(k)

 ys(k)

(-)

(+)

control signal

sensor (s)

 e(k)

deviation
 signal

reference signal
(pre defined MTPD of each Business Process)

uc(k) = w(k) - e(k)
(update BCP/DRP)

u(k)a
(impovement of BCP/DRP)

d = perturbation

 y(k) = actual behavior of
the emergency processes

s1

s2/s4

s3

Fig. 11: Control loop for a BCP

the KPI of economic efficiency compete (Fig. 12), so that
an alignment in favor of one KPI is necessarily done at the
expense of the other. In [13], a key performance matrix with
four ranges is presented according to the ISMS and in [34] a
similar trade-off approach is presented for an ISMS.

The best range of values for the KPIs is the strategic
balance in which the KPI of effectiveness and the KPI of
efficiency support the economic strategy and achieve a suitable
cost/benefit relationship. One of the main task of an BCMS
with its PDCA-Cycle is to reach the strategic balance.

To optimize the BCP/DRP, requirements must be positioned
so as to maximize effectiveness in the direction of a strategic
balance. This means, for instance, that more exercises must
be done for all working instructions, records, and policies
structured according to Figure 7 procedures (objective evi-
dence of policy enforcement). This would reduce the risk
that the BCP/DRP was not working very well. However, this
requirement would exceed the calculated budget. With regards
to economic efficiency, one attempts to minimize the cost for
each BCP/DRP with respect to investments so as to reduce
turnover as little as possible.

Figure 12 shows the two KPIs like contrasting faces. The
graphs are based on typical behaviour and we present a
first approximation. The introduced budget limit of 30% is
taken from the Ph.D. thesis from Soo Hoo on an empirically
determined limit of investment [35]. This trade-off can be
interpreted as a variation of the knapsack problem (KP). The
knapsack problem is an integer combinatorial optimization
problem and is NP−hard. This means that a ROSI calculation
has a complex solution.

This description of the 0-1 knapsack problem follows
Martello5 and Toth [36]. To use the approach from Martello
and Toth for this trade-off, it is necessary to determine an
optimum for the cost of each BCP/DRP with some certain con-
trols (x) related to some certain policies (p) within the limited
predefined investment [35]. In this 0-1 knapsack approach, we
use for the controls x j(j = 1, ...n), n ∈ N, which could reduce
one or more risks from the SoA through countermeasures

5cf. Martello & Toth, page 1–5

321

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

very much

not much

no many

Investment

(30% of possible
value chain damage)

cost (Efz)

Security controls (Efk)

Fig. 12: Trade-off between Efzk and Efkk

(controls, x j),

x j =

{
1 = if control j is being used;
0 = otherwise (25)

Furthermore, we use p j for policies (Pol) and w j for the cost
of each control x j. Hence, a policy that is able to reduce
more than one risk is more welcome; otherwise, it is better to
mitigate a risk than to avoid it. Like Soo Hoo, we use c to
describe the upper investment limit.

The definitions are as follows:
p j: policy in terms of benefit from each control x j,
w j: cost for each control, which considers each BCP/DRP,

c: upper investment limit from Soo Hoo.
We expect that policies reduce more than one risk, in accor-
dance with Eq. 19, so we try to optimize the function z,

maximize z =

n∑
j=1

= p jx j (26)

We interpret p j as a policy to confront risk; therefore, the
value p j for safeguarding the critical business process (cBP)
will increase when p j mitigates more than one risk under the
side condition of w j. Now, we attempt to figure out for which
controls in (x) the following is valid:

n∑
j=1

= w jx j ≤ c (27)

With Eqs. (25), (26), and (27), we can define a 0-1 knapsack
problem. To solve the complexity of this 0-1 knapsack prob-
lem, this paper proposes a heuristic procedure. In Martello
and Toth [36], different heuristic solution are discussed. In
our contribution, the Branch-and-Bound (BB) procedure of
the Horowitz-Sahni algorithm (HS) was chosen as a first ap-
proximation. The Branch and Bound procedures are essentially
based on a problem branching and a limitation by means of
lower and upper bounds for the subsets.

1) Branch: The basic principle of the Branch and Bound
procedure is based on a minimization. A forward movement
consists of inserting the largest possible set of new consecutive
items into the current solution. A branching of the problem

(P0) is performed, yielding k = 3 subproblems Pi{1 = 1...k},
so that the following is an allowable solution for the subset
(x j):

x(P0) =

k⋃
i=1

x(P j) (28)

The three sub-problems can be thought of as the controls
that are used in more than one BCP/DRP. The following sub-
problems then exist: P1(BCPa), P2(BCPb), P3(BCPc).

2) Bound: Still, for each subset there are limitations,
namely a lower bound (LB) and an upper bound (UB). If
it is valid that LB ≥ UB is a set of a solution, this set
will not be investigated further (elimination of uninteresting
subsets). The ideal value of the upper boundary for P0, like
an optimal approximation, must be found heuristically. As a
first approximation, Soo Hoo’s budget limit of 30% can be
used. During the process, the UB corresponding to the current
solution of P0 is computed and compared with the current best
solution. If LBi < UB and if the optimal solution is P

′

1 and is
valid for Pi or P0, then a new best solution has been found
for P0 and we replace UB := LBi.

Finally, an example of a Horowitz-Sahni algorithm is shown
in Figure 13. This algorithm has been used with the Fortran
program from the book [36]; an example is calculated with
the following data. The simple example is given by solving
the Horowitz-Sahni algorithm for a given set of policies (Pol)
which is a special Indicator on the first level (Iλ1 = 7), a simple
given set of n = 7 controls (x j, j = 1, ...7), a current solution
ẑ, and a current best solution z. For a given set of policies, we
can elaborate on
p= {70, 20, 39, 37, 7, 5, 10} which are useful for more than

one BCP. The scale is 1,...,100 units. To face each
BCP/DRP and control (consult Eq. 28) for a given set
of cost of controls, also in a scale of 1,...,100 units, we
use

w= {31, 10, 20, 19, 4, 3, 6}.
c= {50} is the size of the capacity of knapsack we use.

We present the results in Figure 13. In this example, u is an
upper bound and x̂ j is a current solution. The best solution
so far is x j.

Finally we can draw a short result from this trade-off

analysis. If a company is in the range of the strategic balance
between the effectiveness and the efficiency of its BCMS
according to BS25999 and, if the company needs to have
further improvement to reduce turnover to as little as possible,
then a combinatorial optimization is very useful. Such an
optimization should balance the benefit of a policy in terms
of risk, which is considered for each control, and the cost of
each control in terms of avoiding, mitigating, or transferring
the risk to a determined limit of investment.

VII. C   

The empirical studies by Knight and Pretty [14] suggest
that the quality of a BCMS, as well as the related BCP and
DRP, should be looked at more intensely: the existence of a
BCMS in accordance with BS 25999 does not necessarily say

322

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

P0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

21

15

16

17

18

19

20

u = 107

x =11

x =01

z=z=0

u = 97

x =12
x =02

z=70

c=50

c=9

x =03

x =04

x =15 x =05

x =06x =16 x =16x =06

x =07 x =07

x =07

x =17

u = 37

u = 37

u = 0

u = 0

x =06

x =05

z=107
c=0

u = 15

u = 15

u = 10u = 8

c=0

z=105

z=102

x = (1,1,0,0,1,1,0) x = (1,1,0,0,0,1,1) x = (1,0,0,1,0,0,0)

Fig. 13: Example with Horowitz-Sahni Algorithm

anything about survival probability in the event of a disaster.
Survival depends on the implementation of the BCMS, and
here the BCP and DRP are interpreted as reactive controls of
great importance to survival in the event of a disaster.

In this paper the importance of the output and efficiency
of a BCP and DRP have been demonstrated using indicators.
Furthermore, it has been shown that by using two indicators,
the effectiveness and economic efficiency of a BCMS can be
measured. These two indicators represent key performance in-
dicators for a company. If there are a number of measurements
for effectiveness, a forecast can be made based on a random
variable in terms of survival probability, but this can be done
only if there is sufficient experience in applying the BCP and
DRP. In addition, these key performance indicators can be used
by a company to document its performance.

However, this method of using indicators evaluates the
processes behind the BCP and DRP only approximately. The
disadvantage of the method is that there must be sufficient
experience in using the BCP and DRP; therefore, a company
is not well prepared for catastrophes that are unknown. Com-
binations of or additions to the BCP and DRP based on similar
catastrophic scenarios are only possible if the processes behind
the BCP and DRP are exercised in advance using relevant
types of simulations.

Unfortunately, there are still no appropriate methods to pur-
sue these ideas. Currently, processes are typically associated
with the layout of an event-driven Process Chain (ePC), which
is merely a snapshot of processes, not a simulation in the
sense of running a complete process. These considerations may
suggest approaches for further investigation.

R

[1] W. Boehmer, “Survivability and Business Continuity Management Sys-
tem According to BS 25999,” Proceedings of the Emerging Security
Information, Systems and Technologie, 2009. SECUWARE ’09, Third
International Conference on, IEEE Computer Society, pp. 142–147,
June, 18-23 2009.

[2] BS25999-1, “Business Continuity Management System – Part 1: Code
of practice, BSI (UK).” ISBN 0580496015, 11 2006.

[3] BS25999-2, “Business Continity Management System – Part 2: Speci-
fication, BSI (UK).” ISBN 9780580599132, 11 2007.

[4] IBM, “Panic slowley. integrated disaster response and bulit-in busi-
ness continuity,” ibm.com/itsolutions/uk/governance/businesscontinuity,
2006.

[5] SC27, “ISO/IEC 27001:2005, Information technology - Security tech-
niques - information security management systems - Requirements.”
Beuth-Verlag, Berlin, 10 2005.

[6] ITGI, “Cobit, control objective in information and related technology,
4th. ed..” IT Governance Institute, ISBN 1-933284-37-4, 2006.

[7] C. Brandt, T. Engel, W. Boehmer, and C. Roeltgen, “Diskus-
sionsvorschlag einer Lösungsskizze zur Behandlung von operationellen
IT-Sicherheitsrisken nach Basel II auf der Grundlage von Anforderungen
der Credit Suisse,” in Multikonferenz Wirtschaftsinformatik, München,
MKWI2008, 2008.

[8] W. Boehmer, C. Brandt, and J. F. Groote, “Evaluation of a business
continuity plan using process algebra and modal logic,” in 2009 IEEE
Toronto International Conference – Science and Technology for Human-
ity TIC-STH 2009 - SIASP 2, pp. pp. 147–152, Ryerson University, 245
Church Street, Toronto, Ontario, Canada, 2009.

[9] W. Boehmer, C. Brandt, and J. Groote, “Evaluation of a business
continutiy plan using process algebra and modal logic,” Computer
Science Report CSR-09-12, Eindhoven University of Technology,, 2009.

[10] M. Alemanni, G. Alessia, S. Tornincasa, and E. Vezzetti, “Key perfor-
mance indicators for PLM benefits evaluation: The Alcatel Alenia Space
case study,” Comput. Ind., vol. 59, no. 8, pp. 833–841, 2008.

[11] R. R. Rodriguez, J. J. A. Saiza, and A. O. Basa, “Quantitative rela-
tionships between key performance indicators for supporting decision-
making processes,” Computer in Industry, 2008.

[12] L. Tsinas, B. Trösken, and S. Sowa, “KPI-Framework für Information-
ssicherheit,” 2009.

[13] W. Boehmer, “Appraisal of the Effectiveness and Efficiency of an Infor-
mation Security Management System Based on ISO 27001,” Emerging
Security Information, Systems, and Technologies, The International
Conference on (SECUWARE 2008), IEEE Computer Society, vol. 0,
pp. 224–231, 2008.

[14] K. R. and P. D., “The impact of catastrophes on shareholder value,” the
oxford executive research briefings, Templeton College, University of
Oxford, Oxford, England, 1996.

[15] M. Nemzow, “Business continuity planning,” Int. J. Netw. Manag.,
vol. 7, no. 3, pp. 127–136, 1997.

[16] G. Quirchmayr, “Survivability and business continuity management,”
in ACSW Frontiers ’04, (Darlinghurst, Australia), pp. 3–6, Australian
Computer Society, Inc., 2004.

[17] B. J. L. Landry and M. S. Koger, “Dispelling 10 common disaster
recovery myths: Lessons learned from Hurricane Katrina and other
disasters,” J. Educ. Resour. Comput., vol. 6, no. 4, p. 6, 2006.

[18] K. Saleem, S. Luis, Y. Deng, S.-C. Chen, V. Hristidis, and T. Li,
“Towards a business continuity information network for rapid disaster
recovery,” in dg.o ’08: Proceedings of the 2008 international conference
on Digital government research, pp. 107–116, Digital Government
Society of North America, 2008.

[19] I. Shklovski, L. Palen, and J. Sutton, “Finding community through
information and communication technology in disaster response,” in
CSCW ’08: Proceedings of the ACM 2008 conference on Computer
supported cooperative work, (New York, NY, USA), pp. 127–136, ACM,
2008.

[20] S. Tjoa, S. Jakoubi, and G. Quirchmayr, “Enhancing business impact
analysis and risk assessment applying a risk-aware business process
modeling and simulation methodology,” in ARES ’08,, (Washington, DC,
USA), pp. 179–186, IEEE Computer Society, 2008.

[21] J. Lunze, Ereignisdiskrete Systeme; Modellierung und Analyse dynamis-
cher Systeme mit Automaten, Markovketten und Petrinetzen. ISBN 3-
486-58071-X, Oldenbourg Verlag, 1. auflage ed., 2006.

323

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

[22] A. Calder, “PDCA Cycle & Documentation Pyramid.” IT Governance: a
Manager’s Guide to Data Security and ISO27001/27002, ISMS Toolkit,
2007.

[23] J. Eloff and M. Eloff, “Information Security Architecture,” Computer
Fraud & Security, vol. 2005, no. 11, pp. 10–16, 2005.

[24] D. Larochelle and N. Rosasco, “Towards a Model of the Costs of
Security,” Technical Report CS-2003-13, University of Virginia, Dept.
of Computer Science., 06 2003.

[25] T. Tsiakis and G. Stephanides, “The economic approach of information
security,” Computers & Security, vol. 24, pp. 105 –108, March 2005.

[26] L. A. Gordon and M. P. Loeb, “The economics of information security
investment,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 4, pp. 438–457,
2002.

[27] W. Sonnenreich, J. Albanese, and B. Stout, “Return On Security Invest-
ment (ROSI) - A Practical Quantitative Model,” Journal of Research
and Practice in Information Technology, vol. 38, no. 1, pp. p. 45–56,
2008.

[28] Return on security investment – proving its worth it, vol. 2005, 2005.
[29] H. Cavusoglu, B. Mishra, and S. Raghunathan, “A model for evaluating

IT security investments,” Commun. ACM, vol. 47, no. 7, pp. 87–92,
2004.

[30] J. S. David, D. Schuff, and R. S. Louis, “Managing your total IT cost
of ownership,” Commun. ACM, vol. 45, no. 1, pp. 101–106, 2002.

[31] T. Bass and R. Robichaux, “Defense-in-depth revisited: Qualitative risk
analysis methodology for complex networkcentric operations,” IEEE
MILCOM, vol. 2001, pp. 28–31, 2001.

[32] B. Blakley, E. McDermott, and D. Geer, “Information security is
information risk management,” in NSPW ’01: Proceedings of the 2001
workshop on New security paradigms, (New York, NY, USA), pp. 97–
104, ACM, 2001.

[33] L. Heinrich and F. Lehner, Informationmanagement, Planung,
Überwachung und Steuerung der Informationsinfrastruktur. ISBN-
13:9783486577723, Oldenbourg Verlag, 8. auflage, seite 84, ff ed.,
München, 2005.

[34] W. Boehmer, “Cost-benefit trade-off analysis of an ISMS based on ISO
27001,” ARES Conference, The International Dependability Conference,
IEEE Computer Society, pp. 392 –399, March, 16th. – 19th. 2009.

[35] K. S. Hoo, How Much is Enough? A Risk Management Approach to
Computer Security;. PhD thesis, Stanford University, CRISP, 2000.

[36] S. Martello and P. Toth, Knapsack Problems, Algorithms and Computer
Implementations. ISBN 0471924201, John Wiley and Sons Ltd., 1990.

324

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Formalization of Security Properties:
Enforcement for MAC Operating Systems and

Verification of Dynamic MAC Policies
Jérémy Briffaut, Jean-François Lalande, Christian Toinard

Laboratoire d’Informatique Fondamentale d’Orléans
ENSI de Bourges – Université d’Orléans

88 bd Lahitolle, 18020 Bourges cedex, France
{jeremy.briffaut,jean-francois.lalande,christian.toinard}@ensi-bourges.fr

Abstract—Enforcement of security properties by Operating
Systems is an open problem. To the best of our knowledge, the
solution presented in this paper1 is the first one that enables
a wide range of integrity and confidentiality properties to be
enforced. A unified formalization is proposed for the major
properties of the literature and new ones are defined using
a Security Property Language. Complex and precise security
properties can be defined easily using the SPL language but the
system includes 13 predefined protection templates. Enforcement
of the requested properties is supported through a compiler that
computes all the illegal activities associated with an existing MAC
policy. Thus, we provide a SPLinux kernel that enforces all
the requested Security Properties. When the MAC policies are
dynamic, it becomes difficult to compute all the possible illegal
activities. Our paper proposes a solution to that problem. A
meta-policy includes evolution constraints for the MAC policies.
A verification tool computes the requested security properties
that are defined through the SPL language. That tool provides
the illegal activities for all the possible MAC dynamic policies.
Thus, the security administrator can verify the MAC policies
and can optimize the requested security properties. It helps
him to evaluate the memory and processor load associated with
the enforcement of the request security properties. Efficiency is
presented for protecting high-interaction honeypots.

Index Terms—Security Properties, Protection, Mandatory Ac-
cess Control, Verification

I. INTRODUCTION

Security of the Operating Systems usually relies on Discre-
tionary Access Control (DAC): access permissions are set by
users on files they own, namely at the user’s discretion. This
access control model has proven to be fragile [2].

That is why access decisions have been moved from user
control to a Mandatory Access Control (MAC) associated with
a protection policy that describes how subjects and objects are
allowed to interact. For example, the NSA’s Security-Enhanced
Linux (SELinux) has been developed as part of the Linux
kernel. It implements a strong and highly configurable MAC.
Nevertheless these MAC systems can only guarantee simple
security properties (as a process cannot access a file). Complex
security properties cannot be ensured by this approach. For

1This paper is an extended work of the paper presented at SECURWARE
2009 [1].

example, existing MAC systems do not control information
flows involving multiple processes and resources.

The literature shows there is no approach to easing the
formalization of the required security properties. The authors,
to date, consider only specific properties but do not provide
a generic method to formalize a large range of security
properties related to integrity or confidentiality. Enforcement
is also limited to a subset of the required properties. To the
best of our knowledge, our proposal is the first one that 1)
enables a large set of security properties to be defined and 2)
provides a generic method for enforcing all the properties that
are supported by our Security Property Language.

13 security templates are presented in this paper that for-
malize some well know security properties of the literature and
propose new ones. We consider that these properties are the
most important ones and some of them have been tested on a
honeypot. But, new ones can be defined very easily, either by
the definition of a new property or by the composition of the
proposed template. Moreover, the 13 proposed templates are
very flexible. A security administrator can easily reuse them
to express multiple concrete security properties. He can define
a concrete property with specific values for the arguments of
the template.

An extended Linux kernel, called SPLinux, is available to
control all the concrete security properties that are requested
by the security administrator. This is the first solution to
enforce such a large and precise set of security properties.
A security administrator uses our SPL compiler to compute
two kinds of inputs: 1) the MAC policy available at the target
Operating System and 2) the requested concrete properties
defined using the SPL language. The compiler produces all
the illegal activities that are allowed by the target MAC policy.
Then, the Linux kernel uses a userland application that controls
all the illegal activities. Thus, a system call fails according to
1) the DAC policy, 2) the MAC policy and 3) the required
concrete properties. So, enforcement of the requested security
properties is proposed for a target MAC system e.g. SELinux.

When MAC policies are dynamic, the MAC policy states
can become infinite. In order to be able to control those
states, evolution constraints are required to reduce the possible

325

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

states. A meta-policy approach has been proposed in previous
works [3]. However, the security administrator needs a tool to
help him decide if the meta-policy is safe and if the related
MAC policy states can be computed efficiently by the SPL
compiler. Our verification tool takes two kinds of inputs: the
meta-policy that controls the MAC policies and the required
concrete security properties. Our verification system provides
at least one decision showing an illegal activity. It can also
provide, for a given MAC meta-policy, all the possible illegal
activities associated with the enforcement of each property.
Thus, the security administrator can decide either to 1) remove
a security property that cannot be violated or 2) add a better
security property that reduces the number of illegal activities or
3) modify the meta-policy in order to minimize the overhead.

A real application is proposed for protecting high interaction
honeypots. Our high interaction honeypot is a highly dis-
tributed system. A single meta-policy protects our distributed
honeypot against corruption of the various nodes. Despite
more than two years of experimentation and numerous in-
trusions, the target Operating System has never been com-
promised. This large scale experiment have been precisely
described in [4]. Even if this experiment is not a formal
proof that the meta-policy protects the honeypot against all
the possible attacks, we think that a system that has never
been compromised while hosting malicious users suggests the
efficiency of the proposed protection mechanism.

II. RELATED WORK

Under Linux, there are at least four security models avail-
able to ensure a Mandatory Access Control policy: SELinux,
GRSecurity, SMACK and RSBAC. But none of these solutions
can ensure a large set of security properties. At best they
can ensure one or two limited properties, such as the Bell
and LaPadula confidentiality property or the Biba integrity
property. Under the BSD family, solutions such as Trusted BSD
(available within the following Operating Systems: FreeBSD,
OpenBSD, MacOSX, NetBSD) provide more or less the same
kind of Mandatory Access Control as SELinux. But, there
again they fail to ensure the great majority of requested
security properties.

The major limitation is associated with a transitive closure
of allowed system calls that enables a security property to
be violated. All the existing approaches fail to manage the
causal relationships between the system calls correctly, thus
authorizing illegal activities.

Several works address how security properties can be en-
forced within an Operating System. [5] considers only protec-
tion policies and enforcement mechanisms, such as those in
MAC systems. Thus, the author does not deal with information
flows and more generally does not deal with confidentiality or
integrity but rather safety. Solutions such as [6], [7] consider
noninterference between privileged and unprivileged entities,
which is only one specific property. However, they cannot
formalize classes of security properties, such as the prevention
of flows between privileged entities.

Many solutions deal with the detection of violations of
security properties. Solutions such as [8] detect violation
of both confidentiality and integrity between privileged and
unprivileged entities. Again, those solutions consider only
noninterference and cannot enforce other classes of security
properties.

[9], [10] detects the flows violating a DAC policy. This
is a limited property. Moreover, its practical usage is very
limited for DAC systems since a DAC policy is not safe and
the related detections include numerous false positives and
false negatives.

[11] counts more than 150 publications related to
information-flow security. The majority deal with noninter-
ference. The other part aims at enforcing information-flow
policies using program analysis techniques. Information flow
analysis in a program language is not suited to enforcing
protection between several processes that are using the services
of an Operating System.

Finally, many works address the conformance of policies.
For example, [12] verifies that XACML access control policies
really match the Bell and LaPadula, Biba or Chinese Wall
models. But, those solutions cannot manage a large range of
security properties and do not deal with dynamic policies.
[13] considers the verification of SELinux policies. However,
it does not provide any administration language to ease the
formalization of the required security properties, nor does it
manage dynamic MAC policies.

The HiStar Operating System [14] associates each objet
or subject with an information flow level. Four different
information levels are proposed. For example, a subject with
level 1, cannot read an object with level 3. In practice, those
levels are very close to capabilities. In HiStar a capacity is
a collection of read and write levels that must be consistent
with the requested object level. The problem of HiStar is that
it is very close to the Bell and Lapadula model and it suffers
from the same limitations.

The Flume Operating System [15] proposes a reduced
form of MAC policy. They consider two kinds of processes,
unconfined and confined. A confined process cannot access
the file systems through dedicated system calls. The control of
unconfined processes requires a dedicated MAC policy between
security contexts. In contrast with SELinux, it is not a fine
grain MAC system. Flume is in essence very close to HiStar
since it uses capabilities as security contexts. However, Flume
does not control information flows.

Asbestos [16] reuses the idea behind HiStar by considering
four different levels of information. The protection rules can
only express pairwise relationship patterns. Again, information
flows involving multiple interactions and processes cannot be
controlled easily.

Works related to the enforcement of dynamic policies, such
as [17], [18], generally consider how to detect simple conflicts
within dynamic policies. For example, they detect if it is
safe to remove or add a role or a context, otherwise the
considered access control could become invalid, conflicting
or unsupported. So, they address conflicting rules but do not

326

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

enforce a large set of security properties.
To the best of our knowledge, even recent works such as

[16], [15], [14], [19], [20], [21] do not provide any administra-
tion language that enables a large range of security properties
to be easily formalised. All the Operating Systems described in
the literature fail to guarantee the requested security properties.
The security of Operating Systems thus remains an open
problem. The literature does not address the enforcement of
precise and flexible security properties related to integrity
and confidentiality. Finally, work on dynamic policies mainly
studies how to deal with conflicting protection rules. However,
available tools are not able to compute the illegal activities
for dynamic MAC policies in order to enforce a large set of
security properties. Finally, there has been, as yet, no real
experiment. Our paper addresses all the above points.

III. ABSTRACT SECURITY LANGUAGE

In order to formalize security properties associated with
the activities of the Operating System, let us firstly define
the model of the target MAC systems. That model fits the
majority of MAC systems. Some of them do not present
certain of the modelized functionalities, such as the control
of process transitions. In such cases, our formalization is
reduced to the functionalities provided by the target MAC
system. However, our modelling is adapted for a MAC system
providing a fine grain control such as SELinux. For other MAC
systems, extensions can be implemented to be able to enforce
all the required security properties. Details about how to
extend existing Linux systems to enforce the required security
properties are available in [22]. In that paper, an abstract
Security Property Language is provided to model the required
security properties. Hereafter, a concrete Security Property
Language uses that abstract language and applications are
given for the SELinux systems.

Since the causal dependencies between the system calls and
the formalization of the system activities are poorly addressed
in the literature, this section defines all the notions of our
abstract SPL. In the next section IV, the abstract SPL language
enables us to formalize 13 security templates.

A. System representation

A system is modellised by a set of security contexts per-
forming operations on other security contexts. The security
contexts identify the various entities of the system. Let us
denote as SC the whole set of security contexts existing in
a given system. Two sets of security contexts are considered
(SC = SCs∪SCo). SCo is the set of security contexts acting
as an object: each sco ∈ SCo characterizes a passive entity
(file, socket, . . .) on which system calls can be performed.
SCs is the set of security contexts acting as a subject: each
scs ∈ SCs characterizes an active entity, i.e. processes, that
can perform actions, i.e. system calls. For example, let us
consider the Apache webserver reading an HTML file, the
Apache process is identified as a subject (apache_t ∈ SCs)
and the file is considered as an object (var_www_t ∈ SCo).

Let us denote as IS (Interaction Set) the set of all the
elementary operations, i.e. system calls, existing in the system
(read, write, execute, . . .). An interaction it represents a
subject scs ∈ SCs executing an operation eo ∈ IS on a
given context sct ∈ SC. An interaction is a 3-uple defined
by:

it = (scs ∈ SCs, sct ∈ SC, eo ∈ IS)

noted:
scs

eo−→ sct

When an operation is performed, there are two conse-
quences from the security point of view. The interaction can
produce:
• an information transfer noted sc1 > sc2;
• a transition scs

trans−−−→ sct.
An information transfer conveys information from con-

text sc1 to sc2 using a write-like operation or a
read-like operation. For example, the read interaction
scapache

file:read−−−−−−→ scvar_www corresponds to the information
transfer scvar_www > scapache and the write interaction
scapache

file:write−−−−−−→ scvar_www corresponds to the information
transfer scapache > scvar_www. A precise definition about read
and write-like operations is given later in section III-D.

A transition enables a process to move from context scs to
context sct. When the process is running in the context sct, it
acquires new privileges associated with sct. For example, the
scinit process launches the Apache web server using a forked
process that transits using transition scinit

process:transition−−−−−−−−−−−−→
scapache.

B. Causal dependency

The state of the art related to causality shows that there is
no relevant definition of causal dependency to express security
properties. The difficulty lies in having a satisfactory estimator
of causality between interactions. A new definition of causal
dependency is given in this paper between a source and a
target context. Two interactions are causally dependant if:
• those interactions share a common security context
• the first interaction occurs before the end of the second

interaction
• the first interaction modifies the state of the shared

security context
• the second interaction modifies the state of the final

security context
The figure 1 gives an example of a causal dependency

between two interactions it1 and it2. This example clearly
shows that:

1) sc2 is a shared context,
2) it1 finishes before the end of it2,
3) an information flow occurs from sc1 to sc2,
4) an information flow occurs from sc2 to sc3.
Definition 3.1: The causal dependency between two inter-

action it1 and it2, noted it1 � it2, is defined by

327

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 1. Read and Write interaction / Causal dependency


sc2 ∈ it1,
sc2 ∈ it2, sc3 ∈ it2,
datesc2(begin(it1)) 6 datesc2(end(it2)),
it1 modifies the state of the shared context sc2,
it2 modifies the state of the security context sc3.

That definition overestimates the probability that the infor-
mation can flow from the source to the target. However, it
is a satisfactory estimator which only takes into account the
possible causal relationships. Our abstract SPL efficiently uses
that causal dependency to make the formalization of advanced
security properties easier.

C. System activities

In this section, an abstract language is proposed to describe
the activities of the different processes. That language uses our
definition of causal dependency to model the activities present-
ing indirect flows. Several operators enable those activities to
be combined.

A system activity is defined by a set of interactions. We
propose to distinguish four activity classes:

• The interaction class is the class where each activity
includes a single interaction that can permit direct flows.

• The sequence class contains activities composed of se-
quences of interactions. It enables indirect flows involving
several interactions to be modelled.

• The correlation class is the class where activities are a
combination of interactions and/or sequences.

• The last class of interactions are the remaining activities
which are not expressed by our language, i.e. activities
that cannot be observed by the target Operating System.

1) Sequence class: A sequence of interaction is a transitive
closure of causally dependent interactions. It models indirect
flows.

Definition 3.2: A sequence of n interactions, noted
scsource ⇒ sctarget, from a context scsource to sctarget is
a transitive closure of n− 1 causal dependencies

s.a.


n ≥ 2,
scsource ∈ it1,
sctarget ∈ itn,
∀k = 1..n− 1, itk � itk+1

As performed in section III-A we distinguish two kinds of
sequences, first, an information flow where each interaction is
an information transfer, second a transition sequence where
each interaction of the sequence is a transition. Formally, we
obtain:

Definition 3.3: An information flow between scsource and
sctarget, noted scsource � sctarget, is a sequence scsource ⇒
sctarget

s.a.

{
scsource ⇒ sctarget = {it1, . . . , itn},
∀k = 1..n, itk = sck > sck+1

Definition 3.4: A transition sequence between scsource and
sctarget, noted scsource ⇒trans sctarget, is a sequence
scsource ⇒ sctarget

s.a.

{
scsource ⇒ sctarget = {it1, . . . , itn},
∀k = 1..n, itk = sck

trans−−−→ sck+1

Using the example in figure 1, the sequence
{(sc1, sc2, {file : write}), (sc3, sc2, {file : read})} is
an information flow sc1 � sc3 composed of two transfers:
sc1 > sc2 and sc2 > sc3. In the case of two transitions, we
obtain the transition sequence sc1 ⇒trans sc3.

2) Correlation class: A correlation is a combination of
several sequences and/or interactions. It represents a complex
activity of the system. For example, a user can access an
Apache information if that user transits to the Apache context
and then reads the Apache configuration . This activity is com-
posed of one sequence of transition scuser ⇒trans scapache

and one interaction scapache_conf_t > scapache. To describe
the relationships between the elements of the correlation, we
define three operators ◦, ∧ and ∨.

For each sequence f = sc1
eo1−−→ . . .

eon−1−−−−→ scn, noted
sc1 ⇒ scn, let us define a function F which associates the
last context scn to the first context sc1, that is: F (sc1) = scn.

Definition 3.5: Let f = scf1 ⇒ scfn and g = scg1 ⇒ scgm

two sequences where scfn
= scg1 . Let F and G be the

corresponding functions.
The composition of two sequences f and g corresponds
to a global sequence scf1 ⇒ (scfn = scg1) ⇒ scgm

that respects the equation: G ◦ F (scf1) = G[F (scf1)] =
G(scfn

) = G(scg1) = scgm
. We note g ◦ f this new sequence

scf1 ⇒ scgm
.

Definition 3.6: Let a and b two interactions, sequences or
correlations, (a ∧ b) is observed if a is observed and b is
observed.

Definition 3.7: Let a and b two interactions, sequences or
correlations, (a ∨ b) is observed if a is observed or b is
observed.

328

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

activity ::= [description ” = ”] correlation

correlation ::= (correlation ∧ correlation)
|(correlation ∨ correlation)
|composition

composition ::= (composition ◦ composition)
|terminal

terminal ::= sequence|interaction

interaction ::= sc
eo−→ sc|sc > sc|sc trans−−−→ sc

sequence ::= sc⇒ sc|sc� sc|sc⇒trans sc

sc ::= ” security context ”
eo ::= ” elementary operation ”

description ::= ” name of activity ”

Fig. 2. Grammar of activities

We give two particular definitions for the correlation class
using the defined operators. The first definition gives a subject
access to a special privilege on a given object.

Definition 3.8: Let seq = scsource ⇒ scinter be an interac-
tion sequence and it = scinter

eo−→ sctarget, the composition
(it ◦ seq) overestimates the possibility of the privilege access
eo on sctarget by scsource. It is noted: scsource ⇒eo sctarget.

The second definition represents a subject access to the
information of a given object:

Definition 3.9: Let seq = scacces ⇒ scinter be a sequence
of interactions and flow = scinfo � scinter an information
flow, the correlation (seq∧flow) overestimates the possibility
of accessing the information contained in scinfo by scacces.
It is noted scacces V scinfo.

These two correlations overestimate the possibility of ac-
cessing a privilege or an information. We call these two
cases an indirect access to privilege/information. We define
two subcases that improve the estimation: if the sequence
of interaction seq = scacces ⇒ scinter is a sequence of
transitions seq = scacces Vtrans scinter this means that the
process has a direct access to the privilege/information. We
call this case a direct access to privilege/information.

These operators are used to define the grammar of the
language that describes all the possible activities of the
three classes (interactions, sequences, correlation), presented
in figure III-C2. With this grammar we can express complex
activities, as shown in the following example: the activity
((it ◦ seqtrans1) ∧ (seqtrans2 ∧ (flow ∨ seqint)) begins with
a transition sequence seqtrans1 that permits the interaction
it; the activity is also composed of a sequence of transitions
seqtrans2 and a sequence of information transfer flow or a
sequence of interactions seqint.

3) Activities overview: Table I gives an overview of all
possible activities modelled in this section. These activities
are separated into three classes: interactions, sequences, and

correlations. The top part of the Table describes these three
classes without any assumption about the nature of each
operation. In the bottom part, the activities that characterize
information flow, transition and privilege access are summed-
up with their associated notations.

D. Complementary definitions

Additional functions are needed to model the security
properties that will be presented in section IV. These functions
mainly characterise the operations of IS.

Definition 3.10: is_write_like:IS → {true, false} is the
function that says if an operation modifies an object and can
be assimilated to the write operation.

Definition 3.11: is_read_like:IS → {true, false} is the func-
tion that says if an operation gets information from an object
and can be assimilated to the read operation.

Definition 3.12: is_execute_like:IS → {true, false} is the
function that says if an operation can execute an object.

Definition 3.13: is_add_like:IS → {true, false} is the func-
tion that says if an operation can add information to an object
without being able to read the previous written information in
this object.

IV. SECURITY PROPERTIES

This section specifies the proposed template of security
properties using the activity language defined in the previous
section III. These 13 templates include the most known secu-
rity properties of the literature but include also new security
properties in order to show how powerful our language is. This
set of templates is not limited. Other templates can be easily
defined using the concrete SPL that implements the abstract
SPL.

The 13 proposed properties are the ones that we setup on
our honeypot to experiment them [4]. The obtained results
are briefly described in section VIII. The classical properties
of the literature will not be new for the reader: integrity,
confidentiality and the well known variants like the Biba
integrity or the Bell and LaPadula confidentiality property are
examples that enters the proposed model. It shows how the
model is able to clearly describe these properties. At the end
of the section, the Table II gives an overview of the properties
with a name and refers to their formal definition. This is crucial
to have such a formal definition of the properties and to be
able to show, in the section V how the SPL language will
implement these properties.

A. Integrity

This section proposes four types of integrity security prop-
erties from the literature:

• Object integrity, as defined in [23]
• Biba Integrity, which implements the Biba model [24]
• Integrity of subjects, which implements noninterference

between processes [8]
• Domain Integrity, which implements a chroot

329

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

TABLE I
ACTIVITIES OVERVIEW

Interaction Sequence Correlation

Interaction Interactions sequence Access to information

N
eu

tr
al sc1

eo−→ sc2 scsource ⇒ sctarget scsource V sctarget

Privilege access
scsource ⇒eo sctarget

C
ha

ra
ct

er
is

at
io

n

Information transfer Information flow Acces to information by transition
sc1 > sc2 scsource � sctarget scsource Vtrans sctarget

Transition Sequence of transitions

sc1
trans−−−−→ sc2 scsource ⇒trans sctarget

Privilege access by transition
scsource ⇒trans_eo sctarget

1) Object integrity: The integrity of a system object can
be altered when a write operation is performed on this object.
This object integrity property ensures that no process of the
system is able to modify a resource, either directly or by a
sequence of interactions. The direct protection of an object is
easily obtained with a MAC mechanism. Nevertheless, better
integrity protection is required against sequences of operations.
For example, if a user uses an exploit on Apache that leads
Apache to modify a file of /var/www, this is a sequence of
operations that violates the integrity of /var/www.

Property 4.1: The integrity of an object sco1 ∈ SCO, noted
P4.1(scs1, sco1), is respected by a subject scs1 ∈ SCS if:

∀eo ∈ IS s.a. scs1
eo−→ sco1,¬is_write_like(eo)

∧

∀eo ∈ IS s.a. scs1 ⇒eo sco1,¬is_write_like(eo)

Property 4.2: The integrity of a set of objects SCO1 ⊂
SCO, noted P4.2(SCS1, SCO1), is respected by a set of
subjects SCS1 ⊂ SCS if:

∀sco1 ∈ SCO1, ∀scs1 ∈ SCS1, P4.1(scs1, sco1)

2) Biba Integrity: The BIBA model [24] defines three rules
to guarantee the integrity of the system:

1) To allow scs1 to have read access to an object sco1, its
integrity level must be less than or equal to the object
integrity level;

2) To allow scs1 to have write access to an object sco1,
its integrity level must be greater than or equal to the
object integrity level;

3) To allow scs1 to invoke a subject scs2, its integrity level
must be greater than or equal to the invoked subject
integrity level;

A level of integrity is needed for each entity of the system:
let I : SC → N be a function that gives the level of integrity
of a security context.

Property 4.3: The Biba integrity of an object sco1 ∈ SCO,
noted P4.3(scs1, sco1), is respected by a subject scs1 ∈ SCS

if:

∀eo ∈ IS s.a.
{

scs1
eo−→ sco1

is_read_like(eo)
, I(scs1) 6 I(sco1)

∀eo ∈ IS s.a.
{

scs1
eo−→ sco1

is_write_like(eo)
, I(scs1) > I(sco1)

∀eo ∈ IS s.a.
{

scs1
eo−→ sco1

is_execute_like(eo)
, I(scs1) > I(sco1)

Property 4.4: For a system, composed by a set of contexts
SC, the integrity of this system, noted P4.4(SC), is respected
if:

∀scs, sco ∈ SCS × SCO, P4.3(scs, sco)

3) Integrity of Subjects: The integrity of subjects cor-
responds to the non-interference property [25]. The non-
interference property uses the notation of commutativ-
ity. Two interactions it1 = (scs1, sco1, eo1) and it2 =
(scs2, sco1, eo2) are commutative if the operation eo1 does
not change what the context scs2 sees of sco1. For example,
the operations eo1 = {file : write} and eo2 = {file : read}
are not commutative, and the operations eo1 = {file :
read} and eo2 = {file : read} are commutative. Let
commute : IS×IS → {true, false} the function that returns
the commutativity of two operations using the table defined
in [26].

Property 4.5: The integrity of a subject scs1 ∈ SCS , noted
P4.5(scs1, scs2), is respected by a subject scs2 ∈ SCS if:

∀sco1 ∈ SCO, ∀eo1, eo2 ∈ IS s.a.

{
scs1

eo1−−→ sco1

scs2
eo2−−→ sco1

,

commute(eo1, eo2)

∀sco1 ∈ SCO, ∀eo1, eo2 ∈ IS s.a.
{

scs1 ⇒eo1 sco1

scs2 ⇒eo2 sco1
,

commute(eo1, eo2)

330

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Property 4.6: For a system, composed by a set of sub-
ject contexts SCS , the integrity of these subjects, noted
P4.6(SCS), are guaranteed if:

∀scs1, scs2 ∈ SCS , P4.5(scs1, scs2)

4) Domain Integrity: The property of domain integrity is
linked to the notion of chroot available in operating systems
or software. A set of contexts in a chroot are isolated from
other outside contexts. Any interaction with a context outside
the chroot (the domain) is a violation of the domain property.

Property 4.7: Let chrootin ⊂ SC be a set of contexts
representing a domain.
The integrity of the domain chrootin, noted P4.7(chrootin),
is respected if:

∀eo ∈ IS
∀sc1, sc2 ∈ SC

, s.a. sc1
eo−→ sc2, sc1 ∈ chrootin =⇒ sc2 ∈ chrootin

∨
sc2 ∈ chrootin =⇒ sc1 ∈ chrootin

B. Confidentiality

The confidentiality property prevents unwanted accesses.
Thus, information flow cannot be operated in order to steal
information from an object. Four confidentiality properties are
declined in this section:
• Confidentiality of system contexts
• Bell & LaPadula confidentiality
• Bell & LaPadula restrictive confidentiality
• Data access consistency
1) Confidentiality of system contexts: This property guar-

antees that a context sc2 is confidential for the context sc1 if
no information flow is possible from sc1 to sc2.

Property 4.8: The confidentiality of sc2 ∈ SC vs sc1 ∈
SC, noted P4.8(sc1, sc2), is guaranteed if: @(sc2 > sc1)

@(sc2 � sc1)
@(sc1 V sc2)

Property 4.9: For a system, composed of a set of contexts
SC, the confidentiality of a subset of contexts SC1 ⊂ SC vs
a subset SC2 ⊂ SC, noted P4.9(SC1, SC2), is guaranteed if:

∀sc1, sc2 ∈ SC1 × SC2, P4.8(sc1, sc2)

2) Bell & LaPadula confidentiality: The Bell & LaPadula
model uses a level of classification for the subjects and a sen-
sitivity level for objects [27]. Two rules have to be respected
in order to guarantee the Bell & LaPadula confidentiality
property:

1) if a subject context performs a read operation on an
object, its level of classification has to be greater than
the sensitivity level of the object;

2) if an information flows from the object o2 to o1, the
sensitivity level of o2 must be greater than that of o1.

Let class : SC → N the function that associates a subject with
its classification level and for an object its sensitivity level.

Property 4.10: The Bell & LaPadula confidentiality prop-
erty of an object sco1 ∈ SCO, noted P4.10(sco1, scs), is
respected by a subject scs ∈ SCS if:

∃scs > sco1, class(scs) > class(sco1)

∀sco2 ∈ SCO s.a. sco2 � sco1, class(sco1) > class(sco2)

Property 4.11: For a system, composed of a set of contexts
SC, the Bell & LaPadula confidentiality of the system, noted
P4.11(SC), is guaranteed if:

∀sco, scs ∈ SCO × SCS , P4.10(sco, scs)

3) Bell & LaPadula restrictive confidentiality: In contrast
with the previous property, the Bell & LaPadula restrictive
confidentiality provides a finer grain protection. Three rules
are needed to express this property:

1) if a subject context reads an object, its level of classifi-
cation has to be greater than the sensitivity level of the
object;

2) if a subject context adds information to an object (for
example, appending text with no possible read and
modification of the existing data on a text file), its level
of classification has to be less than the sensitivity level
of the object;

3) if a subject context modifies an object (for example,
read and write classification on a text file), its level of
classification has to be equal to the sensitivity level of
the object;

Property 4.12: The Bell & LaPadula restrictive confiden-
tiality property of an object sco ∈ SCO, noted P4.12(sco, scs),
is respected by a subject scs ∈ SCS if:

∃scs > sco1, class(scs) > class(sco)

∀eo ∈ IS s.a.
{

scs
eo−→ sco

is_add_like(eo)
, class(scs) 6 class(sco)

∃sco1 > scs, class(scs) = class(sco)

Property 4.13: For a system, composed of a set of contexts
SC, the Bell & LaPadula restrictive confidentiality of the
system, noted P4.13(SC), is guaranteed if:

∀sco, scs ∈ SCO × SCS , P4.12(sco, scs)

4) Data access consistency: This property aims to guar-
antee that the access to the data is consistent between direct
access (one interaction) and a sequence of interactions that
leads to data access. In contrast with data access consistency
for DAC systems [10], our property provides a better approach
since a MAC policy can be safe. In case of MAC systems, if a
context cannot read a file directly, there is no reason for it to
be able to read the information using a transition to another
context.

Property 4.14: The data access consistency property of two
contexts sc1, sc2 ∈ SC2, noted P4.14(sc1, sc2), is respected
if:

sc1 V sc2 implies sc2 > sc1

331

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Property 4.15: For a system, composed of a set of contexts
SC, the data access consistency property, noted P4.15(SC), is
guaranteed if:

∀sc1, sc2 ∈ SC,P4.14(sc1, sc2)

C. Privilege abuse

This class of security property is designed to prevent a
malicious use of the privileges available on a system. We
distinguish five possible types of privilege abuse:
• The separation of duties
• No context transition
• Trusted path execution
• Policy abuse
• Meta-policy abuse
1) The Separation of Duties: The property of the separation

of duties is defined in [28] by the idea that an object created
by one person cannot be executed by that same person. A
more general definition is given in [29]: several operations
performed on a same object must be done so by different
users. This property must take into account that:
• a subject can perform operations directly on the subject

using an interaction: in this case we call the property the
separation of direct duties;

• a subject can use a sequence of operations to perform the
operation on the object: in this case we call the property
the separation of extended duties.

Let us give a more general definition of the separation of
duties associated with two sets of operations: OP1 and OP2.
Then, this general definition is illustrated with the definition
given in [28] that concerns the special write operation.

Property 4.16: Let OP1, OP2 ⊂ IS2 two sets of ele-
mentary operations. A system composed of contexts SC =
SCS ∪ SCO respects the separation of duties of OP1 and
OP2 if:

∀scs ∈ SCS

∀sco ∈ SCO

∀eo1, eo2 ∈ IS
s.a.


it1 = scs

eo1−−→ sco

it2 = scs
eo2−−→ sco

eo1 ∈ OP1

(it2 ◦ it1)

, eo2 6∈ OP2

∧
it3 = scs ⇒eo1 sco

it4 = scs ⇒eo2 sco

eo1 ∈ OP1

(it4 ◦ it3)

, eo2 6∈ OP2

The definition of [28], called the separation of execute/write
duties property can be implemented with OP2 = {execute}
and OP1 = {write}:

Property 4.17: The separation of execute/write duties prop-
erty on an object sco ∈ SCO for a subject scs ∈ SCS , noted
P4.17(scs, sco), is respected if:

∀eo1, eo2 ∈ IS s.a.


it1 = scs

eo1−−→ sco

it2 = scs
eo2−−→ sco

is_write_like(eo1)
(it2 ◦ it1)

,

¬is_execute_like(eo2)

Property 4.18: The separation of execute/write duties prop-
erty for a subject scs ∈ SCS and all possible related objects
of the system, noted P4.18(scs), is respected if:

∀sco ∈ SCO, P4.17(scs, sco)

Property 4.19: The separation of extended execute/write
duties property on an object sco ∈ SCO for a subject
scs ∈ SCS , noted P4.19(scs, sco), is respected if:

∀eo1, eo2 ∈ IS s.a.


it1 = scs⇒eo1 sco
it2 = scs⇒eo2 sco
is_write_like(eo1)
(it2 ◦ it1)

,

¬is_execute_like(eo2)

Property 4.20: For a system, composed of a set of contexts
SC, the separation of execute/write duties property of the
system, noted P4.20(SC), is guaranteed if:

∀scs, sco ∈ SCS × SCO, P4.17(scs, sco) ∧ P4.19(scs, sco)

2) No Context transition: Let us define a new property
called “No context transition” that guarantees that a process
will not be able to transit to another context. This can be
considered as an integrity property for the process running in
this context; it can also be seen as a sort of confidentiality
for this process that cannot change its context and bring
information into another context.

Property 4.21: The no context transition of a subject scs1

with scs2, noted P4.21(scs1, scs2), is guaranteed if:{
¬scs1

trans−−−→ scs2

¬scs1 ⇒trans scs2

A more general version of this property protects one security
context that cannot transit to any other context. For example,
this property can be applied to the Apache web server that
will not be allowed to transit to any other context in case of
an attack trying to exploit a vulnerability.

Property 4.22: The no context transition of a subject scs1,
noted P4.22(scs1), is guaranteed if:

∀scs2 ∈ SCS s.a. P4.21(scs1, scs2)

3) Trusted path execution: This notion of trust refers to the
administrators that trust the executables they have installed
but does not trust the executables installed by other users.
To use this property, a set of contexts noted TPE is built by
the administrator to group all the software that he wants to
authorize on the system. Any file that can be executed outside
of this set breaks the trusted path execution property.

Property 4.23: Let TPE ⊂ SC the set of the trusted
contexts. The system guarantees the trusted path execution
property, noted P4.23(TPE), if:

∀sc1, sc2 ∈ SC,∀eo ∈ IS s.a
{

sc1
eo−→ sc2

is_execute_like(eo)
,

sc2 ∈ TPE

332

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

4) Policy abuse: A MAC policy can be deployed on a
system. This policy, noted POL, defines all the allowed
interactions on the system. Any operation not included in this
policy is a violation attempt.

Property 4.24: Let POL = {it1, . . . , itn} be a MAC policy.
A system guarantees the respect of the policy abuse property,
noted P4.24(SC,POL), if:

∀sc1, sc2 ∈ SC,∀eo ∈ IS s.a. it = sc1
eo−→ sc2,

it ∈ POL

5) Meta-policy abuse: This property guarantees that a
meta-policy, defined in section VI, is respected. A meta-policy
constrains a policy by evolution constraints. The policy of
the system is then dynamic but respects the meta-policy. An
interaction is a violation of the meta-policy if no policy that
respects the meta-policy contains this interaction.

Property 4.25: Let MP be a meta-policy. A MAC policy
POL that respects MP is noted POL ∈ MP . A system
guarantees the respect of the meta-policy abuse property, noted
P4.25(SC,MP), if:

∀sc1, sc2 ∈ SC
∀eo ∈ IS

, s.a. it = sc1
eo−→ sc2,

∃POL ∈MP s.a. it ∈ POL

In practice, this property is hard to check as the control
of dynamic MAC policies is complex and can require a high
overhead. Section VII covers this problem.

D. Security properties sum-up

Table II gives an overview of the described security prop-
erties. Each property has a precise name, a reference number
in the model, a name in the concrete SPL implementation and
a short explanation about the property. With these 13 security
properties, 13 protection templates will be presented in the
next section that gives a real implementation using the concrete
SPL language. Nevertheless, it is important to remember that
the SPL language can handle more security properties and that
only the 13 most important properties are given in this paper.

V. CONCRETE SECURITY PROPERTY LANGUAGE

Our abstract SPL language needs a concrete syntax that can
be compiled as a protection language. Instead of giving the
complete concrete syntax, which is pointless since this imple-
ments the previous abstract language, this section describes
how each template is expressed using our concrete SPL.

Our concrete SPL enables us to define security functions,
i.e. templates. Calling those functions corresponds to the
instantiation of the protection template to the target Operating
Systems. Each template is very powerful. It enables multiple
protection properties to be easily expressed using only specific
values for the arguments. Moreover, each concrete security
property makes it possible to compute the whole set of
illegal activities in contradiction with the requested security
properties, as presented in section VII.

Fig. 3. Enforcement of Security Properties

Fig. 4. Example policy for the web server Apache

Those templates are written using a concrete language
called SPL, for Security Properties Language, that we have
created specifically to be able to quickly write new security
properties. A compilation of our concrete SPL language pro-
duces all illegal activities i.e. violating one of the security
properties [22]. An enforcement process uses those illegal
activities and communicates with the SPLinux kernel in order
to guarantee the requested properties as represented in figure 3.
See [22] to have details about the enforcement architecture that
complements the classical DAC and the SELinux protections.

Through the compilation of the function calls, all the
violations of the security properties found in the MAC policy
are added to the list of illegal activities. These activities can
be used to:
• correct the MAC policy if possible;
• to prevent or detect these violations if they occur.
Hereafter, two types of examples are given for each prop-

erty:
• a simplified example associated with a web server policy,

presented on figure 5;
• a complete MAC policy associated with a SELinux host.

The whole policy is impossible to represent in this paper
as the number of contexts approaches 2,000 and there are
more than 100,000 interactions.

A. Apache policy description

The policy presented in figure 4 is a simplified version of
the policy that is used for Apache and for the logging of the
users in the system. The users can log in the system using a
local console under the login_d context or via SSH under the
ssh_d context. Then, a user can transit into the user_d context
or to the administrator_d context in order to run commands
from the shell. Note that a SSH user is not allowed to become
an administrator in this policy.

333

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

TABLE II
SECURITY PROPERTIES SUM-UP

Property Specificity Reference Rule Goal

Integrity Objects Integrity P4.2(SCS1, SCO1) integrity A set of contexts must not modify another set of contexts
Biba Integrity P4.4(SC) int_biba Biba security model applied to a set of contexts
Subjects Integrity P4.6(SCS) int_subject Non-interference property applied on a set of subjects (process)
Domain Integrity P4.7(chrootin) int_domain Chroot for a set of contexts (virtual chroot)

Confi- Confidentiality P4.9(SC1, SC2) confidentiality A set of contexts must not obtain information from another set
dentiality Bell&Lapadula P4.11(SC) conf_blp Bell & LaPadulla security model applied to a set of contexts

Bell&Lapadula restrictive P4.13(SC) conf_blpr Bell & LaPadulla restrictive security model applied to a set of contexts
Data Access Consistency P4.15(SC) conf_data A context must not obtain information that it cannot obtain directly

Duties Separation P4.20(SC) duties_separation A context must not modify and then execute another context
Privilege No Context Transition P4.22(scs1) no_transition A context must not access another context by transition
Abuse Trusted Path Execution P4.23(TPE) tpe All trusted executables contexts must grouped in a specific set

Policy Abuse P4.24(SC,POL) conformity The violation attempts of the local policy are forbidden
Meta-Policy Abuse P4.25(SC,MP) meta-conformity The possible violation attempts of the meta-policy are forbidden

The administrator can setup the Apache configuration (read
and write permissions on apache_conf_t) and can transit to
the context apache_d in order to launch the service. Then,
Apache can read its configuration and use the files under the
var_www_t context.

A web service context webserv_d enables remote users to
get information from their account. From that web service, a
user authenticates and retrieves personal information (but he
cannot modify it) located in the user_info_t context. Apache
is able to transit in the special context webserv_d to obtain
the permission to read the information of the user or of the
administrator. Of course, a user logged in the system with a
shell can also read or write his personal information typed
with the user_info_t context.

The administrator is also allowed to transit to the webserv_d
context, because he needs to manage the web service. The
administrator is not supposed to run processes in this context
that would read the personal information of the users (which
represents a violation of confidentiality).

B. Integrity

The integrity property P4.1(sc1, sc2) corresponds to the SPL
function of listing 1. This function takes two arguments: a
set of subject contexts and a set of object contexts. For each
write operation eo between a subject context sc1 and an object
context sc2, the function checks that such an interaction does
not exist in the policy. The same check is done considering a
write privilege access (c.f. definition 3.8).

Listing 1. Integrity check function of P4.1(sc1, sc2)
1 define integrity($sc1 IN SCS, $sc2 IN SCO) [
2 Foreach $eo IN is_write_like(IS)
3 SA { $sc1−> { $eo } $sc2 } ,
4 { not(exist()) };
5 Foreach $eo IN is_write_like(IS)
6 SA { $sc1 => { $eo } $sc2 } ,
7 { not(exist()) };
8];

1) Apache example: Using the policy of figure 4, the
administrator can express that he wants to guarantee that
any user using SSH will not be able to modify the Apache

configuration (as only the local root is supposed to do so).
Moreover, the administrator is not supposed to modify the
personal information of the user (user_info_t).

Listing 2. Integrity security properties for Apache
1 integrity($sc1:="ssh_d", $sc2:="apache_conf_t");
2 integrity($sc1:="admin_d", $sc2:="user_info_t");

2) Operating system example: For a whole operating sys-
tem, the first rule of listing 3 guarantees that no user is able to
modify the binaries of the system, the second rule guarantees
that no user can modify the configuration files of the system
in /etc. That integrity function prevents any ordinary user
from modifying those files. This kind of guarantee cannot be
obtained by means of a classical integrity checker like AIDE,
TRIPWIRE. Nevertheless, the root user, logged locally on the
host is able to modify these files.

Listing 3. Integrity security properties example
1 integrity($sc1:="user_u:user_r:user.∗_t", $sc2:=".∗:.∗:.∗_exec_t");
2 integrity($sc1:="user_u:user_r:user.∗_t", $sc2:=".∗:.∗:.∗etc_t");

C. Domain integrity

The integrity property P4.7(chrootin) corresponds to the
listing function 4. This property allows it to virtually chroot
a set of contexts.

Listing 4. Domain integrity check function of P4.7(chrootin)
1 define int_domain($CHROOT IN SC) [
2 Foreach $eo IN IS, Foreach $sc1 IN $CHROOT, Foreach $sc2

IN SC
3 SA { $sc1 −> { $eo } $sc2 } ,
4 { $sc2 IN $CHROOT };
5 Foreach $eo IN IS, Foreach $sc1 IN SCS, Foreach $sc2 IN

$CHROOT
6 SA { $sc1 −> { $eo } $sc2 } ,
7 { $sc1 IN $CHROOT };
8];

1) Apache example: This property prevents an exploit
against Apache enabling a user to gain root privileges, for
example.

Listing 5. Domain integrity for apache
1 int_domain($CHROOT:="apache.∗", "webserv_d", ".∗info_t");

334

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

This property cannot be enforced at start-up. During the
boot sequence, the property is not available. It is enforced
after the starting of the Apache process. Moreover, it prevents
an attacker from restarting the web server. The principle of
guaranteeing online properties is described in [22].

2) Operating system example: A user can be chrooted in his
home directory. Again, this system instantiates this property
after the boot sequence and the login of the user (otherwise,
the user cannot log into the system). Thus, an exploit in the
user domain cannot leave that domain.

Listing 6. Domain integrity security property example
1 int_domain($CHROOT:="user_u:.∗:.∗");

D. Confidentiality

The confidentiality property P4.8(sc1, sc2) corresponds to
the function of listing 7. This property checks that no infor-
mation transfer or flow exists between two contexts.

Listing 7. Confidentiality check function of P4.8(sc1, sc2)
1 define confidentiality($sc1 IN SCS, $sc2 IN SCO) [
2 SA { $sc2 > $sc1 },
3 { not(exist()) };
4 SA { $sc2 >> $sc1 },
5 { not(exist()) };
6];

1) Apache example: For Apache, the configuration files of
the web server must be confidential for the users entering
the system via SSH. Moreover, the administrator must not
access the personal information of the users in the context
user_info_t. In contrast, the users must not access the personal
data of the administrator.

Listing 8. Confidentiality for Apache
1 confidentiality($sc1 := "ssh_d", $sc2 := "apache_conf_t");
2 confidentiality($sc1 := "admin_d", $sc2 := "user_info_t");
3 confidentiality($sc1 := "user_d", $sc2 := "admin_info_t");

2) Operating system example: The goal is to protect the
files /etc/shadow which contain the hashed user passwords, the
special file /dev/mem that gives access to the memory space of
the processes. For software such as Firefox, the confidentiality
property prevents any leak of information of the cookies and
cache files. For example, if the user launches a malware, the
malware will be unable to read the Firefox cookies or cache.

Listing 9. Confidentiality security properties example
1 confidentiality($sc1:="user_u:user_r:user.∗_t", $sc2:=system_u:

object_r:shadow_t);
2 confidentiality($sc1:="user_u:user_r:user.∗_t", $sc2:=system_u:

object_r:memory_device_t);
3
4 confidentiality($sc1:=user_u:user_r:user_t, $sc2:=user_u:object_r:

user_mozilla_cookie_t);
5 confidentiality($sc1:=user_u:user_r:user_t, $sc2:=user_u:object_r:

user_mozilla_cache_t);

E. Data access consistency

The data consistency property P4.14(sc1, sc2) corresponds
to the function of listing 10. This property allows indirect
access only if direct access is allowed.

Listing 10. Data access consistency check function P4.14(sc1, sc2)
1 define conf_data($sc1 IN SC, $sc2 IN SC) [
2 SA { $sc1 >>> $sc2 },
3 { exist[$sc2 > $sc1] };
4];

1) Apache example: For Apache, the property of listing 11
controls the access to personal information files for all the
users. The user will be able to access to his personal informa-
tion (user_info_t) using the web service, because he is allowed
to read it directly. In contrast, he cannot access the personal
information of the administrator using the web service (or
using a vulnerability of the web service) because the user has
no direct permission on the admin_info_t context.

Listing 11. Data access for apache
1 conf_data($sc1 := "user_d", $sc2 := ".∗_info_t");

2) Operating system example: The property of listing 12
protects the system from the users. For example, if a user
becomes root, he will not be able to read or write the
/etc/shadow file, because he has no direct permission on it.

Listing 12. Data access consistency security property example
1 conf_data($sc1:="user_u:user_r:user.∗_t" , $sc2 := "system_u:.∗:.∗");

F. Duties separation

The separation of duties property P4.18(scs) corresponds
to the function of listing 13. This function controls the
modification of a file and prevents its execution. A special
security property has been written for bash scripts and is
explained in the example of section V-F2.

Listing 13. Duties separation check function of P4.18(scs) and a special
security property for interpreted scripts
1 define duties_separation($sc1 IN SC) [
2 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_execute_like(IS), Foreach $sc2 IN SCO
3 SA { ($sc1 −> { $eo2 } $sc2 o $sc1 −> { $eo1 }

$sc2) } ,
4 { not(exist()) };
5];
6 define dutiesseparationbash($sc1 IN SC) [
7 Foreach $eo1 IN is_write_like(IS), Foreach $eo2 IN

is_execute_like(IS), Foreach $eo3 IN is_read_like(IS),
8 Foreach $sc2 IN SCO, Foreach $sc3 IN SC,
9 Foreach $a1 IN ACT, Foreach $a2 IN ACT

10 SA { ([$a2 := $sc1 −> { $eo3 } $sc2] o ([$a1 :=
$sc1 −> { $eo2 } $sc3] o $sc1 −> { $eo1 }
$sc2)) } ,

11 { INHERIT($a2 , $a1) };
12];

1) Apache example: The property of listing 14 prevents the
execution of a file written by Apache in /var/www. It avoids
the exploit of a vulnerability against Apache that force Apache
to write a script and then to execute it.

Listing 14. Duties separation for Apache
1 duties_separation($sc1 := "apache_d");

2) Operating system example: For a system, the property
of listing 15 restricts the rights of a user: if the user downloads
a program, he will not be able to execute it. The second
rule of listing 15 prevents the writing of a script and its
execution. This is a special rule because the binary file that
is executed is not the script but the bash shell itself that

335

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

reads the modified script. The function dutiesseparationbash
of listing 4.18 checks that the created bash process is inherited
from the user process (to identify the user that launched the
script) and prevents the reading of the script by the bash
process.

Listing 15. Duties separation security property example
1 duties_separation($sc1:="user_u:user_r:user.∗_t");
2 dutiesseparationbash($sc1:="user_u:user_r:user.∗_t");

G. Trusted path execution

The trusted path execution property P4.23(TPE) corre-
sponds to the function of listing 16. The first function defines
the set of binaries that are executables. The second function
adds a set of source context that are allowed to execute the
binaries and to read the libraries of the set TPE (because an
executed binary reads libraries).

Listing 16. Trusted path execution check function of P4.23(TPE)
1 define tpe($TPE IN SC) [
2 Foreach $sc1 IN SCS, Foreach $sc2 IN SC, Foreach $eo IN

is_execute_like(IS)
3 SA { $sc1 −> { $eo } $sc2 } ,
4 { ($sc2 IN $TPE) };
5];
6
7 define tpeuser($sc1 IN SCS, $TPE IN SC) [
8 Foreach $sc2 IN SC, Foreach $eo1 IN is_execute_like(IS),

Foreach $eo2 IN is_read_like(IS)
9 SA { ($sc1 −> { $eo1 } $sc2 OR $sc1 −> { $eo2 }

$sc2) } ,
10 { ($sc2 IN $TPE) };
11];

1) Apache example: The property of listing 17 allows only
the execution of the authentication programs, the web server
and web service. Even if the MAC policy or the UNIX rights
(uog+x) authorize the execution permission for programs in
/var/www, this property will prevent the execution of these
programs. If an attacker exploits a vulnerability, he can force
Apache to execute malware (downloaded file). The trusted path
property prevents the execution of that malware.

Listing 17. Trusted path execution for Apache
1 tpe($sc1 := {"login_d", "ssh_d", "apache_d", "webserv_d"});

2) Operating system example: The first tpe rule of list-
ing 18 defines the classical executables of the system that all
users and daemons can use. The second rule tpeuser is more
restrictive than the first one: it allows only the users to execute
libraries, Firefox, Claws Mail and Open Office. The last rule
is a special rule for Open Office that needs the execution of a
shell to be able to launch itself.

Listing 18. Trusted path execution security property example
1 tpe($TPE:= { ".∗:.∗:.∗bin_t", ".∗:.∗:.∗exec_t", ".∗:.∗:.∗lib_t", "system_u:

object_r:ld_so_t" });
2 tpeuser($sc1:=user_u:user_r:user_t, $TPE:= { ".∗:.∗:.∗lib_t", "

system_u:object_r:mozilla_exec_t", "system_u:object_r:
clawsmail_exec_t", "system_u:object_r:ooffice_exec_t", "
system_u:object_r:ld_so_t" });

3 tpeuser($sc1:=user_u:user_r:user_ooffice_t, $TPE:= { "user_u:user_r:
user_ooffice_t", "system_u:object_r:bin_t","system_u:object_r:
ld_so_t","system_u:object_r:lib_t","system_u:object_r:
ooffice_exec_t","system_u:object_r:ooffice_lib_t","system_u:
object_r:shell_exec_t" });

H. No context transition

The no context transition property P4.22(scs1) corresponds
to the function of listing 19. This function checks that no
transition is possible for the context given in the parameters.

Listing 19. No context transition check function
1 define no_transition($sc1 IN $SCNoTransition) [
2 Foreach $sc2 IN SCS
3 SA { $sc1 __> $sc2 },
4 { not(exist()) };
5];

1) Apache example: The property of listing 20 guarantees
that the web service cannot transit to another context. For
example, an attacker that exploits a vulnerability can try to
force the web service to transit to the admin_d or user_d
contexts to obtain the privileges associated with these contexts.

Listing 20. No context transition for Apache
1 no_transition($sc1 := "webserv_d");

2) Operating system example: The first rule of listing 21
prevents an attacker from exploiting a vulnerability on Apache,
Php or Mysql services to get more privileges on the system
(for example, the root privileges). The second rule prevents
the user from transitting to another context, such as the root
or Apache domain.

Listing 21. Confidentiality property example
1 no_transition($SCNoTransition:= { "system_u:system_r:httpd_t","

system_u:system_r:httpd_php_t","system_u:system_r:mysql_t" }
);

2 no_transition($SCNoTransition:= { "user_u:user_r:user_t" });

VI. SUMMARY OF OUR META-POLICY APPROACH

Before moving on to the verification section of dynamic
policies in section VII, this section recalls the basics of
our meta-policy [3] approach. The meta-policy provides a
means to reduce the space of possible MAC policies, adding
constraints on the allowed policies. This way, it becomes
possible for the security properties for dynamic policies to
be verified, as presented in section VII. This section gives a
short overview of our meta-policy model and an example of
use.

A. Meta-policy model

This section gives a short overview of the concept of meta-
policy. Further details are given in [3]. It allows dynamic
policies i.e. the evolution of multiple local MAC policies whose
states are constrained by modification rules.

1) Initial Policy: Our meta-policy contains an initial policy
i.e. a set of Interaction Vectors. The generic rule for enabling
a set of Interaction Vectors is as follows:
1 enableIV(patternS , patternO , patternoper)

patternS is a regular expression that designates the subject
security contexts that are considered in this rule. patternO

designates the object security contexts and patternoper defines
the different operations to be allowed between these contexts.

336

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

2) Modification rules: Each local policy can evolve ac-
cording to modification rules. A modification rule includes
different elements: the security context allowed to request
the modification and the Interaction Vectors. The considered
modifications are: addition, removal or change.

1 enableAddIV(screquester , (patternS , patternO ,patternoper))
2 enableModIV(screquester , (patternS , patternO ,patternoper))
3 enableDelIV(screquester , (patternS , patternO ,patternoper))

The security context screquester ∈ SCs is
the one that can request the modification for
iv = (patternS , patternO, patternoper). For example,
enableAddIV (scadmin, (apache_(.∗), var_www_(.∗), {file :
(.∗)})) can be used to authorize a local administrator scadmin

to add the interactions permitting a HTTP process to access
any file located in the directory /var/www with the required
privileges. A second set of rules is used to control security
context modifications:

1 enableAddSC(screquester , patternSC)
2 enableDelSC(screquester , patternSC)

For example, enableAddSC(scadmin, apache_(.∗)) enables
a local administrator to add required Apache server security
contexts. Note that similar rules are defined in order to label
an “object” with a security context or to modify this labelling.

B. Example

Listing 22. Meta-policy example
1 enableIV(login_d, admin_d, transition)
2 enableIV(login_d, user_d, transition)
3 enableIV(ssh_d, user_d, transition)
4 enableIV(user_d, webserv_d, transition)
5 enableIV(admin_d, webserv_d, transition)
6 enableIV(admin_d, apache_d, transition)
7 enableIV(apache_d, webserv_d, transition)
8 enableIV(admin_d, apache_conf_t, { read, write })
9 enableIV(apache_d, apache_conf_t, { read })

10 enableIV(apache_d, var_www_t, { read, write, execute })
11 enableIV(webserv_d, .∗_info_t, { read })
12 enableIV(user_d, user_info_t, { read, write })
13
14 enableAddSC(webserv_d, .∗_info_t)
15 enableAddIV(webserv_d, (webserv_d, .∗_info_t, { read }))
16 enableDelIV(webserv_d, (webserv_d, .∗_info_t, { read }))

The listing 22 contains an example of meta-policy. In this
example, a user can open a session with ssh or local login,
but the administrator can only authenticate locally. Both of
them can modify objects containing personal information and
execute a web-service allowed to access this information.
Moreover, the administrator can execute an Apache web-
server and modify its configuration. Apache can only read
this configuration, but it is allowed to read, write or execute
temporary objects. Finally, Apache can also execute the web-
service.
C. Flow graphs between the security contexts

Starting from a MAC policy e.g. the initial policy of our
meta-policy, we have built two different graphs that will be
used to check the security properties (as described in the next
section). These graphs are the following:

Fig. 5. Interaction graph

Fig. 6. Information flow graph

1) Interaction Graph: The interaction graph is a represen-
tation of all legal interactions allowed by the local policy.
An interaction between two security contexts sc1 and sc2 is
represented in G by an arc , noted sc1 →eo sc2, valuated
by the set of authorized operations eo. Figure 5 presents an
interaction graph for the previous meta-policy of listing 22.
This graph is composed of six subjects and four objects.

2) Flow Graphs: Several flow graphs are computed starting
from the previous interaction graph. The direct flows are in-
cluded within the transitive flows i.e. an indirect path between
two contexts. In order to simplify the explanations and focus
on the enforcement of dynamic policies, limited details are
given about those different graphs. Let us give an explanation
for the information flow graph. This graph represents all the
allowed transfer of information.

A transfer of information between two security contexts sc1

and sc2 is in fact a read (write) operation from sc2 to sc1

(from sc1 to sc2). Note that a transition from sc1 to sc2 allows
a transfer of information in both directions. The information
graph is a conversion of the interaction graph: the read arcs
are flipped, an arc scs2 → scs1 is added for each transition
arc scs1 → scs2.

Figure 6 represents the information flow graph correspond-
ing to the previous example. Another flow graph is computed
that includes all the allowed flows of control. A flow of control
is a causal sequence including several reading or writing-like
operations that provides a path for executing or writing an
object.

337

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 7. Impossibility of computing the illegal activities for dynamic policies
without a tool based on the meta-policy approach

Fig. 8. Strategy of verification for dynamic policies

D. Motivation for a verification algorithm

After presenting the meta-policy model, one can wonder if
it is possible for the security properties to be enforced whereas
the policies are evolving. If the policy is dynamic, that is
if the administrator changes the MAC policy frequently, the
generated list of activities that violate the security properties
will change. In figure 7, we show that the number of MAC
policies is infinite and that the strategy of enforcement of the
security properties is no longer possible.

In figure 8, a solution is proposed using the meta-policy
that controls all the possible policies, the computation of
the infinite number of possible policies is no longer needed.
We will directly use the meta-policy itself and the security
properties in order to verify if a possible policy could violate
one of the security properties. The goal is to get a positive or
negative answer.

VII. VERIFICATION OF MAC POLICIES

This section presents a method to check the required secu-
rity properties for dynamic MAC policies.

First, the verification of a security property can be made
on a static policy (with no evolution). The algorithm is
presented in section VII-A and is straightforward: it consists
in a computation of paths on a graph that corresponds to the
search for possible information flows, forbidden transitions,
etc... The precise algorithm for each verification depends on
the security property to be checked.

Second, the aim of this section is to present how to verify
security properties for dynamic policies. Using the meta-policy

Fig. 9. Policy Graph example

model presented in section VI, we show how to verify a
security property in order to 1) have a meta-policy that satisfies
the required security properties or 2) compute all the illegal
activities.

For each algorithm, a concrete example for Apache is
given that guarantees the integrity property of the Apache
configuration files.

A. Verification of Static Policies

As explained in section VI-C, enforcement of security prop-
erties corresponds to the computation of all the illegal paths
in the flow graphs. In those graphs, our method produces all
the illegal activities associated with a given security property.
When deploying the MAC policy on a system, the SPLinux
kernel enforces the required security properties for the local
Policy [22].

B. Verification of Dynamic Policies

Remember that the meta-policy allows the local policies to
evolve. The consequences on the policy graph are detailed
below, for each rule of the meta-policy:
• enable[Add|Del]SC(screquester , patternSC): creates / deletes

nodes in the graph labelled by patternSC

• enable[Add|Del]IV(screquester , (patternS , patternO ,patternoper)):
adds / removes operations between all nodes matching
patternS and nodes matching patternO, if the operation
matches patternoper. If no operation remains, arcs are
deleted.

• enableModIV(screquester , (patternS , patternO ,patternoper)):
modifies the operation label of arcs which joins nodes
matching patternS → patternO.

Consequently, enforcement is not limited to the computation
of the previous static graphs because those graphs can change
in the next version of the policy.

1) Principles of the proposed method: Let us consider the
general case to check if there is an information flow between A
and B in the graph shown in figure 9 that represents a policy.
If we only consider this static graph, obviously, there is no
information flow. Now let us consider the following general
meta-policy rules:

Listing 23. General meta-policy rules
1 enableAddSC(scadmin, expr1,)
2 enableAddSC(scadmin, expr2,)
3 enableAddIV(scadmin, expr1, expr2, {.∗}))

expr1 and expr2 are regular expressions matching two
sets of nodes. These expressions allow the administrator to

338

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 10. Graph for listing 23

Fig. 11. Meta-nodes computation for graph of listing 23

create nodes, and modify arcs between these created nodes.
Eventually, some already existing nodes can be matched by
one of the regular expressions. The problem of verification of
the possible existence of an information flow between A and
B is now more complex because the administrator may add
nodes and arcs and create a path between A and B as shown
in figure 10.

We propose to solve the problem by using some extra nodes
or arcs associated with the meta-policy rules. To take into
account these rules, the two sets are grouped in a "meta-node"
named expr1 and expr2. We obtain a new graph as shown in
figure 11. It shows that a path can occur between A and B:
A→ expr1 → expr2 → B.

2) Example: An example for the preceding principle is
given below. It is a based on the graph of the policy given in
figure 5. The goal is to guarantee that there is no possible ac-
cess to apache_conf_t for the user_d context when connecting
via SSH. It prevents, for example, an attack that allows a user
that have permission to put web pages on the web server and
that exploits a vulnerability to modify or to read the Apache
configuration. With the model presented in section IV, this can
be written as follows:

{
P4.1(ssh_d, apache_conf_t) (integrity)
P4.8(ssh_d, apache_conf_t) (confidentiality)

that is, using the SPL language:

Listing 24. Integrity and Confidentiality for the configuration of Apache
1 integrity($sc1:="ssh_d", $sc2:="apache_conf_t");
2 confidentiality($sc1:="ssh_d", $sc2:="apache_conf_t");

Obviously, with the policy of figure 5, such an attack is
impossible. Nevertheless, consider the listing 25 that presents
a possible meta-policy installed by the administrator. This
allows the security contexts to be added for php and to
add interactions between the web server and php. Special
rules allow php contexts to write new information in the
configuration files of Apache and in /var/www.

Fig. 12. Updated policy graph with rules of listing 26

Fig. 13. Updated policy graph with rules of listing 26

Listing 25. Meta-policy for php installation
1 enableAddSC(admin_d, php.∗)
2 enableAddIV(admin_d, (php.∗,php.∗, {.∗}))
3 enableAddIV(admin_d, (webserv.∗,php.∗, {.∗}))
4 enableAddIV(admin_d, (php.∗,apache_conf.∗, {r,w}))
5 enableAddIV(admin_d, (php.∗,var_www.∗, {r,w,e}))

The listing 26 is the modification performed by the admin-
istrator that updates the policy according to the meta-policy.
The figure 12 represents the new policy graph resulting from
the listing 26 for the policy of figure 5. With this new policy,
there is a possible attack from the ssh_d context against the
apache_conf_t configuration files that was not possible before
with the policy of figure 5.

Listing 26. Policy modification by admin_d user when installing php
1 enableSC(php_d)
2 enableSC(php_exec_t)
3 enableIV(webserv_d,php_d, {transition})
4 enableIV(php_d,php_exec_t, {e}))
5 enableIV(php_d,apache_conf_t, {r,w}))
6 enableIV(php_d,var_www_t, {r,e}))

The proposed methodology creates a meta-node that corre-
sponds to the regular expression php.*. It adds arcs 1) between
this meta-node and the nodes apache_conf_t and var_www_t
and 2) between webserv_d and the meta-node. The new graph
including the meta-node is given in figure 13. In this new
graph, it is easy to check if a path exists between ssh_d and
apache_conf_t. The computation of this path will be reported
to the administrator as a possible vector of attack.

C. Rules with intersecting regular expressions

If we consider a meta-policy with several rules containing
regular expressions, and if some of them intersect each other,
then the solution presented before is not correct. This section
presents a modified version of the presented methodology to
take this case into account.

339

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Fig. 14. Example of a meta-policy with two intersecting regular expressions

Fig. 15. Aggregated meta-graph

1) Principles of the proposed method: Let us suppose a
general meta-policy, presented in listing 27 and represented
in figure 14 where the regular expressions expr1 and expr′1
interleave.

Listing 27. Meta-policy rules where expr1 intersects expr2
1 enableAddSC(scadmin, expr1)
2 enableAddSC(scadmin, expr2)
3 enableAddIV(scadmin, (expr1, expr2, {.∗}))
4 enableAddSC(scadmin, expr′1)
5 enableAddSC(scadmin, expr′2)
6 enableAddIV(scadmin, (expr′1, expr′2, {.∗}))

With the preceding methodology, four meta-nodes will be
built: expr1, expr′1, expr2, expr′2. Then, because of line 3
(resp. line 6) of the meta-policy of listing 27, an arc is created
between expr1 and expr2 (resp between expr′1 and expr′2).
But, as expr1 and expr′1 interleave, a possible security context
Q can be created inside expr1 and expr′1 at the same time.
Thus, a new arc has to be created between expr1 and expr′1
as shown in figure 15.

The last remaining difficulty is to compute the possible in-
tersections between the regular expressions. If the length of the
regular expression is limited, then computing the intersection
is polynomial with the number of meta-policy rules [30]. If we
consider that the length of the regular expression is not limited,
the algorithm cannot be computed in polynomial time [31].

2) Example: We now consider a more complex ex-
ample of meta-policy for the installation of PHP ver-
sion 5. To improve the security for php5 and to
guarantee the properties P4.1(ssh_d, apache_conf_t) and
P4.8(ssh_d, apache_conf_t) initially presented in sec-
tion VII-B2, we deleted some rules, mainly to avoid the php5
process to be able to write the Apache configuration. The

Fig. 16. Updated policy graph with rules of listing 29

listing 28 shows the new meta-policy. Only three rules have
been kept as we now consider that php5, in this new version,
has no reason to be able to write the Apache configuration.
Nevertheless, the corresponding rules have been kept in the
policy file for backward compatibility for the php4 process.
At this point, it is not easy to see that there is a possibility of
attack from the SSH context against the Apache configuration.

Listing 28. Meta-policy for php5 installation
1 // Php5 meta−policy rules
2 enableAddSC(admin_d, .∗php5.∗)
3 enableAddIV(admin_d, (webserv.∗,.∗php5.∗, {.∗}))
4 enableAddIV(admin_d, (.∗php5.∗,var_www.∗, {r,w,e}))
5 // Backward compatibility rules for php4
6 enableAddSC(admin_d, php4.∗)
7 enableAddIV(admin_d, (php4.∗,apache_conf.∗, {r,w}))

The php5 process seems isolated from the apache_conf_t
context. But, the administrator can create the rules of
listing 29, that respect the meta-policy of listing 28. In
this new policy, the php5_d process remains isolated from
apache_conf_t, but a transition is possible to the context
php4php5_d. This context matches two regular expressions:
.*php5.* and php4.*. As the meta-policy allows php4.* to
write to the Apache configuration, the last rule of the listing
allows php4php5_d to do it. The figure 16 shows the resulting
contexts and the intersection of regular expressions appears
clearly.

Listing 29. Policy modification by admin_d user when installing php
1 enableSC(php5_d)
2 enableSC(php5_exec_t)
3 enableIV(webserv_d,php5_d, {transition})
4 enableIV(php5_d,php5_exec_t, {e}))
5 enableIV(php5_d,var_www_t, {r,e}))
6 enableSC(php4php5_d)
7 enableIV(php5_d, php4php5_d {transition})
8 enableIV(php4php5_d,apache_conf_t, {r,w}))

Remember that there is a strong hypothesis in this example:
the administrator creates the context php4php5_d for backward
compatibility. It enables a malicious user to write the Apache
configuration. The problem is that the administrator could not
anticipate the problem when reading the listing 28, because the
problem is not trivial. That is why the administrator needs a
tool to analyze the meta-policy in order to check the potential
violation of the security properties.

D. Algorithm

Our algorithm computes all the possible intersections of the
regular expressions. This algorithm have been implemented

340

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

in the PIGA tool and technical implementation details can
be found in [22]. A set of arcs corresponding to these
intersections is added in each graph (between the corre-
sponding meta-nodes). After this first phase, each security
property is processed by looking for the security pattern in
the corresponding graphs. The result of this second phase is
a set of illegal activities that violate the requested security
property. Each illegal activity can be static, i.e. without any
regular expression, or dynamic, i.e. with at least one regular
expression. This second class of illegal activities is what we
call a “meta-activity”. The PIGA tool is able to compute
any illegal activity either static or dynamic i.e a meta-activity
expressed using meta-nodes that are designated with regular
expressions.
Require: G: the interaction graph i.e. the initial policy
Require: MPRsc: meta-policy rules of type EnableAddSC
Require: MPRiv: meta-policy rules of type EnableAddIV
Ensure: G’: the computed meta-graph

1: G’=G.clone()
2: for sc ∈MPRsc do
3: G’.addNode(new Node(sc))
4: end for
5: for each rule ∈ MPRiv, rule =

enableAddIV (s, (expr1, expr2, perms))) do
6: G’.addNode(vexpr1 = new Node(expr1))
7: G’.addNode(vexpr2 = new Node(expr2))
8: G’.addArc(vexpr1 , vexpr2)
9: G’.addArc(vexpr2 , vexpr1)

10: for each v ∈ G′ do
11: if v matched by expr1 then
12: for each v′ ∈ G′.neighbors(v) do
13: G’.addArc(v’, vexpr1 , G’.dir(v’,v))
14: end for
15: end if
16: if v matched by expr2 then
17: for each v′ ∈ G′.neighbors(v) do
18: G’.addArc(v’, vexpr2 , G’.dir(v’,v))
19: end for
20: end if
21: end for
22: end for
23: for each rule ∈ MPRiv, rule =

enableAddIV (s, (expr1, expr2, perms))) do
24: for each rule′ ∈ MPRiv, rule =

enableAddIV (s, (expr3, expr4, perms))) do
25: if expr1 ∩ expr3 6= ∅ then
26: if ∃v ∈ G′ / v matches expr1 and expr3 then
27: G’.addArc(vexpr1 , vexpr3)
28: G’.addArc(vexpr3 , vexpr1)
29: end if
30: end if
31: // Same treatment for (expr1, expr4), (expr2, expr3),

(expr3, expr4)
32: end for
33: end for

This algorithm computes the new meta-graph G’ that is
used to search paths between two security contexts. The
algorithm first creates the meta-nodes associated to the regular
expressions into G’ (lines 1-9). Then, if the nodes of G’ can
be included in one of the regular expressions, the arcs are
updated to link the meta-nodes (i.e. the regular expressions)
to the corresponding neighbours (lines 10-22). In other words,
all the matching nodes are grouped within the corresponding
meta-nodes. The second part of the algorithms checks if two
meta-nodes can intersect each other in which case the two
meta-nodes are linked together.

VIII. EXPERIMENTATION ON A HONEYPOT

In order to secure a high-interaction Honeypot, we defined
the security properties of listing 30 in order to give high
protection to the system resources and prevent the system from
being corrupted. The precise experiment, the technical details,
and the discussion about the results are given in [4]. Some
of the results are recalled in this section to give to the reader
an illustration of the use of the security properties modelled
using the SPL language.

Several standard Linux hosts without special protection have
been setup to see if attackers can compromise them. Those
kind of hosts are compromised in less than a week. Windows
hosts are surviving only one day. The compromised hosts have
been removed from the experiment after some weeks because
it is too much work to maintain and monitor them. In contrast
with these standard Linux and Windows hosts, the SPLinux
protected honeypot systems have never been compromised
during two years of experiment.

The protected hosts that are considered in the presented re-
sults are the one that have been analyzed by the PIGA tool [22]
which formal algorithm has been described in section VII. The
protection is then enforced using our SPLinux kernel which
monitors in real time the activities of the system processes.
If a process violates a security property, the SPLinux kernel
prevents the execution of an interaction of the incriminated
activity.

The first property, integrity, expresses the fact that no
subject context can modify the binary files. The second rule,
confidentiality, prevents the user from reading any file of
the system. The third property, int_domain, expresses the
fact that no chrooted context is able to interact with any
context outside the chrooted domain. The fourth property,
no_transition, expresses the fact that a system process cannot
transit to a bad domain (a blacklist of dangerous contexts). At
last, the third property, duties_separation, expresses the fact
that a context is not able to be executed by another one if it
has only just been modified by this same another one.

Listing 30. Security properties for the honeypot
1 integrity($sc1:=".∗", $sc2=".∗:.∗:.∗_exec_t");
2 confidentiality($sc1:=user_u:user_r:user_t, $sc2:="system_u:object_r

:.∗");
3 int_domain($CHR:=".∗:.∗:.∗user.∗");
4 no_transition($sc:=user_u:user_r:user_t);
5 duties_separation($sc1:=".∗");

341

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

TABLE III
ILLEGAL META-ACTIVITIES.

Gateway User Initial

Graph SC 577 3 017 595
IV 17 684 314 582 18 215

Security integrity 137 9 461 140
Property int_domain 16 283 510 215 16 546
Rules confidentiality 29 510 726 842 29 510

duties_separation 243 16 405 270
no_transition 3 555 126 228 3 941

Size of the database 1,1MB 3,6MB 1,1MB
Results Number of audit 13 664 44 503 14051

Computation time 47s 10min31s 52s

Let us consider those properties using several complete
meta-policies for two kinds of host. The first kind of host
is a gateway and the second kind is a user host.

Each host contains the same initial policy as a part of the
meta-policy. That initial policy is processed as a static policy.
The results are given in column Initial. The PIGA tool finds
140 activities that can violate the integrity property, 16,546
activities violating the int_domain property, 29,510 activ-
ities violating the confidentiality property, 270 activities
violating the duties_separation property and 3.941 activities
violating the no_transition property.

The meta-policy of the gateway host includes few
modification rules. The PIGA tool processes the corre-
sponding meta-activities, including 137 activities that can
violate the integrity property, 16,283 activities violat-
ing the int_domain property, 29,510 activities violating
the confidentiality property, 243 activities violating the
duties_separation property and 3,555 activities violating
the no_transition property. The resulting meta-graphs are
smaller than the initial graph since the update rules of the
gateway permit some security contexts and interactions to be
removed. Thus, it is consistent to have fewer meta-activities
than initial activities.

The meta-policy of the user host includes much larger
modification rules. PIGA computes 9,461 activities that can
violate the integrity property, 510,215 activities violat-
ing the int_domain property, 726,842 activities violating
the confidentiality property, 16,283 activities violating the
duties_separation property and 126,228 activities violating
the no_transition property. The user host authorizes many
updates of the initial policy in order to support all the classical
applications such as the Gnome desktop, Firefox, OpenOffice,
etc. The majority of the updates enable new security contexts
and interactions to be added for those applications. Thus,
PIGA finds many meta-nodes authorizing the user contexts to
interact with the system. Since all the properties aim at limiting
the flows between the user and the system, it is consistent to
have many more illegal meta-activities between the system and
the user.

In addition, Table III shows the size of the database of
the corresponding illegal activities plus the time needed for
computation. At present, computation is not optimal since
the solution computes each meta-policy as an independent
set of rules. Optimizations could be provided by reusing the
results already obtained for previous meta-policies. Finally,
the resulting illegal activities associated with the permitted
updates of the initial policy can be extracted from the database.
Thus, the administrator can isolate the illegal activities that
are permitted by the modification constraints. He can either
modify the modification constraints or decide that it is consis-
tent. In the later case, each time a new local policy is set up,
the corresponding illegal activities will be prevented by our
SPLinux kernel. Thus, a satisfactory solution is provided for
dynamic MAC policies.

IX. CONCLUSION

This paper introduces a precise formalization of a wide
range of integrity and confidentiality properties. A dedicated
language has been developed to describe these properties.
The abstract Security Property Language (SPL) deals with
the activities of the operating system and models complex
correlations between these activities that can lead to illegal
activities. Even if it easy to define abstract properties, the
paper gives 13 pre-defined security templates. Some of them
are properties well known in the literature, but others are new
security properties.

Moreover, a concrete SPL language is proposed that gives
a concrete syntax for enforcing the required properties. Thus,
concrete security properties are supported for the predefined
template. New templates can be easily defined using the
concrete SPL language. A compiler is available for processing
mandatory access control policies such as SELinux policies.
That compiler computes all the illegal activities that could
violate the requested properties. The paper demonstrates how
to write concrete properties for protecting systems.

This paper also shows how the security properties are
linked to mandatory access control mechanisms. The security
properties and the MAC policy of the target host allow the
compiler to generate the list of illegal activities. This list is
the input of our SPLinux kernel that will enforce the security
properties. Thus, a system call fails if illegal activities are
recognized.

In the case of dynamic policies, the list of illegal activities
is not computable. The paper shows that, with the use of
a meta-policy, a policy that constraints the MAC policies, it
becomes possible to verify if the meta-policy violates one of
the security properties. The verification algorithm is based on
a special graph where meta-nodes and meta-arcs are added in
accordance with the meta-policy. The result of the algorithm
is that the administrator knows if the meta-policy authorizes
a policy that violates one of the defined security properties.
It is a strong result as it is difficult to be able to give such
a guarantee for dynamic policies. Moreover, with a simple
meta-policy, all the possible illegal activities can be computed
in order to improve the meta-policy.

342

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Finally, the paper gives results about the computation of the
illegal activities that violate security properties for two kind
of hosts of our honeypot. A large variety of combinations
of interactions allow the security properties to be violated.
Nevertheless, these properties are enforced by our SPLinux
kernel. SPLinux prevents the honeypot hosts from being
compromised. During two years of experiments, our honeypot
systems have never been compromised whereas a standard
linux host have been always compromised in less than one
week. It is this experiment that shows the efficiency of our
approach. Thus, a global solution is provided. Verification is
not mandatory since the administrator can trust the SPLinux
kernel to enforce all the required security properties. However,
verification is a powerful tool to adjust both the meta-policy
or the required security properties.

Future works deal with optimization of our compiler to
reuse the verification methods. Indeed, the illegal activities
can be pre-computed for all the permitted meta-nodes. Thus,
a complete database can be provided for enforcing the host.
That database will include both static and dynamic activities to
prevent the compilation phase when a local policy is updated.
Moreover, ongoing works address DAC systems. Despite the
fact that DAC systems are more complicated to protect, we are
developing a new enforcement mechanism for those kinds of
host. Thus, the security properties will be enforced for both
DAC and MAC systems. Finally, extensions will be proposed
to enable the SPL language to deal with availability and
distributed properties.

REFERENCES

[1] J. Briffaut, J.-F. Lalande, C. Toinard, and M. Blanc, “Enforcement of
security properties for dynamic mac policies,” in Third International
Conference on Emerging Security Information, Systems and Technolo-
gies, IARIA, Ed. Athens/Glyfada, Greece: IEEE Computer Society
Press, June 2009, pp. 114–120.

[2] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman, “Protection in operating
systems,” Communications of the ACM, vol. 19, no. 8, pp. 461–471,
1976.

[3] M. Blanc, J. Briffaut, J.-F. Lalande, and C. Toinard, “Distributed control
enabling consistent MAC policies and IDS based on a meta-policy
approach,” in Proceedings of the Seventh IEEE International Workshop
on Policies for Distributed Systems and Networks. London, Canada:
IEEE Computer Society, Jun. 2006, pp. 153–156.

[4] J. Briffaut, J.-F. Lalande, and C. Toinard, “Security and results of a large-
scale high-interaction honeypot,” Journal of Computers, Special Issue
on Security and High Performance Computer Systems, vol. 4, no. 5, pp.
395–404, may 2009.

[5] F. Schneider, “Enforceable security policies,” Information and System
Security, vol. 3, no. 1, pp. 30–50, 2000.

[6] R. Focardi and S. Rossi, “Information flow security in dynamic con-
texts,” in Proceedings of the IEEE Computer Security Foundations
Workshop. IEEE Computer Society Press, 2002, pp. 307–319.

[7] M. Giunti, “Preventing intrusions through non-interference,” in Proceed-
ing of the IEEE Mexican Conference on Informatics Security. IEEE
Computer Society Press, 2006.

[8] C. Ko and T. Redmond, “Noninterference and intrusion detection,” in
IEEE Symposium on Security and Privacy, 2002, pp. 177–187.

[9] G. Hiet, V. Viet Triem Tong, B. Morin, and L. Me, “Monitoring both os
and program level information flows to detect intrusions against network
servers,” in Proceedings of the 2nd workshop on MONitoring, Attack
detection and Mitigation, Nov. 2007.

[10] G. Hiet, V. V. T. Tong, and L. Mé, “Policy-based intrusion detection
in web applications by monitoring java information flows,” in CRISIS
’08: 3nd International Conference on Risks and Security of Internet and
Systems, Oct. 2008.

[11] S. Zdancewic, “Challenges for information-flow security,” in Proceed-
ings of the 1st International Workshop on the Programming Language
Interference and Dependence, 2004.

[12] V. C. Hu, E. Martin, J. Hwang, and T. Xie, “Conformance checking of
access control policies specified in xacml,” in Proceedings of the 31st
Annual International Computer Software and Applications Conference,
vol. 2. Washington, DC, USA: IEEE Computer Society, 2007, pp.
275–280.

[13] G.-J. Ahn, W. Xu, and X. Zhang, “Systematic policy analysis for high-
assurance services in selinux,” in Proceedings of the 2008 IEEE Work-
shop on Policies for Distributed Systems and Networks. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 3–10.

[14] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières, “Making
information flow explicit in histar,” in Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation. Berke-
ley, CA, USA: USENIX Association, 2006, pp. 19–19.

[15] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F. Kaashoek, E. Kohler,
and R. Morris, “Information flow control for standard os abstractions,”
ACM SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 321–334,
2007.

[16] P. Efstathopoulos and E. Kohler, “Manageable fine-grained information
flow,” ACM SIGOPS Operating Systems Review, vol. 42, no. 4, pp. 301–
313, 2008.

[17] M. L. Damiani, C. Silvestri, and E. Bertino, “Hierarchical domains
for decentralized administration of spatially-aware rbac systems,” in
ARES ’08: Proceedings of the 2008 Third International Conference on
Availability, Reliability and Security. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 153–160.

[18] L. Seitz, E. Rissanen, T. Sandholm, B. S. Firozabadi, and O. Mulmo,
“Policy administration control and delegation using xacml and delegent,”
in Proceedings of the 6th IEEE/ACM International Workshop on Grid
Computing. Washington, DC, USA: IEEE Computer Society, 2005, pp.
49–54.

[19] N. Li, Z. Mao, and H. Chen, “Usable mandatory integrity protection
for operating systems,” in IEEE Symposium on Security and Privacy,
Berkeley, California, May 2007, pp. 164–178.

[20] Z. Mao, N. Li, H. Chen, and X. Jiang, “Trojan horse resistant discre-
tionary access control,” in Proceedings of the 14th ACM symposium on
Access control models and technologies. New York, NY, USA: ACM,
2009, pp. 237–246.

[21] X. Cai, Y. Gui, and R. Johnson, “Exploiting unix file-system races via
algorithmic complexity attacks,” in Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 27–41.

[22] J. Briffaut, J. Rouzaud-Cornabas, C. Toinard, and Y. Zemali, “A new
approach to enforce the security properties of a clustered high-interaction
honeypot,” in Workshop on Security and High Performance Computing
Systems, R. K. Guha and L. Spalazzi, Eds. Leipzig, Germany: IEEE
Computer Society, June 2009, pp. 184–192.

[23] ITSEC, “Information Technology Security Evaluation Criteria (ITSEC)
v1.2,” Technical Report, Jun. 1991.

[24] K. J. Biba, “Integrity considerations for secure computer systems,” The
MITRE Corporation, Technical Report MTR-3153, Jun. 1975.

[25] R. Focardi and R. Gorrieri, “Classification of security properties (part
I: Information flow),” in Foundations of Security Analysis and Design.
Springer Berlin / Heidelberg, 2001, pp. 331–396.

[26] C. Ko and T. Redmond, “Noninterference and intrusion detection,” in
IEEE Symposium on Security and Privacy. Berkeley CA, United-States:
IEEE Computer Society, May 2002, pp. 177–187.

[27] D. E. Bell and L. J. La Padula, “Secure computer systems: Mathemat-
ical foundations and model,” The MITRE Corporation, Bedford, MA,
Technical Report M74-244, May 1973.

[28] D. D. Clark and D. R. Wilson, “A comparison of commercial and
military computer security policies,” in The Symposium on Security and
Privacy. IEEE Press, 1987, pp. 184–193.

[29] R. Sandhu, “Separation of duties in computerized information systems,”
in Database Security, IV: Status and Prospects, Halifax, U.K., September
1990, pp. 179–190.

[30] K. Dexter, “Lower bounds for natural proof systems,” in Proceedings
of the 18th Annual Symposium on Foundations of Computer Science.
Washington, DC, USA: IEEE Computer Society, 1977, pp. 254–266.

[31] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation (2nd Edition). Addison Wesley,
November 2000.

343

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

1

Analysing security requirements formally and
flexibly based on suspicion

Nuno Amálio

Abstract—Increasingly, engineers need to approach security
and software engineering in a unified way. This paper presents
an approach to the formal analysis of security requirements that
is based on model-checking and uses the concept of suspicion
to guide the search for threats and security vulnerabilities in
requirements. It proposes an approach to security analysis that
favours exploration of a system’s state space based on what is
abnormal or suspicious to find threats and vulnerabilities, instead
of ironclad security proofs that try to demonstrate that a system
is secure; as this paper shows, such security proofs can often be
misleading. The approach is tested and illustrated by conducting
two experiments: one focussing on a system with a confidentiality
security property, and another with an integrity security property
enforced through the separation of duty principle. One of the
advantages of the approach presented here is that threats are
derived directly from a model of requirements and no prior
knowledge about possible attacks is necessary to perform the
analysis. The paper shows that suspicion is an effective search
criteria for finding vulnerabilities and security threats in require-
ments, and that the feedback generated by the analysis helps in
elaborating security requirements.
Index Terms—Security, requirements, formal analysis, Event-
Calculus, planning, confidentiality, separation of duty.

I. INTRODUCTION

Traditional approaches to software engineering and current
practice tend to treat security concerns as an after-thought [1].
Security requirements are handled as non-functional require-
ments and are kept separate from their functional counter-parts
until design or implementation-time. This raises problems for
the whole software development process because (as demon-
strated in this paper) functionality has an impact on security.
If security aspects are not treated properly at the requirements
phase, then the resolution of the problem will inevitably be
deferred but at a much higher cost, which is a well known
software engineering problem [2]. This issue can be resolved
by integrating security into the requirements engineering phase
of the software life-cycle [1], [3]. However, the best way to
capture, model and analyse security and system requirements
in a unified way is still an open problem.

Security requirements have proved tricky to formulate and
reason about [4]. There are several methods for reasoning
about properties that a system must satisfy. Traditionally,
properties are classified as either safety or liveness [5], [6].
Safety properties say that something bad must not happen,
and liveness properties say that something good must eventu-
ally happen. We check safety to ensure that bad states are
not reachable, and liveness to ensure that good states are
eventually reachable. This is used to check that invariants
are preserved, that operations are applicable when certain

N. Amálio is with the University of Luxembourg.

conditions are met (pre-conditions) and that operations have
the desired effect taking the system into a valid state. However,
important classes of security requirements are either difficult
to express using traditional safety or liveness properties, or
they are just not possible to express at all [7], [4], [8].

This paper claims that, from a practical point of view, not
only it is important to verify safety (that some unsecure state
is not reached) and liveness (that the security measures do
what is expected from them), but also in finding security
vulnerabilities and possible security threats that give attack
opportunities to malicious users: we need to look for what
can happen under certain suspicious conditions. Traditionally,
such possibilistic properties [7] are hard to formulate and
reason about. This paper proposes a practical approach for
dealing with such properties.

This paper presents a practical approach to the formal
analysis of security requirements based on model-checking,
where the search for threats and vulnerabilities in requirements
is based on what is suspicious from a security point of view.
This is inspired by anomaly-based approaches to intrusion
detection [9], where the search for intrusions at run-time
is driven by abnormal (or suspicious) behaviour of system
use. The approach presented here takes a formal model of
requirements and an analysis goal (a description of suspicious
states from the analysis point of view), which are used by the
model checker to generate traces of events describing how
the analysis goals is reached. Each trace gives a scenario
illustrating a possible threat or security vulnerability. The
generation of plans is done automatically with tool support.
The approach is illustrated with the Event-Calculus temporal
logic [10] and the analysis is conducted with tool support using
the discrete event calculus reasoner1 (decreasoner).

The remainder of this paper starts by giving a brief in-
troduction to event calculus (section II). Then it presents
the approach to the formal analysis of security requirements
that is proposed here (section III). After this, the analysis
approach is used to conduct two experiments: analysis of
a simple health-care system with a confidentiality security
requirement (section IV), and analysis of a business system
with an integrity requirement enforcing separation of duty
(section V). Then, the paper summarises the experimental
results that we obtained (section VI), discusses the paper’s re-
sults (section VII), presents some related work (section VIII),
and takes the conclusions.

1http://decreasoner.sourceforge.net/

344

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

2

Fig. 1. Planning-based formal analysis. EC model of requirements, and EC
description of analysis goal are fed into decreasoner tool to obtain a set of
plans (scenarios) that achieve the goal.

II. THE EVENT CALCULUS

Event Calculus (EC) [10], [11], a temporal logic based
on first-order predicate calculus designed for common-sense
reasoning, enables representation and reasoning about action
and change. Its basic ontology comprises events, fluents and
timepoints. An event is an action that may occur in the world.
A fluent is a time varying property of the world. A timepoint
is an instance of time. EC includes a set of basic predicates to
describe happening of events, their effects and state of fluents.
An EC model is built by describing two types of facts: the fact
that an event occurs at a timepoint, and the fact that a property
holds at a timepoint [11]. These facts are either true or false.

The basic predicates of EC are as follows:
• HoldsAt (f, t) says that fluent f is true at timepoint t.
• Happens (e, t) says that event e may occur at timepoint

t.
• Initiates (e, f, t) says that if event e occurs at timepoint

t, then fluent f is true after t.
• Terminates (e, f, t) says that if event e occurs at

timepoint t, then fluent f is false after t.
• Initially (f) says that fluent f holds at timepoint 0.

III. FORMAL THREAT ANALYSIS BY STUDYING
REACHABILITY

The analysis proposed here is essentially a study of reach-
ability: it checks whether certain states are reachable from
a model of the requirements. The actual generation of threat
scenarios is based on AI planning [12] and uses the decresoner
tool, which is based on a SAT approach to EC reasoning [13]2.
This is related to what is known in software engineering as
model-checking [14]: the exploration of all possible states and
transitions of a model to determine if a certain property holds
or not

Figure 1 depicts the analysis approach followed here. The
EC model and EC description of analysis goals are given
as inputs to decreasoner, which generates a set of plans (or
traces) that satisfy the goal. Each plan describes a scenario
comprising a sequence of events (a trace) that takes the system
from the initial state to one of the states described by the goal.

The goal (a predicate) describes a set of states that are
interesting from the analysis point of view. Planning generates
plans that reach such a state. If there are plans, then the goal is
satisfiable: a state as described by the goal can be reached in
the model. If no plans can be found, then no state as described
by the goal is reachable. If the goal state describes something
that should not happen, then the resulting plans (scenarios)

2Appendix A shows sample outputs given by decreasoner for the suspicion-
based analysis conducted in this paper.

R1 Doctors must be able to access their patient’s medical data to
provide effective medical care.

R2 A doctor may nominate a substitute who may be able to access
the patient’s medical data only when main doctor is on leave.

TABLE I
THE REQUIREMENTS OF SIMPLE MEDICAL INFORMATION SYSTEM.

Fig. 2. The SMIS with one patient, Anderson, his doctor Jones, and another
doctor, Smith, who is able to replace Jones while he is on leave.

describe a sequence of events that reach such a state; thus
exposing a way to reach something undesired.

Two strategies are used to formulate the goal. There is a
more traditional strategy that does a safety analysis by formu-
lating a goal describing states where security is violated and
that must not happen; these goals are called security violation
goals. The other strategy applies suspicion by defining a goal
describing suspicious states deserving investigation that may
expose possible vulnerabilities and threats. These are called
suspicious goals.

IV. CONFIDENTIALITY

Confidentiality is about protecting information. It tries to
ensure that sensitive information is accessible only to those
authorised to access it. Analysis of confidentiality involves
checking ways in which confidential information may be
accessed by those who are not authorised. Here, confidentiality
is studied using a case study of a domain where it is a
professional ethical principle: health-care [15].

The case study is a simple medical information system
(SMIS) that manages patient information. Due to its sensi-
tive nature, patient information is subject to confidentiality
constraints to protect patient’s privacy. The requirements of
SMIS are summarised in table I. Figure 2 depicts a concrete
system scenario of SMIS.

A. EC Model

To satisfy the requirements of SMIS, EC model presented
here introduces a protection mechanism based on credentials:
doctors need to request a credential prior to accessing the data;
credentials have a validity period.

The building blocks of an EC model are sorts, events and
fluents. EC model of SMIS comprises sort Delay, representing

345

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

3

time delays used in credential mechanism, and domain sorts
User, representing a user of SMIS, Doctor, a sub-sort of
User that represents doctors using SMIS, and Patient, which
represents the patients recorded in the system.

EC model of SMIS comprises the following events:
• AuthoriseAccess (d, p): occurs when doctors (d) re-

quest a credential for accessing some patient’s data (p).
• GetMD (d, p): occurs when doctors (d) actually access

patient’s medical data (p).
• SetSubstituteDoctor (u, d1, d2): occurs when a user

(u) sets some doctor (d1) as substitute of another (d2).
• SetDoctorOnLeave (u, d): occurs when a user (u)

informs system that some doctor (d) is on leave.
• DoctorNoLongerOnLeave (u, d): occurs when a user

(u) informs system that a doctor (d) is no longer on leave.
EC model defines the following fluents to hold state:
• IsDoctorOf (d, p) says who is doctor (d) of some

patient (p).
• CredentialMD (d, p, t) says that a doctor (d) has been

issued a credential to access data of some patient (p) at
time-point t.

• ExposedToAt (d, p, t) says that a doctor (d) has seen
the medical data of some patient (p) at time-point t.

• IsSubstituteDoctor(d1, d2) says that d1 is substitute
doctor of d2.

• OnLeave (d) says that doctor d is on leave.
EC model of SMIS starts by constraining Duration pred-

icate, which gives actual time associated with delays (of
Delay sort). Next EC equation says that Duration relation is
functional; each delay has at most one duration (a time point):

∀ d : Delay; t1, t2 : T ime |
Duration (d, t1) ∧Duration (d, t2)⇒ t1 = t2 (1)

Next EC equation says that Duration is total; all delays of
the model must have a duration associated:

∀ d : Delay | (∃ t : T ime) Duration (d, t) (2)

Next EC equation says that IsDoctorOf is a surjective
relation; each patient must have a doctor:

∀ p : Patient; t : T ime |
(∃ d : Doctor) HoldsAt (IsDoctorOf (d, p), t) (3)

Next EC equation defines predicate CanAccessMD, de-
scribing conditions ruling doctors’ access to patient’s data:

∀ d : Doctor; p : Patient; t : T ime |
HoldsAt (CanAccessMD (d, p), t)
⇔ HoldsAt (IsDoctorOf (d, p), t)
∨ ((∃ d′ : Doctor) HoldsAt (IsDoctorOf (d′, p), t)
∧ HoldsAt (IsSubstituteDoctor (d, d′), t)
∧ HoldsAt (OnLeave (d′), t)) (4)

This says that a doctor can access some patient’s medical data
at some time point provided doctor is either (a) patient’s doctor
(fluent IsDoctorOf) or (b) substitute doctor of patient’s
doctor (fluent IsSubstituteDoctor) who is on leave at that
time (fluent OnLeave). This formalises requirements R1 and
R2.

Next EC equation describes how doctors get creden-
tials to access patient’s data by describing effect of event
AuthoriseAccess:

∀ d : Doctor; p : Patient; t : T ime |
HoldsAt (CanAccessMD (d, p), t)
⇒ Initiates (AuthoriseAccess (d, p),

CredentialMD (d, p, t), t) (5)

This says that some doctor gets a credential to access a
medical file (fluent CredentialMD is initiated) upon event
AuthoriseAccess, provided doctor can access patient’s data
(predicate CanAccessMD defined above). This formalises
the scheme of credential-based protection.

Model objects of Delay sort have a duration, as defined by
Duration predicate defined above. Next EC equation defines
delay credentialV alidity representing validity period of a
credential:

credentialV alidity : Delay (6)

Next EC equation defines validity conditions of credentials,
which are captured by predicate HasV alidCredential:

∀ d : Doctor; p : Patient; t : T ime |
HoldsAt (HasV alidCredential (d, p), t)
⇔ (∃ t2, t3 : T ime)

HoldsAt (CredentialMD (d, p, t2), t)
∧ Duration (credentialV alidity, t3)
∧ (t2 + t3) ≥ t (7)

This says that a credential is valid for the duration period
defined by credentialV alidity.

Next EC equation defines precondition of event GetMD,
which may happen provided requesting doctor has a valid
credential to access requested patient’s data:

∀ d : Doctor; p : Patient; t : T ime |
Happens (GetMD (d, p), t)
⇒ HoldsAt (HasV alidCredential (d, p), t) (8)

Next EC equation describes how event GetMD initiates
(sets to true) fluent ExposedToAt that records exposure to
patient’s data has been accessed:

∀ d : Doctor; p : Patient; t : T ime |
Initiates (GetMD (d, p), ExposedToAt (d, p, t), t) (9)

Next equation constrains fluent IsSubstituteDoctor to be
non-reflexive; that is, a doctor may not be set as a substitute
of himself:

∀ d : Doctor; t : T ime |
¬ HoldsAt (IsSubstituteDoctor (d, d), t) (10)

Next equation describes effect how event
SetSubstituteDoctor initiates fluent IsSubstituteDoctor
to record that some doctor is substitute of another:

∀ u : User; d1, d2 : Doctor; t : T ime |
Initiates (SetSubstituteDoctor (u, d1, d2),

IsSubstituteDoctor (d2, d1), t) (11)

Next equation describes how event SetDoctorOnLeave
initiates (sets to true) fluent OnLeave; some user (u) informs
system that some doctor (d) is on-leave:

∀ u : User; d : Doctor; t : T ime |
Initiates (SetDoctorOnLeave (u, d), OnLeave (d), t) (12)

346

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

4

Next equation describes how event
DoctorNoLongerOnLeave terminates (sets to false)
fluent DoctorNoLongerOnLeave; this used so that users u
inform system that a doctor (d) is no longer on leave:

∀ u : User, d : Doctor; t : T ime |
Terminates (DoctorNoLongerOnLeave (u, d),

OnLeave (d), t) (13)

Next equations describe the initial condition of SMIS:

∀ d : Doctor; p : Patient; t : T ime |
Initially (¬ ExposedToAt (d, p, t)) (14)
∀ d1, d2 : Doctor |

Initially (¬ IsSubstituteDoctor (d1, d2)) (15)
∀ d : Doctor | Initially (¬ OnLeave (d)) (16)

Above, initially no one has been exposed to medical data
(fluent ExposedToAt), no doctors are set as substitutes, and
there are no doctors on leave.

This completes EC model of SMIS’s requirements (table I).
Next section, formally analyses this model.

B. Model Analysis

Analysis uses configuration depicted in Fig. 2. There are two
doctors, Jones and Smith, and a patient of Jones, Anderson.
This is formulated in EC as:

jones, smith : Doctor (17)
anderson : Patient (18)
Initially (IsDoctorOf (jones, anderson)) (19)

Configuration for model analysis also needs to define dura-
tion of credentialV alidity delay, which is defined as taking
three time-points:

Duration (credentialV alidity, 3) (20)

Analysis starts by formulating a security violation goal:
it asks whether it is possible to reach a state where patient
confidentiality is compromised. In the context of SMIS, this
happens when some doctor accesses some patient’s data with-
out a valid security credential; the goal expressing this is
formulated as:
∃ d : Doctor; p : Patient; t1, t2 : T ime |

HoldsAt (ExposedToAt (d, p, t2), t1)
∧¬ HoldsAt (HasV alidCredential (d, p), t2) (AG1)

For this goal, decreasoner does not find any traces (a
fragment of decreasoner’s output for this goal is given ap-
pendix A1). This means that the modelled system cannot reach
one of the goal’s states. At this point, one could argue that the
modelled system is secure because it is not possible to reach
an unsecure state, but it isn’t so.

Analysis proceeds by applying suspicion. The substitute
doctor rule (Requirement R2) enables access to patient’s data
by doctors other than the main patient’s doctor. This should
occur, but not very often; the situations under which this occurs
are suspicious and deserve investigation. Analysis investigates
states where those other than the main doctor access the
patient’s data. This is formulated as the goal:

∃ d : Doctor; p : Patient; t1, t2 : T ime |
HoldsAt (ExposedToAt (d, p, t2), t1)
∧¬ HoldsAt (IsDoctorOf (d, p), t2) (AG2)

R3 Only the doctors themselves or one of their administrators are
allowed to nominate a substitute, and inform the system of
their absence (on-leave) or return to duty.

s

TABLE II
REQUIREMENTS EMERGING AFTER ANALYSIS OF SMIS INITIAL

REQUIREMENTS.

For this goal, decreasoner generates traces exposing a
security vulnerability, which enables doctors to access patient’s
data in non-legal ways (see appendix A2 for output generated
by decreasoner). In some scenarios, the system behaves as
intended: Jones sets Smith as his substitute, at a later time
Jones informs system that he is on leave, and so Smith is
able to access the medical data (model 5 in appendix A2).
Other scenarios are more unusual. In some of them, it is
possible that Smith himself requests to be the substitute
of Jones (model 1 in appendix A2), and that it is Smith
who informs the system that Jones is on-leave (model 1 in
appendix A2). Obviously this is strange and could be explored
by a malicious doctor determined to get some patient’s medical
data: (a) he sets himself as substitute of another doctor, then
(b) he informs the system that main doctor is on-leave and (c)
finally he is able to access the patient’s data.

Such scenarios are possible because events
IsSubstituteDoctor and SetDoctorOnLeave (equations 10
and 11) are unconstrained: any user may execute them, which
introduces a loophole providing an opportunity for access to
patient’s data in ways that are not intended.

We can confirm the vulnerability by posing an analysis
question. We want to know if it is possible that some user
can nominate himself as some other doctor’s substitute and
then to be able to access the data of a patient that is not his
own. This is formulated as:
∃ d1, d2 : Doctor; p : Patient; t1, t2, t3 : T ime |

Happens (SetSubstituteDoctor (d1, d2, d1), t2)
HoldsAt (ExposedToAt (d1, p, t3), t1)
∧¬ HoldsAt (IsDoctorOf (d1, p), t3) ∧ t2 ≤ t3 (AG3)

For this goal, descreasoner is able to identify many scenarios,
thus confirming the identified vulnerability.

C. Fixing the Model

The analysis’ findings are used to elaborate the require-
ments. We try to remove the vulnerability that has been
identified. The requirements that emerge as a result of this
elaboration are given in table II; here, R1 and R2 of table I
still hold, and there is new requirement R3, which introduces
users of type administrators that execute administration tasks
on behalf of doctors.

This new requirement needs to be reflected in the EC model.
New version of EC model introduces sort Admin, subsort of
User sort, and which is disjoint from Doctor sort. It also
introduces a new fluent:
• HasAdmin (d, a) indicates administrator user (a) doing

administrative tasks on behalf of some doctor d.
This new sort and fluent are used to describe the new

requirement. Next EC equation constrains HasAdmin to be a
total relation; each doctor must have at least one administrator:

347

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

5

∀ d : Doctor; t : T ime |
(∃ a : Admin) HoldsAt (HasAdmin (d, a), t) (21)

Next EC equation constrains HasAdmin to be a surjective
relation; each administrator must be associated with a doctor:

∀ a : Admin; t : T ime |
(∃ d : Doctor) HoldsAt (HasAdmin (d, a), t) (22)

Next EC equation defines predicate CanDoAdmin, which
indicates users (u) that can do administrative tasks on behalf
of some doctor (d):

∀ u : User; d : Doctor; t : T ime |
HoldsAt (CanDoAdmin (u, d), t)
⇔ u = d ∨ ((∃ ad : Admin) u = ad
∧ HoldsAt (HasAdmin (d, ad), t)) (23)

Next EC equations use predicate CanDoAdmin to
define a pre-condition for events SetSubstituteDoctor,
DoctorOnLeave and DoctorNoLongerNoLeave. These
events may occur provided CanDoAdmin is true; that is,
user executing them can do administrative tasks on behalf of
affected doctor:

∀ u : User; d1, d2 : Doctor; t : T ime |
Happens (SetSubstituteDoctor (u, d1, d2), t)
⇒ HoldsAt (CanDoAdmin (u, d1), t) (24)
∀ u : User; d : Doctor; t : T ime |

Happens (SetDoctorOnLeave (u, d), t)
⇒ HoldsAt (CanDoAdmin (u, d), t) (25)
∀ u : User; d : Doctor; t : T ime |

Happens (DoctorNoLongerOnLeave (u, d), t)
⇒ HoldsAt (CanDoAdmin (u, d), t) (26)

D. Re-analysing the Model

The analysis configuration is refined by introducing two
administrators; one for each doctor:

alice, sue : Admin (27)
Initially (HasAdmin (jones, alice)) (28)
Initially (HasAdmin (smith, sue)) (29)

Under the revised EC model, we re-submit the model to the
security violation and suspicion goals:

• For the security violation goal (equation AG1 above), we
still get no plans (not possible to break confidentiality in
an obvious way).

• For the refined suspicious goal (equation AG3 above),
we no longer get any plans. Meaning that the loophole
has been eliminated.

• For the more abstract suspicious goal (equation AG2
above) we no longer get obvious security threats, but
the results still prompt interesting requirements questions,
such as: the system allows doctors to operate the system
while they are recorded as being on leave, should this be
allowed?

R1 There are two types of users clerks and managers. Managers
can performs the tasks that usually the clerks do, but clerks
should not usually perform manager’s tasks (exception is
delegation, below).

R2 Clerks are responsible for starting the refund procedure, and
for issuing or cancelling the refund.

R3 The refund shall be issued by a clerk if approved by the
managers, or cancelled otherwise.

R4 A refund must by approved by two different managers.
R5 A clerk shall not both prepare and issue or cancel a refund.
R6 Managers can delegate the authority on approval of refunds

to one of their administrators.

TABLE III
REQUIREMENTS OF PAYMENT PROCESSING WORKFLOW.

Fig. 3. The payment processing workflow.

V. SEPARATION OF DUTIES

Separation of Duties (SoD) [16], [17] is a security mech-
anism used to prevent fraud and errors. It aims to prevent
a single individual from executing business-critical tasks of
some transactions or business processes. SoD requires such
tasks to be performed by different users acting in cooperation
(e.g by requiring two persons to sign a cheque). Here, SoD is
studied using a classical case study: a workflow of payment
processing; SoD is used to enable payment authorisations to
be performed by different users.

The requirements of this workflow system are given in
table III; Fig. 3 depicts underlying workflow. The two tasks
involving approval of payments to be carried out by managers,
and the tasks prepare payment and issue/void payment, to be
carried out by clerks, are subject to SoD.

A. EC Model

The EC model presented here models a workflow as a set
of activities. Each activity is made of several alternative tasks;
one of the tasks must be carried out to complete the activity.
In workflow of Fig. 3, activity Approve/Refuse Pay comprises
tasks approve pay and refuse pay, and activity Issue/Void Pay
comprises tasks issue pay and void pay. There is always some
active activity in some running workflow session.

Workflow tasks are executed by users who have different
task execution permissions. Task permissions are defined at
the level or rôles; a user is assigned one or more user rôles.
In Fig. 3, users that have rôle clerk may execute tasks Prepare
Pay, Issue Pay and void Pay; users of rôle manager may exe-
cute tasks Approve Pay and Refuse Pay and all other tasks that
clerks do. The model also enables delegation; administrators
of managers may also execute tasks on managers’ behalf.

348

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

6

The following describes the following elements of EC
model: sorts; activities; tasks, rôles and delgation; task exe-
cution; and payment processing workflow.

1) Sorts: EC model introduces sorts Activ, Task, Session
and User. Activ represents activities of a workflow; Task
represents a workflow task that is executed by users; Session
represents a running session of a workflow; and User rep-
resents users that can execute tasks. Rôles are modelled as
sub-sorts of sort User; rôles of payment processing workflow
are defined below (section V-A5).

2) Activities: Fluent CurrActiv (a, s) of EC model
records current activity (a) of some workflow session (s). Next
EC equations constrain fluent CurrActiv to say that there is
at most one current activity per workflow session:

∀ a1, a2 : Activ; s : Session; t : T ime |
HoldsAt (CurrActiv (a1, s), t)
HoldsAt (CurrActiv (a2, s), t)
⇒ a1 = a2 (30)

Next EC equation gives initial state of fluent CurrActiv,
saying that initially there are no current activities:

∀ a : Activ; s : Session |
Initially (¬ CurrActiv (a, s)) (31)

To represent workflow configurations in terms of its con-
stituent activities, EC model uses predicates OccursBefore.
This indicates the ordering of activities in a workflow. Predi-
cate OccursBefore is defined below for payment processing
workflow (section V-A5, equation 50).

Predicate IsStartActiv indicates start activity of a work-
flow; it is defined from predicate OccursBefore as:

∀ a1 : Activ |
IsStartActiv (a1)
⇔ ¬ ((∃ a2 : Activ) OccursBefore (a2, a1)) (32)

In model proposed here, separation of duties is enforced on
activities. In workflow of Fig. 3, we have a SoD constraint
between activities Approve/Refuse Pay 1 and Approve/Refuse
Pay 2 and Prepare Pay and Issue/Void Pay. In EC model,
such constraints are represented using predicate SoD, which
is defined for each workflow that is to be described and
analysed (described below for payment processing workflow
in equation 51).

To define a precondition for event StartWrkf , EC model
introduces predicate Started, which indicates whether some
session has been started or not:

∀ s : Session; t : T ime |
HoldsAt (Started (s), t)
⇔ (∃ a : Activ; t2 : T ime) t2 ≥ t
∧ HoldsAt (CurrActiv (a, s), t2) (33)

Event StartWrkf starts a workflow session. Next EC equa-
tion defines pre-condition of event StartWrkf ; a workflow
session may start if it has not already been started:

∀ s : Session; t : T ime |
Happens (StartWrkf (s), t)
⇒ ¬ HoldsAt (Started (s), t) (34)

Next EC equation says how event StartWrkf initiates
fluent CurrActiv; when a workflow starts, current activity
becomes workflow’s start activity (predicate IsStartActiv):

∀ s : Sesstion; a : Activ; t : T ime |
IsStartActiv (a)
⇒ Initiates (StartWrkf (s), CurrActiv (a, s), t) (35)

3) Tasks, rôles and delegation: As said above, tasks are
associated with activities. This association is defined through
predicate IsTaskOfActiv; this predicate is defined for each
workflow being described and analysed (it is defined in
equation 49, below, for payment processing workflow).

To know whether some task can be executed in a workflow,
EC model introduces predicate IsTaskOfCurrActiv, which
indicates whether some task belongs to the current activity
of some workflow session. Next EC equation defines this
predicate; it says that some task belongs to current activity
of some session if it is a task of session’s current activity:

∀ ta : Task; s : Sesstion; t : T ime |
HoldsAt (IsTaskOfCurrActiv (ta, s), t)
⇔ (∃ a : Activ) HoldsAt (CurrActiv (a, s), t)
∧ IsTaskOfActiv (ta, a) (36)

Predicate CanDo (u, t) indicates the rôles (r) that are
allowed to execute workflow tasks (t). Certain users may del-
egate their rôles; predicate MayDelegTo (u1, u2) says that
some user (u1) is allowed to delegate his rôles to another user
(u2). Both CanDo and MayDelegTo are defined for each
workflow being described and analysed; it is described below
for payment processing workflow in equations 52 and 53.

Event DelegsTo occurs whenever a rôle delegation takes
place. Next EC equation defines this event’s pre-condition;
users delegate to others provided they are allowed to do so:

∀ u1, u2 : User; t : T ime |
Happens (DelegsTo (u1, u2), t)
⇒ MayDelegTo (u1, u2) (37)

Fluent Delegated (u1, u2) says that some user (u1) has del-
egated to another. Next EC equation says that event DelegsTo
initiates (sets to true) fluent Delegated to enable system to
keep track of rôle delegations:

∀ u1, u2 : User; t : T ime |
Initiates (DelegsTo (u1, u2), Delegated (u1, u2), t) (38)

Next EC equation defines initial condition of fluent
Delegated; initially, no rôle delegations have taken place:

∀ u1, u2 : User |
Initially (¬ Delegated (u1, u2)) (39)

To capture permissions related with delegations, next EC
equation introduces predicate CanExecAsDelegate, which
indicates whether some user can execute a task as delegate:

∀ u : User; ta : Task; t : T ime |
HoldsAt (CanExecAsDelegate (u, ta), t)
⇔ ¬ CanDo (u, ta)
∧ ((∃ u2 : User) HoldsAt (Delegated (u2, u), t)
∧ CanDo (u2, ta)) (40)

This predicate is used to define predicate HasPerm, which
indicates whether some user has the required permissions to

349

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

7

execute some workflow task; this is true if user has required
permissions to execute task with his rôle or if he has been
delegated the rôle of someone else with required permissions:

∀ u : User; ta : Task; t : T ime |
HoldsAt (HasPerm (u, ta), t)
⇔ CanDo (u, ta)
∨ HoldsAt (CanExecAsDelegate (u, ta), t) (41)

4) Task execution: Event ExecTask happens whenever
some workflow task is executed. Next EC equation defines
predicate ExecutedTaskOfActiv, which indicates whether
some user executed a task of some activity in some workflow
session:

∀ u : User; a : Activ; s : Session; t : T ime |
HoldsAt (ExecutedTaskOfActiv (u, a, s), t)
⇔ (∃ ta : Task; t2 : T ime) t2 < t
∧ Happens (ExecTask (ta, u, s), t2)
∧ HoldsAt (CurrActiv (a, s), t2)) (42)

Predicate ExecutedTaskOfActiv is used to define predi-
cate BreachesSoD, which indicates whether some user can
breach SoD in some workflow session. BreachesSoD is true
whenever some user executed some task of some activity for
which there is a SoD constraint with current activity in some
workflow session; it defined as:

∀ u : User; s : Session; t : T ime |
HoldsAt (BreachesSoD (u, s), t)
⇔ (∃ a1, a2 : Activ) HoldsAt (CurrActiv (a1, s), t)
∧ (SoD (a1, a2) ∨ SoD (a2, a1))
∧ HoldsAt (ExecutedTaskOfActiv (u, a2, s), t)) (43)

When event ExecTask happens, current activity changes to
be next activity in the workflow; this goes on until the work-
flow session finishes. There are several restrictions associated
with execution of tasks in a workflow; these are modelled
as event pre-conditions of event ExecTask: (a) the task be-
longs to the current activity (predicate IsTaskOfCurrActiv,
equation 36), that (b) the user has the required permissions
to execute the task (predicate HasPerm, equation 41), and
that (c) the execution of the task by the user does not break
separation of duties (predicate BreachesSoD, equation 43).
This is defined in EC by the equation:

∀ u : User; ta : Task; s : Session; t : T ime |
Happens (ExecTask (ta, u, s), t)
⇒ HoldsAt (IsTaskOfCurrActiv (ta, s), t)
∧ HoldsAt (HasPerm (u, ta), t)
∧ ¬ HoldsAt (BreachesSoD (u, s), t) (44)

As said above, when a task is executed the current activity
must change. This requires an EC equation defining a termi-
nates predicate to set the current activity to false if there is
a current activity. It also requires an initiates predicate to set
the current activity to the next activity of the workflow. These
are defined as:

∀ u : User; a : Activ; ta : Task;
s : Session; t : T ime |
HoldsAt (CurrActiv (a, s), t)
⇒ Terminates (ExecTask (ta, u, s),

CurrActiv(a, s), t) (45)
∀ u : User; a1, a2 : Activ; ta : Task;

s : Session; t : T ime |
HoldsAt (CurrActiv (a1, s), t)
∧ OccursBefore (a1, a2))
⇒ Initiates (ExecTask (ta, u, s),

CurrActiv (a2, s), t) (46)

5) Payment processing workflow: EC equations above de-
fine infrastructure necessary to describe workflows with SoD
constraints. The following EC equations actually define the
payment processing system workflow of Fig. 3.

We start by defining the rôles of the workflow. Rôles are
modelled as sub-sorts of sort User; and so we have User sub-
sorts Clerk and Manager. Rôle administrator is modelled as
the predicate IsAdminOf .

Next EC equation defines the tasks and activities of the
workflow:

prepPay, approvePay1, approvePay2,
F inPay : Activ (47)

tPrepPay, tApprovePay, tRefusePay, tIssuePay,
tV oidPay : Task (48)

This says that the workflow activities are those identified
in Fig. 3, prepare payment (prepPay), approve payment
(approvePay1 and approvePay2), and finalise payment
(FinPay), and that the tasks are also those of Fig. 3, prepare
pay (tPrepPay), approve payment (tApprovePay), refuse
payment (tRefusePay), issue payment (tIssuePay) and
void payment (tV oidPay).

Next equation defines the relation that exists between tasks
and activities by defining predicate IsTaskOfActiv:

∀ ta : Task; a : Activ | IsTaskOfActiv (ta, a)
⇔ (a = PrepPay ∧ ta = tPrepPay)
∨ ((a = ApprovePay1 ∨ a = ApprovePay2)
∧ (ta = tApprovePay ∨ ta = tRefusePay))
∨ (a = IssueOrV oidPay
∧ (task = tIssuePay ∨ task = tV oidPay)) (49)

This says that prepare payment activity is made of prepare
payment task, approve payment activities (ApprovePay1 and
ApprovePay2) are composed of tasks approve pay and refuse
pay, and that FinPay activity is composed of tasks issue pay
and void pay.

Next equation defines the OccursBefore predicate. It Says
that Prepay must occur before ApprovePay1, which must
occur before approvePay2, and that approvePay2 must
occur before issueOrV oidPay:

∀ a1, a2 : Activ | OccursBefore (a1, a2)
⇔ (a1 = PrepPay ∧ a2 = ApprovePay1)
∨ (a1 = approvePay1 ∧ a2 = approvePay2)
∨(a1 = approvePay2 ∧ a2 = issueOrV oidPay) (50)

Next equation defines the SoD constraints of the payment
processing workflow by defining predicate SoD. It says that
there is a SoD constraint between activities PrepPay and

350

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

8

IssueOrV oidPay, and between activities ApprovePay1 and
ApprovePay2:

∀ a1, a2 : Activ | SoD (a1, a2)
⇔ (a1 = PrepPay ∧ a2 = IssueOrV oidPay)
∨ (a1 = ApprovePay1 ∧ a2 = ApprovePay2) (51)

Next equation defines the permissions of workflow tasks by
defining predicate CanDo. Equation says that mnagers can
execute any task and that clerks can execute tasks prepare,
issue and void payments:

∀ u : User; ta : Task | CanDo (u, ta)
⇔ ((∃ ma : Manager) u = ma)
∨ ((∃ cl : Clerk) (ta = tPrepPay
∨ ta = tIssuePay ∨ ta = tV oidPay)) (52)

Next EC equation defines the delegation rule of the payment
processing workflow. It says that managers may delegate tasks
to their administrators:

∀ u1, u2 : User | MayDelegTo (u1, u2)
⇔ ((∃ ma : Manager) u1 = ma
∧ IsAdminOf (u2, u1)) (53)

A payment is issued provided both managers approve it.
Next EC equation defines predicate PayApproved, which
defines what it means for a payment to be approved:

∀ s : Session; t : T ime |
HoldsAt (PayApproved (s), t)
⇔ ((∃ u1, u2 : User; t2, t3 : T ime; ta : Task)

u1 6= u2 ∧ t2 < t ∧ t3 < t
∧ ta = tApprovePay
∧ Happens (ExecTask (ta, u1, s), t2)
∧ Happens (ExecTask (ta, u2, s), t3)) (54)

This says that a payment is approved provided task
tApprovePay has been executed at two different time-points
by two different users in context of a workflow session.

Next two EC equations define the constraints associated
with tasks tIssuePay and tV oidPay. They say that task
tIssuePay may be executed provided the payment has been
approved, and that task tV oidPay may be executed provided
it has not been approved:

∀ u : User; s : Session; t : T ime |
Happens (ExecTask (tIssuePay, u, s), t)
⇒ HoldsAt (PayApproved (s), t) (55)
∀ u : User; s : Session; t : T ime |
Happens (ExecTask (tV oidPay, u, s), t)
⇒ ¬ HoldsAt (PayApproved (s), t) (56)

This completes EC model of payment processing workflow
requirements (table III). Next section analyses this model.

B. Model Analysis

Analysis is conducted in a configuration made of three
managers, Bob, John and Martin, and three clerks Sam, Alice
and Sue; Sue also works as an administrator for John. This is
defined in EC as:

bob, john, martin : Manager (57)
alice, sam, sue : Clerk (58)
∀ u1, u2 : User | IsAdminOf (u1, u2)
⇔ u1 = sue ∧ u2 = john (59)

Analysis starts with a security violation goal to know if it
is possible to reach a state where SoD is breached. Next EC
equation defines what it means to breach SoD; that is, a user
executed tasks belonging to activities constrained under SoD:

∀ u : User; s : Session; t : T ime |
HoldsAt (BreachedSoD (u, s), t)
⇔ ((∃ a1, a2) a1 6= a2

∧ HoldsAt (ExecutedTaskOfActiv (u, a1, s), t)
∧ HoldsAt (ExecutedTaskOfActiv (u, a2, s), t)
∧ (SoD (a1, a2) ∨ SoD (a2, a1))) (60)

This predicate is used to formulate the goal:

∃ u : User; s : Session; t : T ime |
HoldsAt (BreachedSoD (u, s), t) (AG4)

For this goal, decreasoner does not find any plans. This
means that it is not possible to reach a state where SoD is
breached. Again, one could argue that SoD is preserved and
the system is secure, but it isn’t so.

Analysis proceeds by investigating the suspicious space.
Although a user is allowed to execute more than one task in
some workflow session, this should not happen very often and
is suspicious. The idea is to explore this somehow suspicious
or abnormal situation in order to find clues that help in finding
security vulnerabilities. First, we define a predicate describing
the suspicious system condition of having a user executing
two tasks in a workflow session:

∀ u : User; s : Session; t : T ime |
HoldsAt (ExecutedTwoTasks (u, s), t)
⇔ ∃ ta1, ta2 : Task; t2, t3 : T ime |
∧ Happens (ExecTask (ta1, u, s), t2)
∧ Happens (ExecTask (ta2, u, s), t3)
∧ ta1 6= ta2 ∧ t2 ≤ t ∧ t3 ≤ t (61)

Since we are interested in scenarios involving com-
plete workflow runs, next EC equation defines predicate
IsWrkfComplete, which says whether some workflow ses-
sion is complete or not:

∀ s : Session; t : T ime |
HoldsAt (IsWrkfComplete (s), t)
⇔ HoldsAt (Started (s), t)
∧¬ ((∃ a : Activ) HoldsAt (CurrActiv(a, s), t)) (62)

From these two predicates, we define the suspicious goal
by describing states where some user executes two different
tasks in some workflow run:

∃ u : User; s : Session; t : T ime |
HoldsAt (IsWrkfComplete (s), t)
∧HoldsAt (ExecutedTwoTasks (u, s), t) (AG5)

For this goal, decreasoner generates interesting plans. We
have scenarios where a manager prepares the payment and then
approves it, or that he approves and then issues the payment.
This happens because managers may act as clerks and there is
no SoD constraint between tasks that managers do and clerks
do. As this may give a fraud opportunity, it is important to
clarify the requirements regarding this issue.

351

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

9

R6’ Managers can delegate authority on approval of refunds to one
of their administrators, but when administrators executes such
tasks system should consider that they have been executed on
behalf of manager and are is manager had executed them.

R7 The same person may perform tasks as either manager or
clerk, but not both, in any workflow session.

TABLE IV
REQUIREMENTS RULING THE PROCESSING OF TAX REFUNDS THAT

EMERGED AFTER ANALYSIS.

C. Clarifying the requirements
Clarification of the issue exposed by the analysis results in

new requirement R7 (table IV), which says that a person can
execute tasks under at most one rôle in any workflow session.
To take this new requirement into account, EC model intro-
duces predicate RolesRequiredDiffer, which says which
workflow tasks require different rôles to execute them. This
predicate is defined for workflow of payment processing as:
∀ ta1, ta2 : Task |

RolesRequiredDiffer (ta1, ta2)
⇔ (ta1 = tPrepPay ∨ ta1 = tIssuePay
∨ ta1 = tV oidPay)
∧ (ta2 = tApprovePay ∨ ta2 = tRefusePay) (63)

This predicate says that the roles required for tasks
tPrepPay, tIssuePay and tV oidPay is different for those
of tasks tApprovePay and tRefusePay.

Predicate RolesRequiredDiffer is used to state the re-
quired requirement by constraining event ExecTask. Next
EC equation describes this constraint by saying that if some
user executes two different tasks then roles required to execute
them must not differ:

∀ u : User; s : Session; ta1, ta2 : Task;
t1, t2 : T ime |

Happens (ExecTask (ta1, u, s), t1)
∧ Happens (ExecTask (ta2, u, s), t2)
∧ ta1 6= ta2

⇒ ¬ RolesRequiredDiffer (ta1, ta2) (64)

D. Re-Analysing the model
After the fix, the vulnerability identified above that that

could give a fraud opportunity is no longer allowed. We re-
submit the analysis goal above and decreasoner no longer
generates scenarios with those possible fraudulent behaviours.

Analysis turns to delegation, which is known to generate
security vulnerabilities. Someone executing a task on behalf
of someone is legal but suspicious and deserves investigation.
Again, the idea is too look in behaviours involving delegation
for clues on possible system vulnerabilities. We introduce a
predicate to say whether some user executed some task as
delegate; next two EC equations define this predicate:
∀ u : User; ta : Task; s : Session; t : T ime |

HoldsAt (DelegExecutedFor (u, ta, s), t)
⇔ ((∃ t2 : T ime) t2 < t
∧ DelegExecutedForAt (u, ta, s, t2)) (65)

∀ u : User; ta : Task; s : Session; t : T ime |
DelegExecutedForAt (u, ta, s, t)
⇔ ((∃ u2 : User)

Happens (ExecTask (ta, u2, s), t)
∧ HoldsAt (Delegated (u, u2), t)
∧ HoldsAt (CanExecAsDelegate (u2, ta), t)) (66)

Above, predicate DelegExecutedFor says whether some
task was executed by delegate for some user. This is defined
from predicate DelegExecutedForAt, which says whether
some user executed the task as delegate.

Goal is defined from DelegateExecutedFor by describing
states of complete workflow runs where someone executes a
task on behalf of someone else. This results in the goal:

∃ u : User; ta, : Task; s : Session; t : Time |
HoldsAt (IsWrkfComplete (s), t)
∧ HoldsAt (DelegExecutedFor (u, ta, s), t) (AG6)

Plans generated by decreasoner result in what is normally
expected under delegation (someone executes a task on behalf
of someone else), but they also result in plans that may be
possible frauds: a delegate approves a payment on behalf of
the manager and the same manager also approves the same
payment.

E. Clarifying and elaborating the requirements

From this, we elaborate the requirements, and we get R6′

(table IV) an elaboration of requirement R6. This says that
system must consider tasks executed by administrators acting
as delegates as if they had been executed by the managers
themselves.

To accommodate this new requirement, we introduce the
predicate ExecutedTask, which indicates whether some user
executed some task, either directly or indirectly through a
delegate. This is defined as:

∀ u : User; ta : Task; s : Session; t : Time |
HoldsAt (ExecutedTask (u, ta, s), t)
⇔ (∃ t2 : Time) t2 < t
∧ ExecutedTaskAt (u, ta, s, t2)) (67)

∀ u : User; ta : Task; s : Session; t : Time |
ExecutedTaskAt (u, ta, s, t)
⇔ Happens (ExecTask (ta, u, s), t)
∨ DelegExecutedForAt (u, ta, s, t) (68)

Predicate ExecutedTask defined above is used to redefine
predicate ’ExecutedTaskOfActiv’ equation 42). New formula-
tion of this predicate is defined by EC equation:

∀ u : User; a : Activ; s : Session; t : Time |
HoldsAt (ExecutedTaskOfActiv (u, a, s), t)
⇔ (∃ ta : Task; t2 : Time) t2 < t
∧ HoldsAt (ExecutedTask (u, ta, s), t2)
∧ HoldsAt (CurrActiv (a, s), t2)) (42′)

In this revised EC model, the possible fraudulent behaviour
identified above is no longer allowed.

VI. EXPERIMENTAL RESULTS

In both experiments presented above, formal analysis ver-
ified a straightforward safety security property, which could
mislead analysts in concluding that an unsecure state would
not be reached in the modelled system. However, suspicion-
based analysis demonstrated that the modelled systems were
in fact not secure.

Section IV analyses a simple medical information system
that includes a confidentiality requirement. Following the

352

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

10

Case Study Anaysis Goal Time
SMIS Security Violation (AG1) 3.6s
SMIS Suspicion goal 1 (AG2) 4.9s
SMIS Suspicion goal 2 (AG3) 12.6s
SMIS Security Violation (AG1), after fix 14.s
SMIS Suspicion goal 1 (AG2), after fix 15.8s
SMIS Suspicion goal 2 (AG3), after fix 21.1s
Workflow Security violation (AG4) 235.9s (3.9m)
Workflow Suspicion goal 1 (AG5) 600.7s (10.0m)
Workflow Suspicion goal 1, after fix (AG5) 476.9s (7.9m)
Workflow Suspicion goal 2 (AG6) 619.2s (10.3m)
Workflow Suspicion goal 2 (AG6), after fix 611.11s (10.2m)

TABLE V
RUNNING TIMES FOR ANALYSIS OF EC MODELS WITH decreasoner. TABLE
INDICATES CASE STUDY, ANALYSIS GOAL AND TIME TAKEN TO GENERATE

PLANS.

traditional route of safety analysis, it was not possible to
find ways in which confidentiality would be compromised:
without a valid credential it would not be possible to obtain
the patient’s medical data. Analysis based on suspicion then
uncovered a security vulnerability (or loophole) that would
enable a malicious user to obtain the required credentials in a
non-legal way.

Section V analyses a business process whose security
requirements included two integrity requirements enforced
through SoD. Again, SoD could be breached, but not in
an obvious way. Following the traditional safety analysis
route, we checked that it was not possible that the same
user would be able to execute two different tasks protected
by SoD. Analysis-based on suspicion, however, uncovered
several problems: the same user could execute different tasks
in a workflow session under different roles, and delegation
introduced a loophole that would enable users to indirectly
breach SoD.

Table V presents the running times of the formal analysis
based on planning with decreasoner3. For each case study, it
shows how much time it took to carry out the analysis for each
analysis goal. We can see that the analysis of the workflow
model of section V takes substantially longer than SMIS model
because it is more complex.

VII. DISCUSSION

This paper proposes suspicion as a concept driving the anal-
ysis of security requirements. Through experiments, it argues
that, from a practical point of view, in security the interesting
question is not only to verify the in-existence of a state
compromising some security property (safety), but also to look
for what is suspicious in order to find security vulnerabilities
and threats. The experiments conducted in the context of the
EC temporal logic, planning and the decreasoner tool. They
demonstrate the usefulness of suspicion. The traditional safety
analysis route, which checks whether some security property
is violated, would not expose any security issues; this can
mislead analysts in concluding that the system being analysed
is secure. Analysis based on suspicion uncovered security

3Model analysis carried out on an Apple iMac, with a 2.93 Ghz Intel Core
2 Duo processor and 4GB memory RAM.

vulnerabilities and threats; such findings drive elaboration of
the requirements.

One of the advantages of the approach presented here is
that security threats can be derived directly from a model of
requirements. The analysis that does not need prior knowledge
about possible attacks to the modelled system, and so no
need to enrich the model with attacker or intruder models.
Instead, using the suspicion-based approach proposed here, it
is possible to derive threats from a requirements model by
posing the model questions based on what is suspicious.

All the vulnerabilities exposed by suspicion-based analysis
are related with delegation or passing of capabilities, which
are known in security as non-interference properties [18]. The
formulation and verification of such properties have proved
to be far from trivial [4]. The analysis conducted in this
paper confirms that delegation can be trick and hard to get
right. Suspicion-based analysis helped in identifying security
problems with delegation, and in elaborating the security
requirements in order to eliminate such problems. The paper
also shows that proof of a straightforward safety property
related with security does not deem a system secure. Often, as
shown in this paper, the secure question is more involved and
requires more in-depth knowledge of the requirements. As this
paper shows, it can be more revealing to analyse the system in
order to explore the consequences of the requirements, which
leads to a better understanding of the security needs and issues
of the modelled system, rather than trying to prove that a
system is secure. For the delegation-related issues explored in
these two experiments, such proofs are far from trivial.

The approach presented here generates automatically possi-
ble scenarios of misuse (threats) from a statement describing
some security violation or suspicious condition (the goal). This
provides a flexible and illuminating scheme to the analysis of
security requirements. Rather then finding themselves possible
threats, analysts describe instead what would constitute a
violation of security or a suspicious system condition. Analysis
goals require an understanding of the requirements domain,
and should be described with some security asset in mind.

The security vulnerabilities exposed by the analysis illus-
trate the sort of vulnerabilities that attackers exploit to intrude
into today’s software systems. The vulnerabilities identified
in the health-care system give insiders the opportunity to
perpetrates attacks on the system; the insider threat has
been identified as one of the main sources of attacks in the
medical domain [15]. Once a source of threats is identified
in the requirements, two decisions can be made: (a) introduce
further constraints by elaborating the requirements so that the
source of threats is eliminated, or (b) do nothing in terms
of requirements, but take the problem into account in terms
of run-time intrusion and threat detection which then has to
judge whether some uses of the system are malicious or not.
The latter must be considered because it is not possible to
eliminate all possible security threats; doing so could result
in a system design that is rigid and over-constrained. The
approach presented here enables the detection of threats or
vulnerabilities in the system, which also constitutes valuable
information for run-time intrusion and threat detection.

The experiments conducted here confirm the importance

353

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

11

of modelling and analysing security together with system
requirements. Both case studies show how a functionality
of the system, delegation, have a serious impact on security
and how it was necessary to further elicit and elaborate the
requirements in order to eliminate threats.

Formal security analysis with tool support is capable of
exposing many unexpected situations, providing a level of
assurance not guaranteed by semi-formal approaches. The
drawback of the analysis with decreasoner lies in the effi-
ciency of the tool: as models get more complex, the solution to
analysis problems take more time to the point that the analysis
becomes unpractical. The workflow model of section V is a
simplification of an earlier model to enable practical analysis.
As usual, the secret is in getting the right abstraction in order
to analyse the property of interest.

It is interesting to comment on the usability of the approach
presented here. The process of defining analysis goals may
require domain knowledge and skill in building and analysing
models. However, the process can be partially or fully au-
tomated by following the pattern-based approach proposed
of [19], which uses the Formal Template Language [20],
[21] to represent patterns of EC models together with their
associated security monitoring goals. [19] defines templates
security violation goals, but patterns of suspicious goals can
also be defined if we know in advance what can arouse
suspicion. In our experiments, delegation was the focus of
our suspicious goals; this is something that can be known in
advance and captured using patterns. Following [19], we can
have goals that capture what is known to arouse suspicion;
actual suspicious goals would then be automatically generated
from templates. [19] also uses UML models to enable intuitive
requirements modelling; the same approach can also be used
to enhance the usability of the approach proposed here.

VIII. RELATED WORK

This paper is a revised and extended version of the work
presented in [22]. It shows in detail the EC models that are
used to illustrate the analysis based on suspicion with EC,
and provides a more in-depth discussion on the verification of
security properties, such as the one explored in the paper.

The results of this paper argue against ironclad proofs of
security and how one needs to be careful in interpreting formal
demonstrations of security properties. This theme is not new;
in [23], McLean refutes what used to be a widely held belief:
that the security model of Bell and LaPadula [24] and its
basic security theorem would capture the essence of security
and that implementations following it would be secure4. This
refutation was done by stating a similar theorem for a model
that is clearly not secure. Both experiments of this paper
demonstrated that the modelled system would not breach a
straightforward safety property of security (confidentiality and
separation of duty), and how that could mislead analysts in
concluding that the system was secure. However, more flexible
means of analysis exposed vulnerabilities showing that the
systems being analysed were in fact not secure; the paper

4This was not claimed by the authors of [24], but others that interpreted
their work believed that that was the case.

suggests analysis lead by what is suspicious in order to find
security vulnerabilities in models of requirements.

The case studies used in this paper illustrate behaviours
that are usually tricky to be verified using safety or liveness
arguments. Most vulnerabilities identified in sections IV and V
are related to delegation, which has traditionally proved to
be tricky; [18] introduces non-interferance, a confidentiality
policy that deals with delegation-based functionality. The
verification of non-interference is far from trivial, and requires
a simplified model of a system that is difficult to obtain when
modelling requirements. Such behaviours or properties have
also been termed possibilistic [7] and it is known that certain
security policies cannot be expressed using safety or liveness
properties represented as sets of traces [7], [8]. It is also known
that, in general, non-interferance policies cannot be expressed
as safety or liveness properties [8]. In [8], the authors propose
hyperproperties, which are defined as sets of properties (sets
of sets of traces), to represent what is not normally captured
with traditional properties. This paper provides a pragmatic
approach to formally find security vulnerabilities involving
delegation in models of security requirements.

There has been substantial interest on security requirements
threat analysis [25], [3], [26], [27]. In [26], [27], specifiers
need to explicitly identify scenarios or use-cases of abuse and
misuse; here, such scenarios are generated automatically from
a description of suspicious states (the goal).

[25] proposes a method based on the more flexible abuse
frames, specifying undesirable phenomena that the system
should prevent from happening. The approach presented here
enables the specification of such undesirable phenomena as
goals (here called security violation goals). However, it does
not only consider what should not happen, but also considers
specification of flexible suspicious conditions that (as shown
here) have the potential of exposing unnown threats.

[3] proposes a goal-based method that is similar to the
approach presented here. Security goals, such as confidential-
ity, integrity and availability, are negated to obtain goals that
specify what should not happen (our security violation goals).
Then, these negations are refined to obtain more flexible goals.
The approach presented here is more flexible in that it does
not only allow specification of goals that come from negation
and refinement security goals, but also leaves the specifier the
flexibility of defining what constitutes a suspicious condition.
Since it is based on tool support, the specifier can use the
feedback coming from the tool to either refine existing analysis
goals or specify entirely new ones. Essentially, the work
presented here is complementary to the body of work on
security requirements threat analysis. It explores automated
formal analysis (missing in the works above) and provides
experimental evidence to the usefulness and effectiveness of
security threat analysis.

Suspicion is ubiquitous in intrusion detection [9]. Anomaly-
based approaches to intrusion detection [9] are so called
because the search for intrusions is driven by abnormal (or
suspicious) behaviour patterns of system use. [28] proposes
the inclusion of suspicion as a concept driving the models of
misuse-based intrusion detection; it proposes models based on
suspicious activities that may lead to an attack, as opposed

354

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

12

to models based on actual attacks. Instead, the approach
presented here detects abuse by identifying suspicious states
in a model of normal system behaviour.

The approach presented here emerges from its preceding
work on threat detection [19]. [19] uses an EC model of
requirements and planning to find threats at run-time. In [19],
however, the goals used to detect threats are more rigid than
the ones used here; they say with absolute certainty whether
there is an attack or not when the goal is satisfied. In the
approach presented here, there is no certainty of attack if
a suspicious goal is satisfied, the plans that reach the goal
just give us threats (possible attacks). It would be possible
to incorporate our approach based on suspicion as a strategy
in looking for threats at run-time. Then, the probabilistic
component of such a system (like the one of [19]) would try
to assign a probability to the computed threats. Here we use
suspicion to look for threats in requirements to avoid systems
with security vulnerabilities.

The approach presented here analyses requirements auto-
matically using a tool based on SAT-solving. The advantage
of this method with respect to other approaches based on
theorem-proving [29], [21] is that the reasoning is automatic,
avoiding the need for user-intervation as it is usually the
case with theorem proving. The disadvantages are that only
a portion of the state space is analysed, and that the models
that can be handled need to be small; this problem can be
mitigated by using abstraction to produce smaller models
enabling analysis of property of interest. Another disadvantage
to the work in [29], [21] is that there is no visual description
of requirements and properties to check; the user needs to be
an expert in the formal language (here EC).

IX. CONCLUSIONS

This paper proposes a practical approach to the formal
analysis of security requirements based on planning guided
by the concept of suspicion. One of the advantages of the
approach presented here is that threats can be detected directly
from a requirements model, where no prior knowledge about
possible attacks is needed to perform the analysis. Instead,
the analysis derives threats automatically by posing the model
questions based on what is suspicious. The approach was illus-
trated using the EC and the decreasoner tool by performing
two experiments: one involving a simple health-care system
with a confidentiality requirement and another a business
system with an integrity requirement enforced through SoD.
It showed that the more obvious way of analysing security,
by doing the traditional safety verification would not give any
useful results: following this path analysts could be mislead
in concluding that an unsecure state could not be reached.
However, it was through more flexible analysis based on
suspicion that we could obtain useful results exposing subtle
security vulnerabilities.

The main contributions of this paper are: (a) the proposal
of suspicion as a driving concept in the analysis of security
requirements, and (b) the experimental confirmation that, from
a practical point of view, it is important to use flexible criteria
for the security analysis in order to find vulnerabilities in

system requirements (suspicion was proposed as basis for such
criteria). The paper also provides experimental evidence to
certain claims made in the security requirements literature: (a)
it confirmed that it is important to model security requirements
together with other functional requirements because function-
ality impacts on security; (c) it confirmed the existence of
security relevant phenomena that is hard or impossible to
capture as safety or liveness properties; and (d) demonstrated
the importance of formality and tool support and usefulness
of automated reachability analysis of requirements.

REFERENCES

[1] P. T. Devanbu and S. Stubblebine, “Software engineering for security:
A roadmap,” in The Future of Software Engineering. ACM, 2000, pp.
227–239.

[2] B. W. Boehm, “Software engineering,” IEEE Transactions on Comput-
ers, pp. 1266–1241, 1976.

[3] A. van Lamsweerde, “Elaborating security requirements by construction
of intentional anti-models,” in Proc. ICSE’04, 2004, pp. 148–157.

[4] J. Rushby, “Security requireemnts specifications: How and what? (ex-
tended abstract),” in Symp. on Requirements Engineering for information
security, 2001.

[5] L. Lamport, “Proving the correctness of multiprocess programs,” IEEE
Trans. on Software Engineering, vol. 3, no. 2, pp. 125–143, 1977.

[6] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,”
Distributed Computing, vol. 2, pp. 117–126, 1987.

[7] J. McLean, “A general theory of composition for a class of “possibilistic”
properties,” IEEE Trans. on Software Engineering, vol. 22, no. 1, pp.
53–66, 1996.

[8] M. R. Clarkson and F. B. Schneider, “Hyperproperties,” in Computer
Security Foundations Symposium. IEEE, 2008.

[9] D. Denning, “An intrusion detection model,” IEEE Trans. on Software
Engineering, vol. 13, no. 2, pp. 222–232, 1987.

[10] M. Shanahan, “The event calculus explained,” in Artificial Intelligence
Today, ser. LNCS. Springer, 1999, vol. 1600, pp. 409–430.

[11] E. T. Mueller, “Automating commonsense reasoning using the event
calculus,” Communications of the ACM, vol. 52, no. 1, pp. 113–117,
2009.

[12] J. Allen, J. Hendler, and A. Tate, Eds., Readings in planning. Morgan
Kaufmann, 1990.

[13] E. T. Muller, “Event calculus reasoning through satisfiability,” Journal
of Logic and Computation, vol. 14, no. 5, pp. 703–730, 2004.

[14] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT Press,
1999.

[15] R. J. Anderson, “A security policy model for clinical information
systems,” in Proc. of SP ’96. IEEE, 1996.

[16] D. D. Clark and D. R. Wilson, “A comparison of commercial and
military computer security policies,” in Proc. IEEE Symp. Research in
Security and Privacy, 1987, pp. 184–194.

[17] M. J. Nash and K. R. Poland, “Some conundrums concerning separation
of duty,” in Proc. IEEE Symp. Research in Security and Privacy, 1990,
pp. 201–207.

[18] J. A. Goguen and J. Mesenguer, “Security policies and security models,”
in IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[19] N. Amálio and G. Spanoudakis, “From monitoring templates to security
monitoring and threat detection,” in Proc. of SECURWARE ’08. IEEE,
2008, pp. 185–192.

[20] N. Amálio, S. Stepney, and F. Polack, “A formal template language
enabling meta-proof,” in FM 2006, ser. LNCS, vol. 4085. Springer,
2006, pp. 252–267.

[21] N. Amálio, “Generative frameworks for rigorous model-driven devel-
opment,” Ph.D. dissertation, Dept. Computer Science, Univ. of York,
2007.

[22] ——, “Suspicion-driven formal analysis of security requirements,” in
SECURWARE’2009. IEEE, 2009, pp. 217–223.

[23] J. McLean, “A comment on the “basic security theorem” of bell and
lapadula,” Information Processing Letters, vol. 20, pp. 67–70, 1985.

[24] D. E. Bell and L. J. Padula, “Secure computer systems: a mathematical
model,” Mitre Corporation, Bedford, MA, Tech. Rep. MTR-2547 Vol.
II, 1996.

[25] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson, “Using abuse frames to
bound the scope of security problems,” in Proc. RE ’04. IEEE, 2004,
pp. 354–355.

355

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

13

[26] I. Alexander, “Misuse cases: Use cases with hostile intent,” IEEE
Software, vol. 20, no. 1, pp. 58–66, 2003.

[27] J. McDermott and C. Fox, “Using abuse case models for security require-
ments analysis,” in Annual computer security applications conference.
IEEE, 1999.

[28] T. Hollebeek and R. Waltzman, “The role of suspicion in model-based
intrusion detection,” in Proc. of NSPW ’04. ACM, 2004, pp. 87–94.

[29] N. Amálio, S. Stepney, and F. Polack, “Formal proof from UML
models,” in Proc. ICFEM 2004, ser. LNCS, vol. 3308. Springer, 2004,
pp. 418–433.

APPENDIX

A. Sample outputs of decreasoner

This appendix presents sample outputs generated by the
decreasoner tool, while carrying out the model analysis pre-
sented in this paper.

1) Security Violation Goal (AG1): The output generated
by decreasoner for the security violation goal (AG1) of sec-
tion IV-B is:

no models found

This means that decreasoner could not find any solutions
for the analysis goal.

2) Suspicion Goal 1 (AG2): The following output of de-
creasoner shows one sample solution for the security violation
goal (AG1) of section IV-B is:

−−−
model 1 :
0
CanAccessMD (Jones , Anderson) .
I s D o c t o r O f (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 0) .
1
+ Credent ia lMD (Jones , Anderson , 0) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (SetDoctorOnLeave (Smith , J o n e s) , 1) .
2
+OnLeave (J o n e s) .
Happens (S e t S u b s t i t u t e D o c t o r (Smith , Jones ,
Smith) , 2) .
3
+CanAccessMD (Smith , Anderson) .
+ I s S u b s t i t u t e D o c t o r (Smith , J o n e s) .
Happens (A u t h o r i s e A c c e s s (Smith , Anderson) , 3) .
4
−H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
+ Credent ia lMD (Smith , Anderson , 3) .
+ H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 4) .
5
+ Credent ia lMD (Jones , Anderson , 4) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 5) .
6
+ Credent ia lMD (Jones , Anderson , 5) .
Happens (GetMD(Smith , Anderson) , 6) .
7
−H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
+ExposedToAt (Smith , Anderson , 6) .
+ G o a l S a t i s f i e d () .

The sample above says that event
AuthoriseAccess (Jones, Anderson) happens at timepoint
0, and that SetDoctorOnLeave (Smith, Jones) happens
at timepoint 1. The analysis goal is satisfied by event
GetMD(Smith,Anderson) that happens at timepoint 6.

The remaining 4 sample solutions generated by decreasoner
for analysis goal AG2 are as follows:

−−−
model 2 :
0
CanAccessMD (Jones , Anderson) .
I s D o c t o r O f (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 0) .
1
+ Credent ia lMD (Jones , Anderson , 0) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (SetDoctorOnLeave (Smith , J o n e s) , 1) .
2
+OnLeave (J o n e s) .
Happens (S e t S u b s t i t u t e D o c t o r (Jones , Jones ,
Smith) , 2) .
3
+CanAccessMD (Smith , Anderson) .
+ I s S u b s t i t u t e D o c t o r (Smith , J o n e s) .
Happens (A u t h o r i s e A c c e s s (Smith , Anderson) , 3) .
4
−H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
+ Credent ia lMD (Smith , Anderson , 3) .
+ H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 4) .
5
+ Credent ia lMD (Jones , Anderson , 4) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 5) .
6
+ Credent ia lMD (Jones , Anderson , 5) .
Happens (GetMD(Smith , Anderson) , 6) .
7
−H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
+ExposedToAt (Smith , Anderson , 6) .
+ G o a l S a t i s f i e d () .
−−−
model 3 :
0
CanAccessMD (Jones , Anderson) .
I s D o c t o r O f (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 0) .
1
+ Credent ia lMD (Jones , Anderson , 0) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (SetDoctorOnLeave (Jones , J o n e s) , 1) .
2
+OnLeave (J o n e s) .
Happens (S e t S u b s t i t u t e D o c t o r (Jones , Jones ,
Smith) , 2) .
3
+CanAccessMD (Smith , Anderson) .
+ I s S u b s t i t u t e D o c t o r (Smith , J o n e s) .
Happens (A u t h o r i s e A c c e s s (Smith , Anderson) , 3) .
4
−H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
+ Credent ia lMD (Smith , Anderson , 3) .
+ H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 4) .
5
+ Credent ia lMD (Jones , Anderson , 4) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) ,
5) .
6
+ Credent ia lMD (Jones , Anderson , 5) .
Happens (GetMD(Smith , Anderson) , 6) .
7

356

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

14

−H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
+ExposedToAt (Smith , Anderson , 6) .
+ G o a l S a t i s f i e d () .
−−−
model 4 :
0
CanAccessMD (Jones , Anderson) .
I s D o c t o r O f (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 0) .
1
+ Credent ia lMD (Jones , Anderson , 0) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (SetDoctorOnLeave (Jones , J o n e s) , 1) .
2
+OnLeave (J o n e s) .
Happens (S e t S u b s t i t u t e D o c t o r (Smith , Jones ,
Smith) , 2) .
3
+CanAccessMD (Smith , Anderson) .
+ I s S u b s t i t u t e D o c t o r (Smith , J o n e s) .
Happens (A u t h o r i s e A c c e s s (Smith , Anderson) , 3) .
4
−H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
+ Credent ia lMD (Smith , Anderson , 3) .
+ H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 4) .
5
+ Credent ia lMD (Jones , Anderson , 4) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 5) .
6
+ Credent ia lMD (Jones , Anderson , 5) .
Happens (GetMD(Smith , Anderson) , 6) .
7
−H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
+ExposedToAt (Smith , Anderson , 6) .
+ G o a l S a t i s f i e d () .
−−−
model 5 :
0
CanAccessMD (Jones , Anderson) .
I s D o c t o r O f (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 0) .
1
+ Credent ia lMD (Jones , Anderson , 0) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (S e t S u b s t i t u t e D o c t o r (Jones , Jones ,
Smith) , 1) .
2
+ I s S u b s t i t u t e D o c t o r (Smith , J o n e s) .
Happens (SetDoctorOnLeave (Jones , J o n e s) , 2) .
3
+CanAccessMD (Smith , Anderson) .
+OnLeave (J o n e s) .
Happens (A u t h o r i s e A c c e s s (Smith , Anderson) , 3) .
4
−H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
+ Credent ia lMD (Smith , Anderson , 3) .
+ H a s V a l i d C r e d e n t i a l (Smith , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 4) .
5
+ Credent ia lMD (Jones , Anderson , 4) .
+ H a s V a l i d C r e d e n t i a l (Jones , Anderson) .
Happens (A u t h o r i s e A c c e s s (Jones , Anderson) , 5) .
6
+ Credent ia lMD (Jones , Anderson , 5) .
Happens (GetMD(Smith , Anderson) , 6) .
7
−H a s V a l i d C r e d e n t i a l (Smith , Anderson) .

+ExposedToAt (Smith , Anderson , 6) .
+ G o a l S a t i s f i e d () .

357

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Development of Measurable Security for a Distributed Messaging System

Reijo M. Savola
VTT Technical Research Centre of Finland

Oulu, Finland
E-mail: Reijo.Savola@vtt.fi

Habtamu Abie
Norwegian Computing Center

Oslo, Norway
E-mail: Habtamu.Abie@nr.no

Abstract—Systematically developed security metrics make it
possible to gather sufficient and credible security evidence for
runtime adaptive security management and off-line security
engineering and management. This study introduces and
analyzes security metrics and parameter dependencies for one
particular distributed messaging system. The focus is on the
effectiveness and correctness of security-enforcing
mechanisms. The security metrics development approach that
the study utilizes is risk-driven, requirement-centric, and
integrated with the development of Quality-of-Service metrics.
In this approach, the security requirements are expressed in
terms of lower-level measurable components by applying a
decomposition approach. Security metrics are then developed
based on the leaf components of the decomposition. The paper
also analyzes the benefits and shortcomings of the metrics
development approach and introduces a trust, confidence and
trustworthiness calculation model for basic measurable
components of the decomposition.

Keywords-security metrics; security indicators; security
strength; security requirements; messaging systems

I. INTRODUCTION
In order to obtain sufficient and credible evidence of the

security performance of a system, service or product, a
systematic approach to measuring security is required.
Systematic definition of security metrics is a young field that
still lacks widely accepted approaches, mainly because the
current practice of security is still a highly diverse field.

This study’s primary contribution is that it analyzes and
defines an initial collection of security metrics and parameter
dependencies for the security-enforcing mechanisms of one
particular system that was used as an example, using the
development method introduced in earlier work [1]. The
paper also analyzes the benefits and shortcomings of the
development method used in the study, and introduces a
framework for calculating trust, confidence and
trustworthiness of security metrics. This study advances the
state of the art in security metrics in practical and concrete
measurement methods, in measurable components, and in
semi-formal models of security measurement and metrics.
The scope of the study did not include formal modeling and
validation of the defined metrics.

At a high level, the objectives measured by security
metrics can be classified into three groups: security
correctness, effectiveness and efficiency [2]. The discussions
on metrics in this paper concentrate on the effectiveness and
correctness of security-enforcing mechanisms, although it

also discusses efficiency. The Security Metrics Objectives
Segments (SMOS) model for the taxonomization of security
metrics [2] classifies the main viewpoints of the metrics of
the System under Investigation (SuI) into three categories: (i)
security-enforcing mechanisms, (ii) the security quality of
the system, and (iii) secure system lifecycle, project and
business management. This study focuses on the first
category: security-enforcing mechanisms. It should be noted
that, from the point of view of the security metrics
completeness for the target system, metrics are also required
for the other two categories. The goal of this study was to
provide extensive identification and high-level definition of
metrics for security-enforcing mechanisms, while also being
selective in the details thereof.

The study investigated security metrics, and how they
were developed in an example system called GEMOM
(Genetic Message Oriented Secure Middleware) [3].
GEMOM has been developed in the GEMOM EU FP7 ICT
project, which focuses on security measurability, adaptive
security, and the resilience of complex, distributed
information systems. Security solutions with varying
strength levels are required in resilient and distributed
business-critical systems such as GEMOM so that they can
manage security in an adaptive way according to the needs
of varying situations. In adaptive security management,
security metrics provide the means with which score
different solutions during the system’s operation. For
instance, different authentication and authorization
mechanisms can be utilized based on metrics. In addition,
metrics are used off-line during Research and Development
(R&D) and when the system configuration is changed.

This paper is organized as follows. Section II provides an
introduction to security metrics. Section III presents the
security metrics development process that was originally
introduced in the earlier work of the authors of this paper,
and analyzes its benefits and challenges. Section IV briefly
introduces the GEMOM system and its monitoring approach;
then Section V discusses GEMOM security threats and
security requirements. Section VI identifies Basic
Measurable Components (BMCs) for the effectiveness and
correctness of security-enforcing mechanisms in GEMOM
and proposes an initial collection of metrics and parameter
dependencies. Section VII presents some observations from
the study and discusses the feasibility and potential research
directions of security metrics. Section VIII discusses related
work and Section IX offers concluding remarks and poses
some questions for future research.

358

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

II. SECURITY METRICS, SECURITY INDICATORS AND
SECURITY STRENGTH

It is often claimed that an activity cannot be managed
well if it cannot be measured. System developers, managers,
and security assurance personnel, as well as automated
security monitoring approaches, require sufficient and
credible evidence that the SuI implements the intended
security level or performance. An improvement in the value
of a measurement result makes it more likely that the related
objective or sub-objective will be met. The term metrics, as
used in the context of Information Technology (IT), is
misleading because it implies that traditional concepts in
metrology, as used in physics and other areas of science and
technology, apply equally to IT [4]. There are unknown
multi-disciplinary dependencies in IT, as well as doubts and
often subjective judgments about technical maturity due to
the novelty of applications and other technical solutions.
Terms such as security indicators or security strength might
be more appropriate in the case of security related objectives.
The term security strength has traditionally been used among
cryptographers and has only recently been used in reference
to more general security concepts. This study uses the term
security metrics, while recognizing the imperfections of the
term.

A. Metrics and Measurements
Measurement is the process by which numbers or

symbols are assigned to attributes of real world entities in
such a way that describes them according to clearly defined
rules [5]. In general, measurements provide single-point-in-
time views of specific, discrete factors, while metrics are
derived by comparing two or more measurements taken over
time with a predetermined baseline [6].

B. Use of Metrics
Security metrics can be used for decision support,

particularly in assessment, monitoring, and prediction.
Security measurement targets can include a technical system,
service, or product, or an organization, its processes, and
resources [7]. Some of the ways in which security metrics
can be used include [8]:
• Risk management activities for mitigating security

risks,
• Comparison of security-enforcing mechanisms or

solutions,
• Obtaining information about the security posture of

an organization, process, or product,
• Security assurance (analysis, testing, monitoring) of

a product, organization, or process,
• Security testing (functional, red team and penetration

testing) of a system,
• Certification and evaluation of a product or

organization,
• Adaptive security monitoring and management

during system operation, and
• Intrusion detection and prevention in a system.

The intended use and target audience influences the
security metrics requirements. Complex metrics structures
with various metrics and sub-metrics can be used in
automatic calculations and decision-making. However, if the
goal is to develop security metrics for a human audience,
such as a company’s senior management in a company, it is
important to visualize the result and the final metrics should
be clearly understandable.

C. Dimensions to be Measured
Information security, as a target in itself, cannot be

satisfactorily measured because it is such an abstract concept
and has many multi-disciplinary dependencies. Therefore,
security objectives should be investigated in greater detail.
The security dimensions that the metrics should address
depend largely on the application domain and environment.

The most commonly recognized dimensions of
information security are Confidentiality, Integrity and
Availability (CIA) [9], often referred to as the CIA model.
Confidentiality objectives ensure that information is
accessible only to those authorized to have access. Integrity
encompasses safeguards of several aspects of accuracy and
completeness of information. The Availability dimension can
be defined by the objectives to ensure that authorized users
have access to the information and associated assets they
require within a reasonable timeframe [2]. The CIA model
has some limitations, such as the fact that authenticity and
non-repudiation of critical business transactions do not fit
naturally in the model. Moreover, authorization depends on
authentication. A more concise collection of security
objectives includes various ‘lower-level’ dimensions like
confidentiality, integrity, availability, authentication,
authorization, and non-repudiation. This more accurately
emphasizes the objectives of security-enforcing mechanisms
[2]. The International Telecommunication Union (ITU) [10]
has defined a larger set of security dimension: access control,
authentication, non-repudiation, data confidentiality,
communication security, data integrity, availability, and
privacy. Several other factors affect the security of
information systems, such as accountability, auditing,
controllability, correctness, identification, recovery,
reliability, robustness, safety, dependability, supervision, and
trustworthiness, as well as functionality [11][12][13].
Security, Trust, Dependability, and Privacy (STDP) are often
grouped together when defining security-relevant objectives
for technical systems and services. It is important to note,
however, that these terms are overlapping and, in some
cases, even contradict each other [14]. Avižienis et al. [15]
presented a detailed taxonomy of security and dependability
quality attributes that can be used in the selection of adequate
dimensions to be investigated [2].

III. SECURITY METRICS DEVELOPMENT APPROACH
The authors’ earlier work [16] proposed an iterative

process for security metrics development, which this paper
enhances and clarifies. The process aims to develop a
balanced and detailed security metrics collection for the SuI
and the related measurement architecture. Measurement
architecture is the operational structure for measurement and

359

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

evidence collection. The steps are as follows (points (a), (b),
and (c) in Steps 3, 4 and 6 represent parallel activities):
1. Conduct a threat and vulnerability analysis of the SuI

and its use environments, with appropriate impact and
risk exposure analyses. This phase can be bypassed if
there are valid pre-existing analysis results;

2. If applicable, utilize suitable security metrics
taxonomies and/or ontologies (see, for example [2]) to
further plan the measurement objectives and metrics
types;

3. Develop security requirements and start modeling:
(a) Define and prioritize the security requirements
holistically, based on the results of Steps 1 and 2,
giving the most attention to the most critical security
requirements; (b) Model relevant attack strategies in
prioritized order and carry out an attacker cost-benefit
analysis; and (c) Select appropriate QoS metrics for the
security-oriented availability metrics;

4. Decomposition, modeling, and integration: (a)
Identify Basic Measurable Components (BMCs) from
the requirements using a decomposition approach.
BMCs are leaf components of the decomposition that
clearly manifest a measurable property of the system;

(b) Develop possible anomaly and/or misuse models;
and (c) Integrate the selected QoS metrics into the
collection of BMCs;

5. Define measurement architecture with sufficient
intrinsic security-measurability (i.e., self-contained
readiness for security measurement). Pay attention to
readily available counters, measurement points, etc;

6. Integrate metrics and select BMCs: (a) Integrate
metrics from other sources; and (b) Carry out BMC
selection based on (c) Feasibility analysis. The
feasibility analysis is an iterative stage that takes into
account the measurement architecture, individual
metrics, and the entire collection of metrics;

7. Develop an appropriate balanced and detailed
collection of metrics with on-line/off-line division and
the functionalities and processes in which they are used.

All steps in the process are highly iterative and the
sequence of the steps can be varied if relevant information
becomes available in a different sequence. Steps 1 to 3
should be started as early as possible in the system
development and elaborated iteratively as the design
becomes more mature. Steps 4 and 5 can be carried out in
parallel. Step 5 can also already be partially started during
the architectural design phase.

Figure 1. Security metrics development method for GEMOM. The left-most branch concentrates on security requirement decomposition.

360

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

TABLE I. BENEFITS AND CHALLENGES OF THE PROPOSED STEPS

Step Benefits Challenges
1 Security-enforcing

mechanisms, expressed by
the requirements, can be
tailored as accurately as
possible to mitigate or cancel
the actual threats.

Actual information about
threats and vulnerabilities is
sometimes difficult to obtain.
It might also be too time-
consuming to carry out a
thorough analysis.

2 Taxonomical information
systematizes metrics
development and helps in
planning the metrics types.

Validated security metrics
taxonomies and ontologies
based on experimental results
are difficult to find.

3 a Security requirements steer
the R&D in the right
direction and act as the
baseline for evidence
gathering by security metrics.

Definition of sufficient
security requirements is
demanding. “Negative
requirements” (Section III.B)
require a great deal of effort.

3 b Knowledge about attack
strategies is required for
anomaly and misuse models,
acting as the basis for attack-
oriented metrics.

There are several ways to
compromise a system, only
some of which can be
modeled with a reasonable
amount of time and effort.

3 c QoS metrics also reflect
availability of the SuI from a
security perspective.

The line between
performance and security-
oriented QoS metrics is fuzzy.

4 a The decomposition expresses
the relationship between the
components and the
requirements.

In some cases, it might be
difficult to decompose the
essential subcomponents or
impossible to carry out the
related measurements.

4 b Anomaly and misuse models
can be used in QoS and
security monitoring.

The development of feasible
models is time-consuming
and it can be difficult to
obtain proper training data.

4 c Integration of QoS and other
availability metrics increases
the amount of availability
evidence from a security
perspective.

It is difficult to choose
feasible QoS metrics from a
security perspective. The type
of QoS might be different
from the security metrics.

5 A practical measurement
architecture with proper
evidence collection is
necessary. Intrinsic security-
measurability enables smart
evidence collection.

Performance constraints and
other conflicting functionality
goals might complicate the
design and measurement
architecture and measurement
support in components.

6 a Metrics from sources other
than the actual metrics
development process increase
the completeness of the
metrics collection.

The relationship between the
metrics from other sources
and the security requirements
are not directly visible as they
are in the decomposition
process.

6 b The systematic selection of
individual metrics is needed
in order to increase the
feasibility of the final
collection of metrics.

The selection process is
challenging. The need for
individual metrics and the
entire metrics collection must
be taken into acount.

6 c Feasibility analysis of the
chosen metrics is needed in
order to select the final
practical collection of metrics

Feasibility analysis could
require substantial
information from realistic
situations in which the SuI is
used.

7 Eventually, detailed metrics
will be needed in order to use
the metrics system.

The detailed development of
metrics involves several
challenges, such as a lack of
data from realistic situations,
scaling, assessment of
confidence values, and fine-
tuning of decision support.

This approach is based on earlier work by the same
authors: the early approach presented in [17] was enhanced
in [18] with decomposition and in [16] with QoS metrics and
anomaly monitoring branches. The present approach adds
optionality to the threat and vulnerability analysis, changes
the order of taxonomical and ontological work, emphasizes
the importance of intrinsic security-measurability support,
simplifies the BMC selection step (Step 6), and adds
feasibility analysis as a separate stage with connections to
the measurement architecture, individual metrics, and the
metrics collection. The present paper also analyzes the
benefits and challenges of the proposed steps (see Table I).
The process is visualized in Figure 1, with the pink boxes
depicting the steps for optional QoS and other metrics
development.

A. Threat and Vulnerability Analysis
The first step in a risk-driven methodology is threat

analysis, with the goal of identifying security threats and
their sources, and analyzing their likelihood. It is also the
starting point of security metrics development, unless
sufficient threat information exists beforehand. There are
various ways to carry out a threat analysis, from simply
listing threats to modeling them in a more rigorous way.

The extent of threat analysis depends, for example, on the
criticality of the planned applications of the SuI. The
Microsoft threat risk modeling process [19] suggests the
following steps:

1. Identify security objectives,
2. Survey the SuI architecture,
3. Decompose the SuI architecture to identify functions

and entities that impact security,
4. Identify threats, and
5. Identify vulnerabilities.
Vulnerability analysis can be carried out once appropriate

technological choices have been made. Technology and
implementation-dependent vulnerabilities cause different
kinds of threats to the system. Well-known vulnerability
listings and repositories, such as Open Web Application
Security Project (OWASP) Top 10 [20], can be used in
vulnerability analysis. OCTAVE tools and methods [21]
offer support for threat and vulnerability analyses.

B. Security Requirements
Security requirements – high-level statements of

countermeasures that adequately mitigate the identified risk
[22] – form the reference basis for security metrics
development. They can derive from threats, general
organizational policies, and environment properties.
Security requirements derived from threats represent
countermeasures, or security-enforcing mechanisms. Note
the distinction between general organizational policies and
security policies. A security policy is concerned with the
design, analysis, implementation, deployment, and use of
efficient and secure technology that handles the SuI in
accordance with the relevant set of security rules and
procedures, and is based on security requirements [22].
Environment properties contribute to the security of the SuI
from the outside [23]. A security requirement of the SuI ri is

361

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

derived from applicable threat(s) ξi, general organizational
policies pi and the environment properties ei [23]:

ri = (ξi , pi, ei),

ri ∈ R, ξi ∈ Ξ, pi ∈ P, ei ∈ E,

(1)

where i is index number, R is the collection of all security
requirements of SuI, Ξ is the collection of all security threats
to be canceled or mitigated, P is the collection of all general
organizational policies applied to SuI, and E is the collection
of all environment properties that contribute to the security
of the SuI from the outside. The effectiveness of security
policies, derived from security requirements, is crucial for
achieving adequate security performance and the security
objectives should be inline with the security requirements.
According to Firesmith [24], the most current software
requirement specifications (i) are totally silent regarding
security, (ii) only specify vague security goals, or (iii) only
specify commonly used security mechanisms, such as
encryption and firewalls, as architectural constraints.

Non-security requirements can have a significant effect
on the quality of the system’s security. Business constraints
can affect the impact of security risks and the SuI’s exposure
to these risks. The usability and performance of security-
enforcing mechanisms are also important objectives of
system design. Ideally, the characteristics of excellent
software requirements, including security requirements,
include completeness, correctness, feasibility, necessity,
prioritization, unambiguity, and verifiability [25]. The main
difference between security requirements and software
requirements is that most non-security requirements stipulate
that the SuI must take specific necessary or desired action,
while security requirements often concentrate on avoiding
the occurrence of something that is undesired (negative
behavior requirement). The lack of an understanding of and
attention to negative requirements is at the root of many
security problems [17].

C. Security Requirement Decomposition
A substantial mechanism in this paper’s requirement-

centric security metrics development approach is
requirement decomposition. The following decomposition
process, based on the work by Wang and Wulf [26], is used
to identify measurable components from the security
requirements:

1. Identify successive components from each security
requirement (goal) that contribute to the correctness,
effectiveness, and/or efficiency of the goal.
Correctness or effectiveness goals are emphasized
depending on the needs for metrics in either
dimension;

2. Examine the subordinate nodes to determine whether
further decomposition is needed. If it is, repeat the
process with the subordinate nodes as current goals,
breaking them down to their essential components;
and

3. Terminate the decomposition process when none of
the leaf nodes can be decomposed any further, or
when further analysis of these components is no
longer necessary.

When the decomposition terminates, all leaf nodes
should be measurable components.

D. Measurement Architecture
In practice, it is necessary to identify measurable

information and the mechanisms of how to obtain and
process that data. Both on-line measurement architecture and
off-line evidence collection should be designed. On-line and
off-line measurements often depend on one another. In the
example GEMOM system, the Monitoring Tool is the central
module of the measurement architecture, with connections to
the GEMOM Broker, publish/subscribe clients,
Authentication and Authorization functionality, and
Adaptive Security Management at the overlay level.
Furthermore, the Monitoring Tool has an interface for
tracking resources that are outside the GEMOM node, such
as storage, memory, I/O devices, and network interfaces.

E. More Detailed Metrics Development
The potential BMCs should be selected on the basis of

the feasibility, complexity and availability of information
needed for the metric. The detailed development of the
chosen security metrics should include definition of the
following issues [1]:

• Purpose of the metric,
• Target description of the metric, for example, using

composition-decomposition,
• Formalization of the metric into a computational or

understandable form,
• Value scale or ordering,
• Close-to-optimal or appropriate value range

depicting the ‘desired level of security’ and
• Thresholds (if needed).
Metrics can be used for many different purposes, which

means that the above suggestions are not valid for all
situations. Security metrics can be classified in many
different ways and one metric can incorporate several metric
characteristics.

IT system security comprises two independent aspects:
security correctness and security effectiveness. In practical
research and development, security efficiency objectives are
also important. Security correctness denotes an assurance
that security has been correctly implemented [2]. Security
effectiveness, on the other hand, denotes an assurance that
the security solutions meet the stated objectives: that is, they
satisfy expectations for resilience in the use environment
while not doing anything else other than what they are
intended to do [2][4]. Security efficiency is concerned with
the productivity dimension: the resources, time and money
spent on security work and solutions [2].

The final choice of metrics depends on their use and
feasibility: the metrics should add value to the decision-
making process. Metrics can also assist in making the best
decision based on incomplete knowledge. In addition, good
security metrics are aligned with business objectives and

362

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

should allow comparisons to both internal and external
benchmarks.

F. Integration of Metrics
Different weights can be associated with different

component metrics in order to indicate the relative
importance among the component metrics. A ‘close to
correct’ weight assignment is used in practice, because there
are no analytical results for determining the relative priorities
of the elements, other than the careful use of one’s expertise
and judgment [27]. Two important dimensions strongly
affect the weight: the potential impact of the threat and the
SuI’s exposure to that threat Impact analysis can be iterated
to react to changes in the threat environment. Accordingly,
the actual threat exposure estimate, the exposure weight, can
vary dynamically depending on the system and the use of the
application. The impact and exposure weights can be
integrated in the component metrics weight factors using
suitable heuristics that can interpret their interaction. Figure
2 shows the effect of impact and exposure. The ‘high impact,
high exposure’ region obviously depicts the most critical
zone, resulting in higher weight coefficients. Threats that fall
into the ‘low impact, high exposure’ or ‘high impact, low
exposure’ categories also result in increased weighting
compared to the ‘low impact, low exposure’ zone [1].

Figure 2. Threat exposure and impact dimensions [1].

The dynamic nature of threats, their impact, and the
system’s exposure to them can be reflected in the collection
of security metrics by developing a method that relates these
parameters to the actual weights used in a combination of
different security metrics. In this case, the weighting acts as
the ‘interface’ to threat dynamics from a more stable
collection of security metrics.

The overall collection of chosen metrics can be managed,
for example, in the form of a balanced scorecard, in which a
score is assigned for all metrics components [1]. Different
component scores are aggregated into an overall score using

a suitable function. The following considerations are
important when developing a balanced scorecard for security
metrics [28]:

• Scorecards are a raw approximation of security risks;
• Attention should be paid to the selection of the

correct component metrics;
• Scales must be normalized;
• Special care is needed if the scale types (nominal,

ordinal, interval, ratio) are mixed;
• The mathematical functions used for the metrics

should be carefully designed (average, sum,
minimum, maximum, logical functions, and
inference rules);

• Explicit rules must be defined for interpreting the
aggregate score;

• The interdependencies between threats, threat
agents, vulnerabilities, assets, etc., should be
identified;

• The method for dealing with uncertainty, vagueness,
missing information, imprecision, and contradictory
information should be incorporated;

• The scorecard should support an increased security
level and awareness of it;

• Essential data should be kept visible and open to
peer review; and

• Standard terminology and definitions should be
used.

IV. SYSTEM UNDER INVESTIGATION: GEMOM
Message Oriented Middleware (MOM) increases the

interoperability, portability, and flexibility of architectures
by enabling applications to exchange messages with other
programs without having to know the platform on which the
other application resides within the network [29][30][31].
GEMOM (Genetic Message Oriented Secure Middleware)
[3] is an MOM based on the publish/subscribe messaging
paradigm, the most efficient method of integrating medium
to high complexity distributed systems. The GEMOM
project use scenarios include a collaborative business portal,
a financial market data delivery system, a road management
system and a money transfer banking system [16].

A. Characteristics of the GEMOM System
The term resilience refers to a system’s ability to return

to its normal operational state after encountering an attack or
other problem and continue its planned tasks. The GEMOM
system is a resilient and scalable MOM that supports
adaptive security management with the help of a monitoring
functionality that is based on security and Quality of Service
(QoS) metrics. The Adaptive Security Management system
in GEMOM is able to learn and adapt to the changing threat
environment without significantly sacrificing the efficiency,
flexibility, reliability, and security of the system. This
involves gathering relevant information both from within the
system and from the environment, analyzing the collected
information, and responding to changes by adjusting security
functions such as encryption schemes, security protocols,
security algorithms, and different authentication and

363

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

authorization mechanisms. Information gathering is carried
out by security and QoS monitoring services and related
administration services [1]. The publish/subscribe paradigm
in GEMOM is based on publishing to topics and subscribing
to them. Topics belong to namespaces, a higher-level
concept in a hierarchy.

B. GEMOM System Architecture
The GEMOM system architecture is composed of a set of

communicating entities known as GEMOM Nodes or G-
Nodes. Some of these G-Nodes are operational (micro nodes,
depicted in blue in Figure 3 [16]) and some are managerial
(macro nodes, shown in pink in the figure). The operational
G-Nodes, including Message Brokers, Clients (for
publishing and subscribing messages), and Authentication
and Authorization Modules, interact with relevant
managerial nodes according to the situation. The managerial
G-Nodes include Adaptive Security Managers, Audit and
Logging Modules, Anomaly Monitors, and Monitoring Tools
with associated Security Measurement Managers and QoS
Managers. These G-Nodes make runtime operation decisions
and require a wider perspective of the system than the
individual operational G-Nodes. A Message Broker is a core
GEMOM functionality package that consists of an
application server, numerous plug-and-play objects,
configuration files, and database schemas [16]. Several
components have been built in GEMOM in such a way that

they exhibit properties that support security measurements.
In other words, they can be considered intrinsically security-
measurable components [4], which are entities that are
inherently attuned to security measurement.

C. Use of Security Metrics in GEMOM
Security evidence in the form of metrics is central to

GEMOM. The resulting metrics are used for different
purposes [16], including:
• Security and QoS monitoring (on-line activity),
• Adaptive Security Management (a combination of

on-line and off-line activities), and
• Security engineering, management and software

security assurance of the system, and service (off-
line activities).

D. GEMOM Monitoring Concept
The GEMOM Monitoring Tool is responsible for

collecting security and QoS evidence, and for maintaining an
appropriate metrics database in GEMOM. There is one
Monitoring Tool for each Message Broker. The Monitoring
Tool consists of the Monitor Core (MC) software process
functionality and the Monitor Modules. The MC runs in the
background and the Monitor Modules can be preconfigured
or added runtime. The MC offers database and messaging
services to the Monitor Modules: it connects to a GEMOM
Broker and the modules use it to publish and subscribe to

Figure 3. Example of information flows to and from the GEMOM system [16].

364

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

relevant topics in a measurement namespace [16]. A
Monitoring Tool is connected to a Message Broker, an Audit
and Logging Module, an Authentication and Authorization
Module, a QoS Manager, an Anomaly Detector Module, a
Security Measurement Manager and relevant memory (used
and free), storage (hard disks, memory sticks), and network
interfaces and Input/Output devices, such as a keyboard. In
addition to logs, the monitoring system is able to monitor
messages and metadata. Figure 3 depicts the information
exchange connections of the GEMOM modules. GEMOM
supports multi-point monitoring in the following way:
Monitor modules can be added that are able to communicate
with other Monitor modules that are monitoring other
brokers, clients or modules, via publish/subscribe topics
runtime. Consequently, all distributed Monitoring Tools
have up-to-date information at their disposal.

E. Adaptive Security Manager
At the managerial G-Nodes level, the Monitoring Tools

co-operate with the Adaptive Security Manager (ASM). The
ASM monitors and analyzes security details based on
metrics and other evidence, plans adjustments, and executes
the planned adjustments through a global control loop, using
both manual and automated information. In this way, the
ASM manages the behavior of the overall system with the
help of Monitor modules.

V. SECURITY THREATS AND SECURITY REQUIREMENTS
OF GEMOM

A. Threats and Vulnerabilities of GEMOM
The main security threats to GEMOM are the Denial of

Service (DoS) and Distributed Denial of Service (DDoS)
attacks. In addition to activities, a malicious authorized node
can execute a message flooding attack by sending a stream
of false publish or subscription messages on behalf of
unauthorized nodes. Availability is the most fundamental
security dimension, particularly in telecommunication
systems, as shown in an example study in [32], due to the
effects of DoS attacks. Availability threats have a high
impact because the system, or a part of it, is most vulnerable
during this type of attack. By exploiting the high
vulnerability time-window, attackers can not only achieve
their own specific goals, but potentially causing threats to
other security dimensions [32]. If the resilience and self-
protection mechanisms of GEMOM fail, an intruder could
even seize the system using this strategy. Spoofing attacks
can be made by sending false registration or de-registration
requests concerning an authorized node. An unauthorized
agent could also send registration or de-registration requests.
A malicious node could also replay entire message(s) that
had previously been sent by an authorized agent. General
security threats of distributed messaging systems also
include unauthorized nodes accessing messages,
functionalities or services, masquerading attacks,
eavesdropping and modifying, deleting, or tampering
messages. The corruption of topics, namespaces, messages,
requests, metadata, and functionalities processing data can
jeopardize a system’s integrity and confidentiality. An

eavesdropper may be able to obtain information that was not
meant to be divulged.

One potential source of authentication and authorization
threats is the fact that client applications pertaining to
different organizations are part of the GEMOM system.
These organizations could use different authentication and
identification technologies and standards. Furthermore, user
credential management will not usually be under a single
organization control [1].

B. Security Requirements of GEMOM
The results of the GEMOM threat and vulnerability

analysis were mapped into security requirements that
concentrate on security-enforcing mechanisms. The main
security requirements set the basis for security metrics
development in GEMOM. Note that the collection of
security requirements is simplified and the following lists
only the main requirements [1], each of which was allocated
a prioritization description of high, medium, or low. Due to
space limitations, only high and some medium requirements
are discussed. The security requirements were originally
developed during the architectural design phase of the
GEMOM system [1]. They were later prioritized and iterated
to remove gratuitous overlap and to increase coherence. The
diagram in Figure 4 shows how the GEMOM security
requirements can be classified. Adaptive security
requirements are high-level and common to all other
categories. In the following, the term node refers to a
GEMOM node.

Figure 4. Categories of GEMOM security requirements [1].

TABLE II. ADAPTIVE SECURITY REQUIREMENTS [1]

Requirement Description
Adaptive
authentication
(Req. 1.1)

The system should be able to choose among
different authentication methods based on an
adaptive trust metric.

Adaptive authorization
(Req. 1.2)

The system should be able to choose among
different authorization methods based on an
adaptive trust metric and authentication
strength.

Adaptive conf-
identiality (Req. 1.3)

The encryption strength should be able to be
adapted according to an adaptive trust metric.

Self-protection (Req.
1.4)

The system should be able to predict,
prevent, detect, and identify attacks, and to
protect itself against them.

The main adaptive security requirements for GEMOM,

which impact all other requirements, are listed in Table II

365

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

[1]. The core functionality of the adaptive security is to be
able to carry out self-protection and resilience activities. In
addition, authentication, authorization, and confidentiality
mechanisms are varied in GEMOM. A self-protecting
system can anticipate, detect, identify, and protect itself by
taking corrective actions against threats.

TABLE III. AUTHENTICATION REQUIREMENTS [1]

Requirement Description
Authentication
mechanism (Req. 2.1)

The system should be able to choose from
different authentication methods.

User authentication
(Req. 2.2)

Any user accessing any node should be
authenticated and the node should be aware
of the authentication level.

Node to node
authentication
(Req. 2.3)

Any node accessing any other node should be
authenticated and the node should be aware
of the authentication level.

Message or metadata
authentication (Req.
2.4)

The node should verify the authenticity of a
message or metadata.

Identity federation
(Req. 2.5)

GEMOM must be able to operate in an
identity federated environment.

Identity management
(Req. 2.6)

User identities should be securely managed.

Authentication refers to actions in which a user’s

credentials are used to verify the user’s identity. Table III
lists the requirements for the authentication of users and
other system entities. The basic generic requirements for
authentication are not explicitly discussed here.

TABLE IV. AUTHORIZATION REQUIREMENTS [1]

Requirement Description
Authorization policy
(Req. 3.1)

The policy identifies specific users, user
groups, and types of users, specifies the
operations permitted and authorization levels
on authorization objects, and specifies the
delegation privilege and depth.

Access control
mechanism (Req. 3.2)

Access control can use different identity-
based and role-based mechanisms depending
on authentication strength.

User authorization
(Req. 3.3)

The Authorization Manager should verify
user identity and grant access to the resource
allowed.

Revoking
authorization
(Req. 3.4)

The authorization functionality should
support the revocation of authorization, for
example, to users identified as harmful.

Authorization objects
(Req. 3.5)

Authorization objects are namespaces, topics,
metadata, and messages. Authorization rights
can be granted for single authorization
objects.

Delegation of
privileges
(Req. 3.6)

It should be possible to delegate security
credentials to an entity so that it can act on
the delegators behalf. The chain of delegation
depth is three.

Authorization refers to the parties that are authorized to

access specific resources of the system. Table IV lists
GEMOM’s main authorization requirements. Authorization
functionality is responsible for granting rights, including
access control based on access rights. The requirements start

with a definition of the authorization policy. The
authorization objects must be identified.

TABLE V. CONFIDENTIALITY REQUIREMENTS [1]

Requirement Description
Message, log and
metadata conf-
identiality (Req. 4.1)

Messages, logs and metadata should only be
delivered to authorized receivers.

Traceability info
confidentiality (Req.
4.2)

Traceability information can only be
accessed by authorized users.

Confidentiality
classification (Req.
4.3)

The system should be able to assign
confidentiality levels to both users and
message contents.

Cryptography strength
(Req. 4.4)

Cryptographic algorithms should be assigned
a strength value.

Storage confidentiality
(Req. 4.5)

Messages stored in non-volatile media at the
Message Broker should be protected.

Confidentiality countermeasures ensure that information

is protected from unauthorized disclosure [1]. Table V
presents GEMOM’s main confidentiality requirements.
Different confidentiality levels are required depending on the
sensitivity requirements of information and the level of trust
in specific users. The scalability of confidentiality is
important; confidentiality should be ensured despite the
addition or removal of system users.

TABLE VI. INTEGRITY REQUIREMENTS [1]

Requirement Description
Message, log and
metadata
integrity(Req. 5.1)

The system should ensure message, log, and
metadata integrity.

Environment integrity
(Req. 5.2)

The integrity of node system software, add-
on components, and underlying operating
systems shall be verified.

Persistent data
integrity (Req. 5.3)

The integrity of data passing through, stored
in, or persistent to the node shall be
protected.

Integrity means that data or the system processing it is

not altered or destroyed in an unauthorized manner [1].
Integrity requirements are presented in Table VI. As will be
seen later, integrity is a horizontal requirement area, which
means that it is part of other security dimensions.

TABLE VII. AVAILABILITY REQUIREMENTS [1]

Requirement Description
Robustness to faults
(Req. 6.1)

GEMOM functionality should be available to
authorized users even in the case of several
node faults.

Self-healing
(Req. 6.2)

The system should be able to automatically
create new redundancy in case of node faults.

Sudden
reconfiguration (Req.
6.3)

The system should allow for the sudden
reconfiguration of the available resources.

Metadata availability
(Req. 6.4)

It should be possible to distribute the
metadata of Brokers to an authorized user (in
order to spawn new redundancy).

366

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Availability is the property of being accessible and
useable upon demand by an authorized entity [1]. As the
resilience of GEMOM is a critical need, loss of availability
can represent a major security complication. Table VII lists
GEMOM’s availability requirements. Based on the GEMOM
threat analysis, DoS types of attacks are considered a very
significant threat to the availability of the GEMOM system.

TABLE VIII. NON-REPUDIATION REQUIREMENTS [1]

Requirement Description
Non-repudiation of
origin or reception
(Req. 7.1)

The system should protect against an
originator’s false denial of having published a
message or a recipient’s false denial of
having received a message.

Non-repudiation of
published and received
messages (Req. 7.2)

The Broker should be able to prove
retrospectively that a specific message was
published by a specific publisher or that a
specific message was received by a specific
subscriber at a specific time.

Non-repudiation of
triggered push (Req.
7.3)

The Publisher agent should, in retrospect, be
able to prove the identity of a user that
triggered a message.

Non-repudiation is the property of preventing users from

later denying that they performed an action (sending or
receiving a message, and publishing or subscribing) [1].
Table VIII includes non-repudiation requirements.

VI. EFFECTIVENESS AND CORRECTNESS METRICS OF
SECURITY-ENFORCING MECHANISMS IN GEMOM

This section decomposes the requirements [1] presented
above and introduces an initial collection of security metrics
and parameter dependencies based on the BMCs identified in
the decomposition. Adaptive security is dealt with last
because it contains requirements that depend on lower-level
constructs. Most of the introduced metrics require data
collection before the results can be used in automated
adaptive security management or off-line security
management activities.

Reliability and integrity can be considered horizontal
metrics perspectives, because they are both part of other
security requirement decompositions at the leaf level. On the
other hand, the security requirement categories identified in
Figure 6 can be considered vertical metrics perspectives,
which are decomposed below. Note that horizontal and
vertical perspectives in this context are only abstractions, and
decompositions are presented only from the vertical
perspective. However, the horizontal metrics could be also
expressed as decompositions, in which the child entities of
the root (reliability or integrity) are composed of all
decompositions mentioned in this section.

Integrity is addressed from both horizontal and vertical
perspectives. The vertical integrity metrics below address
integrity-enforcing algorithms that focus on data integrity,
whereas horizontal integrity metrics address the integrity
objectives for different system components as a precondition
to data integrity. Note that it would also be possible to
arrange all integrity metrics into a decomposition
representation.

A. Reliability Metrics – A Horizontal Metrics Perspective
In the context of a security-enforcing mechanism

reliability typically refers to software reliability, but
depending on the type of mechanism, can potentially be the
composite of hardware and software reliability. Software
reliability can be seen as a part of software quality in general.
According to the widely acknowledged reliability model,
time-dependent reliability R(t) has the following exponential
function [33]:

,)(tetR ⋅−= λ (2)

where λ is the failure rate, t is time, and e is Napier’s
constant (2.71828…). This equation is valid when the failure
rate is constant over time and implies a Poisson probability
distribution of failures. In addition, the Mean Time Between
Failures (MTBF) is calculated as follows: MTBF = 1/λ.
Reliability is often quantified by MTBF for repairable
systems. On the other hand, Mean Time To Failure (MTTF)
is used for non-repairable systems. According to Bernstein
[33], the general equation can be extended as:

,)(ε⋅
⋅⋅−

= E
tCk

etR
(3)

where k is a scaling constant, C is software complexity, t is
the continuous execution time of the software, E is the
development effort, and ε denotes the investment in software
engineering tools, processes and code expansion that makes
the development work more effective. The goal of software
testing and other assurance activities is to make the
reliability as close as possible to R(0) = 1, which represents
perfect reliability. Note that the deterioration of reliability is
normally an unintentional process. More detailed analyses on
software reliability are provided in [33] and [34].

The following observations affect the development of
reliability metrics in GEMOM:
• Reliability can be increased by adding redundancy

and diversity to the functionality in question. Both
constructs support high resiliency of the system; and

• Maintainability is a key consideration in reliability.
Adaptive maintainability functionality increases
reliability and is relevant in GEMOM, which uses
adaptive security management.

B. Integrity Metrics – A Horizontal Metrics Perspective
The component integrity of a system is a precondition to

data integrity, which, in turn, indicates that data has not been
modified or destroyed in an unauthorized manner. The
system and its components must generate, process, maintain
or transmit the data so that data integrity is preserved.
Integrity errors are central to integrity metrics and typically
include the unauthorized alteration, deletion, addition,
publication and subscription of data. In general, integrity I
can be measured during a data gathering time period as:

367

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

,
)()(

)(
IEnmACn

ACnI
⋅+

= (4)

where n(AC) is the number of data processing actions by the
system component in question, n(IE) is the number of
integrity errors, and m is a weighting factor.

Integrity errors can be reported by built-in self-tests
implemented in the system, run at specified time instants or
intervals. The self-tests can investigate, among other things,
the correct operation of the module, interface, memory
and/or system function in question, such as the control area
of a security-enforcing mechanism, consistency of the data
between the original and processed data, correct sequencing
of the data, and the data value range. Furthermore, integrity
errors can be reported off-line by users and operational
personnel. Note that system and data integrity can be
disrupted accidentally or intentionally. As a result, integrity
is closely linked to reliability [34].

C. Authentication
The general authentication decomposition model

depicted in Figure 5 [26] is used during the process of
identifying potential metrics for GEMOM authentication
strength.

Figure 5. General authentication decomposition [26] used in GEMOM.

TABLE IX. BMCS OF AUTHENTICATION

Symbol Basic Measurable Component
AIU Authentication Identity Uniqueness

AIS Authentication Identity Structure

AII Authentication Identity Integrity

AMR Authentication Mechanism Reliability

AMI Authenticaiton Mechanism Integrity

Req. 2.1 states that the GEMOM system should be able

to choose between different authentication mechanisms, such
as a smart card, user name/password pair, and digital
certificate, which represent different authentication
mechanism security levels. Authentication mechanism
requirements are varied by the GEMOM Adaptive Security
Management functionality. If multi-modal authentication is
used, that is, mechanisms combined from different
authentication categories, the strength values are often

higher. The model in Figure 7 suggests that the identity
solution and the authentication mechanism make a
significant contribution to the correctness and effectiveness
of authentication. The identity tree of the decomposition
emphasizes that the user identity federation (Req. 2.5)
requirement is met. Identity management (Req. 2.6) is part of
the authentication mechanism. There are differences in the
case of user authentication (Req. 2.2), node-to-node
authentication (Req 2.3), and message/metadata (Req. 2.4)
authentication, and authentication metrics should be
developed separately in each of these cases. The identity of
the user is harder to validate than the identity of a node. See
Table IX for the list of identified BMCs.

AIU, AIS and AII are mainly dependent on the identity
solution, whereas AMR and AMI are mainly dependent on
the authentication mechanism. Authentication Identity
Uniqueness (AIU) is a function of the number of all identity
information values divided by the values for which a
uniqueness condition does not hold:

))},)(()((:{
},{

,
)()(

)(

zyzIDzyIDyySID
SIDxIDxNSID

NSIDnwIDn
IDnAIU

NSID

=→∀∧∃=
∉∧∈=
⋅+

=

(5)

where wNSID is a weighting factor, n(ID) is the total number
of identity information values in use, ID is the collection of
all identity information values, ID(x) denotes the
correspondence of identity information value x between a
related actual real-world identity, n(NSID) is the total
number of non-unique identity information values, and NSID
is the collection of identity information values for which the
uniqueness condition))(()((zyzIDzyIDy =→∀∧∃ does not
hold. In other words, the maximum value of uniqueness is
the case in which for every real-world identity used, there is
one and only one identity information value that corresponds
to a real-world identity. In the calculations, the unambiguity
or ambiguity of identity information should be observed
from an adversary’s point of view.

Authentication Identity Structure (AIS) represents the
security quality of the identity solution structure. The
identity solution can be physical (e.g., a smart card), digital
(e.g., user name/password pair), or a combination thereof.
Identity structure that results from identity federation should
also be taken into account. In general, the structure of a
physical identity solution is stronger than one that is purely
digital, provided that physical security measures have been
well handled. In GEMOM, this metric has ‘high, ’ ‘medium,’
or ‘low’ ordinal values for different identity solutions. Attack
modeling and long-term comparative data collection are
needed in order to investigate the details of AIS
quantification further.

Authentication Identity Integrity (AII) is dependent on
the AIS and authentication integrity errors due to the identity
solution IEID, and has ordinal values for different identity
solutions. Therefore, AII can be denoted as a function of AIS
and IEID:

368

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

),(IDIEAISfAII = . (6)

Failures of the authentication mechanism include the

approval of unauthorized access to the part of the SuI
controlled by authentication mechanism, and denial of access
for authorized users. Authentication Mechanism Reliability
(AMR) is the ability of the authentication mechanism to
correctly and effectively perform its required functions under
potentially hostile conditions in the operational environment.
AMR metrics design can be based on the general software
reliability metrics, via parameter E in Eq. 3. In particular, the
following issues affect AMR:

),,,(AMRasmAMRtestANRreq RTTfAMR = (7)

where TAMRreg is the time spent on authentication
requirements engineering, TACMRtest is the time spent testing
the authentication mechanism, and RACMRasm is the reliability
of adaptive authentication functionality and authentication
maintenance activities carried out by the GEMOM Adaptive
Security Management.

Authentication Mechanism Integrity (AMI) is a
precondition for data integrity in the control area of the
authentication mechanism. It means that the authentication
mechanism must function correctly in order to enable data
integrity. Integrity errors include the unauthorized alteration,
deletion, addition, publishing, and subscribing of data.
Following the example of Eq. 4, AMI can be measured as
follows during the data gathering period:

,
)()(

)(

AMIEam IEnwAUn
AUnAMI

⋅+
= (8)

where n(IEAM) is the number of integrity errors, n(AU) is the
total number of authentication actions, and wIEam is a
weighting factor. Note that identity management solutions
are also part of the authentication mechanism.

Authentication Strength (AS) is an aggregated metric that
depicts the overall security level of the authentication
solution. User-dependent Authentication Strength (ASusr) can
be composed from the normalized and scaled component
metrics for that user:

,usrAMIusrAMRusrAII

usrAISusrAIUusr

AMIwAMRwAIIw

AISwAIUwAS

⋅+⋅+⋅

+⋅+⋅=
 (9)

where wx is the weighting factor of component x, and ‘¯’
denotes normalization and uniform scaling of the component
metrics. Note that the weighting should be carefully designed
to avoid instability of the overall equation. Overall
Authentication Strength is the average of the Authentication
Strengths of all users:

,1

1
∑
=

⋅=
N

i
iAS

N
AS (10)

where N is the number of users controlled by the
authentication mechanism.

D. Authorization
The main measurement interest in authorization is the

security strength of authentication and access control.
Authorization decomposition for GEMOM is shown in
Figure 8, with the corresponding BMCs in Table X.

Figure 6. GEMOM authorization decomposition.

TABLE X. BMCS OF AUTHORIZATION

Symbol Basic Measurable Component
AS Authentication Strength (see Eq. 10)

ACMR Access Control Mechanism Reliability

ACMI Access Control Mechanism Integrity

APE Authorization Policy Effectiveness

AOI Authorization Object Integrity

Authorization policy (Req. 3.1) forms the basis for the

entire authorization mechanism, while seamless co-operation
with the authentication mechanism is also crucial (Req. 3.3).
Consequently, the correctness and effectiveness of
authentication – Authentication Strength (AS) – is a core
metric. In GEMOM, the access control mechanism can be
varied adaptively based on the authentication strength (Req.
3.2), using either identity or role-based mechanisms. Access
control mechanisms can be assigned strengths that
correspond to the authentication strength. As shown in
Figure 6, the access control mechanism should have an
adequate level of integrity and reliability. Authorization
Policy Effectiveness is the main effectiveness dimension.
Functionalities that revoke authorization (Req. 3.4) and
delegate privileges (Req. 3.6) are part of the access control
policy. The integrity of the authorization objects is also
important (Req. 3.5).

Access control failures include actions that do not
correspond to access control rules, such as granting access to

369

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

unauthorized users and denying of access to authorized ones.
Access Control Mechanism Reliability (ACMR) addresses
the ability of the access control mechanism to correctly and
effectively perform its required functions under the
conditions in the operational environment. ACMR depends
on the following parameters:

),,,(ACMRasmACMRtestACNRreq RTTfACMR = (11)

where TACMRreg is the time spent on access control policy and
engineering requirements, TACMRtest is the time spent on
testing the access control mechanism and RACMRasm is the
reliability of adaptive access control maintenance carried out
by the Adaptive Security Management. The first two affect
the parameter E in Eq. 3.

Authorization has an important role for data integrity in
that the data should not be changed without proper
authorization. The objective of the Access Control
Mechanism Integrity (ACMI) is for the access control
mechanism to function correctly according to access control
rules and support data integrity. Access control failures are
actions that do not correspond to access control rules. In
general, ACMI can be measured during the data gathering
period as:

,
)()(

)(

ACIEac IEnwACn
ACnACMI

⋅+
= (12)

where wIEac is a weighting factor, n(IEAC) is the number of
integrity errors in access control, and n(AC) is the total
number of access control actions.

Authorization Policy Effectiveness (APE) denotes how
effective the authorization policy is at performing its
required functions under the potentially hostile conditions of
the operational environment. Authorization policy identifies
the specific users, user groups and types of users controlled
by the authorization mechanism. It also specifies the
permitted operations and authorization levels on
authorization objects, along with delegation privileges and
depth. Authorization Policy Effectiveness is enforced by the
authentication and access control mechanisms. Table XI
shows two operational security metrics used to address
Authorization Policy Effectiveness. Development of
predictive APE metrics requires attack modeling.

TABLE XI. EXAMPLES OF OPERATIONAL APE METRICS

Symbol Basic Measurable Component
APEop1 Number of authorization incidents for each reporting

period/average number of authorization incidents
APEop2 Hours used to manage authorization policy/average of

hours used to manage authorization policy

In GEMOM, authorization objects are namespaces,

topics, metadata, and messages. Authorization rights can be
granted for a single authorization object. Authorization
Object Integrity (AOI) depends on the Authorization Object

Structure (AOS) and integrity errors caused by authorization
objects IEAO:

),(AOIEAOSfAOI = . (13)

Access Control Effectiveness (ACE) can be based on

normalized and scaled Access Control Mechanism
Reliability and Authorization Policy Effectiveness:

,APEwACMRwACE APEACMR ⋅+⋅= (14)

where wx is the weighting factor of x. Access Control
Correctness (ACC) can be based on the normalized and
scaled Access Control Mechanism Integrity and
Authorization Object Integrity:

,AOIwACMIwACC AOIACMI ⋅+⋅= (15)

where wx is the weighting factor of x. Authorization strength
can be calculated from the normalized and scaled
authorization BMCs similar to how Authentication Strength
was calculated in Eq. 9.

Metrics from the Common Vulnerability Scoring System
(CVSS) [35], which is part of the Security Content
Automation Protocol (SCAP) [36], can be used to depict
how easy or difficult it is to access and exploit a known
vulnerability in the system. During the risk management
process, a known vulnerability might be deliberately allowed
to remain in the system. CVSS’ access vector metric
measures whether vulnerability is exploitable locally or
remotely, and the access complexity metric measures the
complexity of an attack that would be required to exploit the
vulnerability once an attacker has access to the SuI.

E. Confidentiality
The decomposition of confidentiality requirements is

shown in Figure 7 along with the identified BMCs in Table
XII. The main components of confidentiality are
cryptographic protection, physical security, and access
control.

Figure 7. Confidentiality decomposition.

Special cryptographic algorithm metrics [37] can be used
to measure the strength of cryptographic protection
implemented by end-to-end confidentiality algorithms (Req.
4.4). It is possible to use different algorithms based on the
required confidentiality level. See examples of cryptographic

370

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

algorithm metrics in Table XIII. Adequate access control is a
prerequisite for end-to-end-confidentiality, assured by access
control correctness and effectiveness metrics. Messages,
logs, metadata, and traceability information should only be
delivered to authorized recipients (Req. 4.1 and Req. 4.2).
The confidentiality classification requirement (Req. 4.3) also
belongs to the access control function. Protection of physical
devices and components which process and conserve data
(storage and memory), including protection of unauthorized
access to them, is vital, as stated by Req. 4.5.

TABLE XII. BMCS OF CONFIDENTIALITY

Symbol Basic Measurable Component
CCA Cryptographic protection of confidentiality

algorithm(s)
CCS Cryptographic protection of keys and secrets

ACE Access Control Effectiveness (see Eq. 14)

ACC Access Control Correctness (see Eq. 15)

PDCI Physical Devices and Components Integrity

PDCA Physical Devices and Components Accessibility

TABLE XIII. SOME CRYPTOGRAPHIC ALGORITHM METRICS [36]

Symbol Metrics
KL Key Length

ACO Algorithm Complexity

ATS Attack Steps

ATT Attack Time

CCA metrics address the cryptographic strength of the

overall confidentiality algorithm solution, whereas CCS
metrics concentrate on the correctness and effectiveness of
key and other secret management mechanisms. The quality
of the confidentiality key and secret management
architecture, CECKSM, also has a strong effect on CCS. In
other words:

),,(CECKSMKLfCCS C= (16)

where KLC is the key length of the confidentiality algorithm.
The overall confidentiality algorithm solution strength is:

),,,,(CCC ATTATSACOCCSfCCA = (17)

where ACOC is algorithm complexity, ATSC attacks steps
metric, and ATTC attack time metric of the confidentiality
algorithm.

Physical devices and components of the GEMOM system
include server and client computers, smart cards, and
networking equipment. The physical protection of
accessibility and integrity of the servers in GEMOM is
typically assumed to be high; they reside in buildings that

have high physical security measures and protect the
accessibility and integrity of client computers. A three-value
(‘high-medium-low’) ordinal scale is practical in GEMOM
for the assessment of the physical accessibility PDCA, and
integrity, PDCI.

Confidentiality strength can be calculated as a weighted
summation of the normalized and scaled confidentiality
BMCs, similar to the way in which Authentication Strength
is calculated in Eq. 9. CVSS includes the confidentiality
impact metric of CVSS for measuring the impact that
successful exploitation of vulnerability in the system would
have on confidentiality.

F. Integrity-enforcing Mechanisms
The following sub-section discusses integrity-enforcing

mechanisms: integrity algorithms and related keys and
secrets. GEMOM requirements emphasize messages, logs,
and metadata integrity (Req. 5.1), environment integrity
(Req. 5.2) and persistent data integrity (Req. 5.3), with the
latter two also addressed in the confidentiality
decomposition. In general, environment integrity can be
measured by security assurance metrics, like test coverage,
and results from security and robustness testing tools.

TABLE XIV. BMCS OF INTEGRITY-ENFORCING ALGORITHMS

Symbol Basic Measurable Component
CEIA Correctness and Effectiveness of Integrity

Algorithm(s)
CEIAS Correctness and Effectiveness of Cryptographic Keys

and Secrets used in Integrity Algorithm(s)

Cryptographic algorithm metrics, as in the case of

confidentiality algorithms, can be used to measure the
security strength of integrity-enforcing mechanisms, which
consist of Correctness and Effectiveness of the Integrity
Algorithm(s) (CEIA) and the Correctness and Effectiveness
of Cryptographic Keys and Secrets used in Integrity
Algorithm(s) (CEIAS), see Table XIV. CEIAS depends on
the security strength of keys and secrets and the Correctness
and Effectiveness of the Integrity Key and Secret
Management (CEIKSM):

),,(CEIKSMKLfCEIAS I= (18)

where KLI is the key length of the integrity algorithm. The
overall correctness and effectiveness of integrity-enforcing
the algorithm(s) is:

),,,,(III ATTATSACOCEIASfCEIA = (19)

where ACOI is the algorithm complexity, ATSI is the attack
steps metric, and ATTI is the attack time metric of the
integrity algorithm.

The Integrity impact metric of CVSS measures the
impact of a successfully exploited vulnerability (none,
partial, complete) on integrity.

371

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

G. Availability
Decomposition for GEMOM availability requirements is

shown in Figure 8. As the resilience of the GEMOM system
is a critical need, the loss of availability can be a major
security complication. Furthermore, when executing
resilience or self-protection actions, it is very important to
preserve the overall security performance and level. The
main availability requirements of GEMOM – robustness to
faults (Req. 6.1), self-healing capabilities (Req. 6.2), and
sudden reconfiguration capabilities (Req. 6.3) – emphasize
the system’s resilience.

Metadata must also be available when spawning new
redundancy (Req. 6.4). Moreover, authentication,
authorization and secure communication (via confidentiality
and integrity) are crucial objectives that are considered to be
preconditions for availability.

QoS performance metrics are also part of the availability
decomposition, offering important availability information,
especially for the detection of DoS attacks.

Availability has traditionally been measured as the
percentage of time for which the target system is ‘up’ or, in
other words, when information is available from the system.
However, this notion does not capture degraded states, a
non-binary scale between a system being ‘up’ and ‘down’,
which a resilient system such as GEMOM can demonstrate.
GEMOM Availability metrics AV can be based on the
following parameters:

),,,,,,(QIRICIAUASfAV = (20)

where AS is average authentication strength, AU is
authorization effectiveness, I is integrity effectiveness, C is
confidentiality effectiveness, RI is the Resilience Indicator,
and QI is the QoS indicator. The Resilience Indicator (RI) is
based on the following parameters during the data gathering
period:

),,),(min(SRPSHPSDfRI = (21)

where min(SD) is the minimum system down-time, SHP is
Self-Healing Performance and SRP is Sudden
Reconfiguration Performance. The self-healing requirement
requires the system to be able to automatically create new
redundancy of its operation.

The Self-Healing Performance (SHP) depends on the
following parameters:

),,(TPRASHSRfSHP = (22)

where TPRA is the Temporal Performance of Self-Healing
Actions and SHSR is the Self-Healing Success Rate.

The Self-Healing Success Rate (SHSR) is

,
)(
)(

SHAn
SSHAnSHSR = (23)

where n(SSHA) is the number of successful self-healing
actions and n(SHA) is the total number of self-healing
actions during the data gathering period. Similarly, the
Sudden Reconfiguration Performance (SRP) of resources can
be tracked by logging the success rate and temporal
performance.

Until recently, QoS and security metrics lived in separate
worlds. Some security attacks have affected application
performance, and the most important objective of QoS
management is to ensure application performance [16]. The
GEMOM monitoring approach uses both metrics for security
availability and application performance measurement. In
GEMOM, QoS monitoring is founded on anomaly
monitoring, which consists of anomaly detection processes
and a hierarchy of anomaly correlation processes, and
combining the output anomalies from a set of models in
anomaly detectors. The anomaly models describe the various

Figure 8. Availability decomposition.

372

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

aspects of the normal patterns, while misuse models refer to
the abnormal patterns of the system. Space limitations
prevent a more detailed investigation of QoS metrics in this
study. The QoS indicator (QI) is a high-level indicator of the
overall QoS level and is calculated from the metrics based on
the anomaly and misuse models.

TABLE XV. GEMOM MACHINE-RELATED COUNTERS

Symbol Counter
CIT, CPT CPU Idle Time, CPU Processing Time

AM Available Memory

PA Paging Activity

BU, max(B) Bandwidth Utilization, Maximum Bandwidth

L, V Latency, Visibility between two machines

TABLE XVI. PUBLISH/SUBSCRIBE ACTIVITY COUNTERS

Symbol Counter
PPN, PPT Publications Per Namespace, Topic

PPB, PPC Publications Per Broker, Client

MPB, MPC Messages Per Broker, Client

DPB, DPC Protocol Breaches Per Broker, Client

NN, NT Number of Namespaces, Topics

In GEMOM, some averaged counters that measure

machine- and functionality-related information are calculated
and updated at certain time intervals. They are examples of
intrinsic measurement functionalities that support the
measurability of availability. Counters utilized in the
GEMOM availability, resilience, and QoS measurements are
listed in Tables XV and XVI [16]. Increased bandwidth
utilization and latency are symptoms of DoS attacks.
Publication and subscription activity counters are used to
further investigate whether namespaces or topics are under
attack.

The Availability impact metric of CVSS measures the
impact of a successfully exploited vulnerability on
availability, using values of none, partial, and complete.

H. Non-Repudiation
Intuitively, non-repudiation can be seen as a stronger

variant of authentication, in which identities must be verified
by proof-of-identity mechanisms. Core evidence in non-
repudiation is the identity of origin, receipt, submission
and/or delivery of messages. Non-repudiation can be
implemented using a trusted third party or, in some cases,
without using one. A decomposition of non-repudiation [26]
is shown in Figure 9 and the identified BMCs are shown in
Table XVII.

The evidence should be consistent and reliable and its
integrity should be protected. The originators and receptors

must provide proof-of-identity (Req. 7.1) as well as
published and received messages (Req. 7.2).

Proof-of-identity evidence is fully consistent if all
identity conclusions from the collection of proof-of-identity
evidence E match. Identity conclusion is a real-world
identity, as shown by the proof-of-evidence material. Let EID
be the subset of E containing evidence that all identity
conclusions are the same and presenting the majority of the
results in E. Then Consistency of the Proof-of-Identity
Evidence (CPIE) can then be defined as follows:

,
)(
)(

En
EnCPIE ID= (24)

where n(EID) is the number of elements in EID and n(E) is the
number of elements in E.

Figure 9. Non-repudiation decomposition [26].

TABLE XVII. BMCS OF NON-REPUDIATION

Symbol Basic Measurable Component
CPIE Consistency of Proof-of-Identity Evidence

RPIE Reliability of Proof-of-Identity Evidence

IPIE Integrity of Proof-of-Identity Evidence

RNRM Reliability of Non-Repudiation Mechanism

INRM Integrity of Non-Repudiation Mechanism

The reliability of Proof-of-Identity Evidence (RPIE)

depends on the following factors:

),,(3 POIAp RTfRPIE = (25)

where T3p is a trust and reputation function of the third party
providing proof-of-identity and RPOIA is the reliability of the
proof-of-identity algorithm(s) in use.

The Integrity of Proof-of-Identity Evidence (IPIE)
metrics can be designed based on the general integrity
metrics of Eq. 4. Integrity errors are possible in the chain-of-
proof leading to the identity conclusions: in message
communication, relaying of data, storage processing, and
archival and backup procedures. Furthermore, problems in
application software, hardware, operating systems
telecommunications equipment, user data, system data and

373

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

external interfaces [34] can contribute to integrity errors in
the proof-of-identity evidence.

The Reliability of Non-Repudiation Mechanism (RNRM)
addresses the reliability of the non-repudiation mechanism
and its associated processes, while the Integrity of Non-
Repudiation Mechanism (INRM) is concerned with the
integrity of them. The technical part of RNRM and INRM
metrics can be based on the relevant general metrics models
discussed above. The human behavioral (process) part
depends on reputation and trust issues.

I. Adaptive Security
Requirements 1.1, 1.2, and 1.3 refer to the need for an

adaptive trust metric that can be used when making decisions
to change system parameters in authentication, authorization,
and confidentiality management. In particular, authentication
mechanisms, authorization mechanisms and the
confidentiality algorithms will be varied based on this
metric.

A user-dependent trust metric, TUID, is a function of
context, authentication strength, threat information, and a
user-dependent trust function:

TUID = f(κ, τ, AS, ξ ,t), (26)

where UID is user ID, κ is context information, τ is time
instant, ASUID is the user’s authentication strength, ξ is a
variable reflecting the threat situation, and t is a trust
function. Threat variable ξ can be based on off-line threat
and vulnerability information and measured evidence of
applicable increased threat(s) in the system.

Let the system’s confidence in the trust metric TUID be
ctrust. The adaptive trust indicator ATUID used for adaptive
security management decision-making is:

.UIDtrustUID TcAT ⋅= (27)

The trust function t represents the system’s trust in the

user’s behavior. If the user behaves well, the value of the
trust function increases as a function of time asymptotically,
according to a planned trust management solution. Bad
behavior decreases the next value of the user’s trust function.
Examples of bad behavior in GEMOM include attempts to
read or destroy a topic without rights, spamming, and
simultaneous logging attempts.

J. Summary of BMC Sources
Table XVIII summarizes the origin of BMCs for security

metrics focusing on security-enforcing mechanisms in
GEMOM.

The numbers in the columns represent the security
dimensions of Figure 6 (1 = adaptive security, 2 =
authentication, 3 = authorization, 4 = confidentiality, 5 =
integrity, 6 = availability, and 7 = non-repudiation). An ‘×’
indicates the use of the security metrics of the respective
BMC type in GEMOM [16].

TABLE XVIII. SOURCES OF BASIC MEASURABLE COMPONENTS [16]

BMC Source 1 2 3 4 5 6 7
Metrics by security requirement
decomposition

×

×

×

×

×

×

×

Cryptographic strength metrics × × × ×

Metrics based on anomaly and
misuse models (attacker-oriented
weakness metrics)

×

×

×

Availability metrics based on QoS
application performance metrics

 ×

System intrinsic security-relevant
metrics

 ×

Trust and reputation metrics × ×

Vulnerability metrics × × × × × × ×

K. Confidence, Trust and Trustworthiness Calculation
The following sub-section introduces a framework for

assessing and calculating the trustworthiness of the
measurements of the overall security of the system through a
combination of security-based trust and trust-based security
[38], see Figure 10. As sub-frameworks, the framework (i)
contains security, trust, and confidence level calculations and
(ii) maps trust and confidence into a trustworthiness metric.
These frameworks are based on an earlier framework
presented in [18], which is modified by separating trust and
confidence, and then combining them to form a
trustworthiness metric. The definitions of trust, confidence,
and trustworthiness are similar to those presented in [39],
with the following exceptions:
• Trust means the level of trust in the reliability of the

estimation of the security level of each BMC;
• Confidence means the level of accuracy of and/or

the assurance in the above mentioned trust
relationship; and

• Trustworthiness means the level of trust in the
reliability of the estimation of the security level of
each BMC and a measurement of the degree to
which the accuracy of and/or the assurance in this
trust is trustworthy and can be verified.

The values of trust and confidence are both expressed as
a number between zero and one, based on Bayesian statistics.
A trust value equal to one indicates absolute trust and a value
close to zero indicates low trust. A confidence value equal to
one indicates high confidence in the accuracy of the trust
value and a value close to zero indicates low confidence.
Furthermore, a trustworthiness value close to zero indicates
untrustworthiness and a value close to one indicates high or
complete trustworthiness.

Initially, the user or expert assigns the default security
levels. The normalized Security Level SLn, 1 ≤ SLn ≤ 10, is
calculated as follows from the measured Security Level (SL):

,1
9

)min()max(+−= SLSL
SL

SLn
(28)

374

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

where max(SL) is the maximum value of SL and min(SL) is
its minimum value. SL values from 1 to 4 indicate low
security, from 5 to 7 represent good security, and from 8 to
10 indicate high security.

TABLE XIX. TRUSTWORTHINESS OF THE SECURITY MEASUREMENT

Decomposition BMC

Meas.
sec.
level

[1...10]

Est.
trust
value

[0...1]

Conf-
idence
value

[0...1]

Trust-
worth-
iness

[0...1]
AIU AIU tAIU

cAIU

TAIU

AIS AIS tAIS cAIS TAIs

Authentication

… … … … …

AS AS tAS cAS TAS Authorization

… … … … …

… … … … … …

In the following, BMC ∈ B, where BMC denotes a BMC

under investigation and B is the collection of all BMCs of the
SuI. Similarly, SL ∈ S, where SL denotes a Security Level
and S is the collection of all security levels associated with
BMC. In order to calculate trustworthiness, like [39] and
[40], some notations, associated with each BMC ∈ B and its
Security Level SL are defined as follows:

• t{BMC, SL}: trust value of BMC for security
level SL. It has the property of 0 ≤ t{BMC, SL}
≤ 1;

• σ{BMC, SL}: standard deviation of trust value
of BMC for security level SL; and

• c{BMC, SL}: confidence value of BMC for
security level SL. It also has the property of 0 ≤
c{BMC, SL} ≤ 1.

Our framework uses the modified Bayesian approach

[39][40][41] to evaluate trust in the security measurement of
a BMC. The measurement of the security level of a BMC is
assumed to be trusted with the probability of θ. In the
modified Bayesian approach, several distributions can be
used to represent θ, such as Beta, Gaussian, Poisson, and
Binomial. The Beta distribution is the most promising of
these due to its flexibility and simplicity, and because its
conjugate is Beta distribution [40][41]. The trust value of the
SL of a BMC can be calculated as the expectation value of
the Beta distribution Beta(θ, α, β):

,)),,((},{
βα

αβαθ
+

== BetaESLBMCt
(29)

where α and β denote the degree of normal behaviors and
misbehaviors, respectively. In this case, while normal
behavior represents a security level that can be trusted,
misbehavior means that the security level is low and cannot
be trusted. Trust (t) values of 0 ≤ t < 0.2 indicate no trust, 0.2
≤ t < 0.5 represent low trust, 0.5 ≤ t < 0.8 represent good
trust, and values of 0.8 ≤ t ≤ 1.0 indicate a high level of trust
(see Table XX).

The standard deviation of the trust value t{BMC, SL} is
calculated as follows, based on [40][41]:

.
)1()(

)),,((},{

2 +++
=

=

βαβα
αβ

βαθσσ BetaSLBMC

 (30)

The confidence value of BMC for Security Level SL is

calculated as follows, based on [40][41]:

.
)1()(

121

)),,((121},{

2 +++
−=

−=

βαβα
αβ

βαθσ BetaSLBMCc
 (31)

Figure 10. Trustworthiness, confidence and trust calculations.

375

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Confidence (c) values of 0 ≤ c < 0.2 indicate no
confidence, 0.2 ≤ c < 0.5 indicate low confidence, 0.5 ≤ c <
0.8 represent good confidence, and values of 0.8 ≤ c ≤ 1.0
indicate a high level of confidence (see Table XX).

In order to facilitate trust-based decisions, trust and
confidence have been combined into a single value, as noted
above. This value, trustworthiness T{BMC, SL}, is measured
in the same way by combining the estimated levels of trust
and confidence with some rules for the interpretation, and
has the following property: 0 ≤ T{BMC, SL} ≤ 1. As in [40],
if the confidence value of BMC is high, the trust value of
BMC plays a more important role for the trustworthiness.
Thus, the trust of BMC should have a larger weight than the
confidence value of BMC. Conversely, if the confidence
value of BMC is low, the confidence value of BMC is clearly
more important than the trust value of BMC. Therefore, the
trust value of BMC should have less weight than the
confidence value of BMC. The trustworthiness T{BMC, SL},
associated with t{BMC, SL} and c{BMC, SL} is defined as:

22

2

2

2

2

11

)1()1(

1},{

yx

y
c

x
t

SLBMCT
+

−
+

−

−=

(32)

where x and y are parameters that determine the relative
importance of the trust value of BMC, with t denoting
t{BMC, SL} versus the confidence value of BMC, and c
denoting c{BMC, SL}. [41] showed that the appropriate
values of x and y are 2 and 9 , respectively, for mapping
trust and confidence to trustworthiness, and can be adjusted
to the needs of a particular application. Trustworthiness (T)
values of 0 ≤ T < 0.2 indicate a result that is not trustworthy,
0.2 ≤ T < 0.5 represent low trustworthiness, 0.5 ≤ T < 0.8
indicate good trustworthiness, and values of 0.8 ≤ T ≤ 1.0
indicate high trustworthiness (see Table XX).

The assessment and calculation of the trustworthiness of
the security measurement of the system as a whole is based
on the aggregation and propagation of measurements carried
out in the system at different levels. This can mostly be
automated since the BMCs are modeled automatically on the
basis of the structural and functional relations between them.

The trustworthiness of the security measurement of the
GEMOM system (see Tables XIX and XX) is defined by the
following combination of the trustworthiness-octuple:

),,,,,,(
),(

),(),(
),(),(

),(),(

7654321

7

65

43

21

TTTTTTTT
curityAdaptiveSeT

nrepudiatioNonTtyAvailabiliT
IntegrityTalityConfidentiT

ionAuthorizatTtionAuthenticaT

w

−

(33)

where ()()... 71 TT is the trustworthiness-septuple, and:

• Each term T1() … T7() has one or more BMCs, each
of which has an associated trust value calculated as
above;

• The values of the trustworthiness-septuple, in
combination, form trustworthiness of the measured
security level of the system as a whole; and

• Tw(T1, T2, T3, T4, T5, T6, T7) = r1⋅T1 + r2⋅T2 + r3⋅T3 +
r4⋅T4 + r5⋅T5 + r6⋅T6 + r7⋅T7 defines a measure in which
each measure of trustworthiness, (T1 … T7) is
dependent on the weighting factor (r1 … r7)
attributed to it.

TABLE XX. LINGUISTIC EQUIVALENCES OF SECURITY, TRUST,
CONFIDENCE AND TRUSTWORTHINESS LEVELS

Descr.

Security
Level

SL [1…10]

Trust
Level

t [0…1]

Conf.
Level

c [0…1]

Trustw.
Level

T [0…1]
High 8 ≤ SL ≤ 10 0.8 ≤ t ≤ 1.0 0.8 ≤ c ≤ 1.0 0.8 ≤ T≤ 1.0

Good 5 ≤ SL < 8 0.5 ≤ t < 0.8 0.5 ≤ c < 0.8 0.5 ≤ T< 0.8

Low 2 ≤ SL < 5 0.2 ≤ t < 0.5 0.2 ≤ c < 0.5 0.2 ≤ T< 0.5

No 1 ≤ SL < 2 0.0 ≤ t < 0.2 0.0 ≤ c < 0.2 0.0 ≤ T< 0.2

VII. DISCUSSION
This study has concentrated on the metrics of

effectiveness and the correctness of security-enforcing
mechanisms of GEMOM. Intuitively, these security metrics
form the core technical metrics of the system. However,
there is a need for security metrics that address the overall
security quality of the system from a technical perspective
and with regard to secure lifecycle management. In addition,
metrics must be aligned with business management
objectives.

Every security metric has challenges. Three different
categories of metrics presented in this study can be identified
on the basis of their feasibility challenge:
1. Hard-to-measure metrics, for which the main

challenges are measurability, attainability, availability,
scalability, and portability. This category includes
special metrics such as integrity and non-repudiation
metrics;

2. Hard-to-outline metrics, the main challenges for
which are objectivity, non-bias, representativeness, and
contextual specificity. The category includes, in
particular, reliability metrics and cryptographic
algorithm metrics; and

3. Integrated metrics, the main challenges for which are
controllability, scalability, portability, meaningfulness,
representativeness, and contextual specificity. This
category contains integrated metrics that are composed
of several other metrics.

Many of the metrics and parameter dependencies
introduced in this study require long-term data to be gathered
in order to establish a sufficient reference value.

376

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

Consequently, these metrics are not directly applicable in a
realistic system. If the reference is available, the metrics are
applicable. Data gathering for non-repudiation metrics might
take even longer since investigations of non-repudiation are
quite rare. The feasibility criteria of security metrics for
software-intensive systems in general are investigated in
[42].

Measurement techniques of software-intensive systems,
as a whole, are not yet particularly feasible; the same applies
to security measurement. The disintegration of the security
research field is a challenge to the development of security
metrics. Moreover, the field is suffering from the lack of a
common notation to describe security issues, its different
components, and multi-disciplinary dependencies. Extremely
subjective measures are often used, despite their lack of
value [18]. There is also entrenched reliance on subjective,
human, and qualitative input [4].

Several studies have criticized the feasibility of
measuring security and developing security metrics to
present actual security phenomena [43][44][45]. One
important source of challenges is the major role that luck
plays, especially in the weakest links of security solutions. In
designing a security metric, it is important to consider the
fact that the metric simplifies a complex socio-technical
situation down to numbers or partial orders.

The U.S. National Institute of Standards and Technology
(NIST) published a report on directions in security metrics
research [4]. According to this report, security metrics are an
important factor in making sound decisions about various
aspects of security, ranging from the design of security
architectures and controls to the effectiveness and efficiency
of security operations. Strategic support, quality assurance,
and tactical oversight are seen as the main uses of security
metrics. The NIST report proposed several lines of research
for security metrics: (i) formal models of security
measurement and metrics, (ii) historical data collection and
analysis, (iii) artificial intelligence assessment techniques,
(iv) practical and concrete measurement methods, and (v)
intrinsically measurable components.

The present study makes preliminary advances in items
(i), (iv), and (v). Historical data collection and analysis is still
required in order to further develop the ideas presented here,
with the goal of formalizing and standardizing security
measurement and metrics. As reiterated in the NIST report,
security metrics development poses difficult and
multifaceted problems for researchers. A quick resolution is
not expected and it is likely that not all aspects of the
challenges are resolvable [4].

VIII. RELATED WORK
This section investigates related work from the point of

view of (i) metrics for security-enforcing mechanisms and
the overall system’s security quality, (ii) security assurance
metrics, and (iii) metrics addressing the secure system
lifecycle. It also notes some relevant standards and related
work in trust, confidence and trustworthiness calculation.
Surveys of security metrics can be found in [34][46][47][48].

Metrics research is more mature in software engineering
than it is in security engineering. There are software metrics

for software specifications, designs, code coverage,
cohesion, complexity, performance, software development
processes and resources. Fenton and Pfleeger presented a
comprehensive investigation of software metrics in [5].
Particular software metrics have the potential to be used in
the measurement of the overall security quality of systems.

A. Metrics for Security-enforcing Mechanisms and
Security Quality
Wang and Wulf [26] described a general-level

framework for measuring security based on a decomposition
approach. The present study enhances Wang and Wulf’s idea
by introducing a security metrics development process and
by proposing actual security metrics and parameter
dependencies for an example system. Heyman et al. [49]
utilized a security objectives decomposition approach in
order to define a security metrics framework and to interpret
the results. They associated security metrics with security
patterns and exploited the relationships between security
patterns and security objectives to enable the interpretation
of measurements. The security metrics development
approach in the present study can integrate their approach:
security patterns can be investigated during the security
requirement and modeling phase.

The approaches of Wang and Wulf and Heyman et al.,
along with the ideas in the present study, show the feasibility
of decomposition approaches for identifying measurable
issues and for relating the developed metrics to original
security objectives.

TABLE XXI. COMPARISON OF METRICS APPROACHES FOR SECURITY-
ENFORCING MECHANISMS AND SECURITY QUALITY

Reference Pros Cons
Advances in
the Present
Approach

Wang and
Wulf [26]

Relationships
between
requirements
and component
metrics are
visible

Heyman et
al. [49]

Association
between
patterns and
metrics

Lack of
systematic
overall
methodology
description

Complete
methodology
description
from threat and
vulnerability
analysis to a
balanced and
detailed metrics
collection

SCAP [36] Aims at a
standardized
approach

Lack of
systematic
threat-driven
solutions;
emphasis on
vulnerabilities

Complete
methodology
addresses both
threats and
vulnerabilities

Howard
[51],
Manadhata
and
Wing [52]

Attack surface
is an interesting
concept for
overall system
security quality

No systematic
connection to
requirements of
security
functions

Emphasis on
requirements of
security
functions

The CVSS [35] (Common Vulnerability Scoring System)

is a global initiative designed to provide an open and
standardized method for rating information technology
vulnerabilities, an example of weakness metrics. The CVSS,

377

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

along with some other security vulnerability and weakness
enumerations, has been integrated by the NIST into its
Security Content Automation Protocol (SCAP) [36]. While
this is an important standardization effort in vulnerability
management, CVSS and SCAP are not complete solutions.
They lack approaches to obtain evidence of the security
strength of security-enforcing mechanisms and
methodologies to relate actual metrics to original security
objectives. For example, CVSS can tell that the highest risk
of a certain application is buffer overflow, but it cannot
identify the potential operational impact of a buffer overflow
[50].

Another weakness metric, the attack surface of a
software system, is parts that can be accessed by
unauthenticated users, such as attackers, including the set of
entry points, exit points, the set of channels and the set of
non-trusted data items. Howard [51] informally introduced
the notion of attack surface, and Manadhata and Wing [52]
proposed an abstract attack surface measurement method,
based on Howard’s notion. Table XXI compares these
approaches.

B. Security Assurance Metrics
The metrics framework proposed by Bulut et al. [53]

addresses the security assurance of telecommunication
services and can be integrated to the present study’s metrics
development approach via reliability metrics – security
assurance increases the reliability of security-enforcing
mechanisms. In Bulut et al.’s approach, a metric defines the
process towards a normalized assurance level (one out of
five levels) for an object in the infrastructure. Assurance
metrics include test coverage and software maturity metrics.
Unlike the present study, Bulut et al. did not present any
metrics development methodology, instead emphasizing
metrics selection. Another NIST effort, the Software
Assurance Metrics and Tool Evaluation (SAMATE) project
[54], sought to help answer various questions on software
assurance, tools, and metrics.

C. Metrics for Secure System Lifecycle
The scope of this study does not include secure system

lifecycle, organizational, and business management.
However, it does investigate some approaches that could be
integrated into the security metrics development process.
Chandra and Khan [55] introduced a three-stage security
estimation life cycle. The first stage, the input stage, is
analogous to the threat and vulnerability analysis stage of the
present study’s metrics development approach. The second
stage, the ‘security estimation stage,’ corresponds with the
subsequent stages in the present approach. Finally, the
‘output stage’ emphasizes the overall analysis.

D. Standardization
There have been a number of major standardization and

recommendation efforts for security evaluation and the
certification of technical systems. However, each of these
have only achieved limited success in advancing security
measurability [4]. This is largely because the standards are
rigid, created for certification, and carrying out their

processes is time and money-consuming. The approach
presented in this study and similar ones, in which the
relationships between security requirements and the resulting
metrics are clearly visible in the early phases of R&D, can
considerably reduce the time and money needed for
certification due to early problem solving. The most widely
used of these efforts is the Common Criteria (CC) ISO/IEC
15408 International Standard [56] for security evaluation.
During the CC evaluation process, an Evaluation Assurance
Level (EAL), from EAL1 to EAL7, is assigned to the SuI.
The CC standard is based on a combination of several earlier
standards, including TCSEC (Trusted Computer System
Evaluation Criteria) [57], ITSEC (Information Technology
Security Evaluation Criteria) [58], CTCPEC (Canadian
Trusted Computer Product Evaluation Criteria) [59], and FC
(Federal Criteria for Information Technology Security) [60].
Interpretations of the TCSEC have been published so that
they can be applied to other contexts such as the TNI
(Trusted Network Interpretation of the TCSEC) [61].

E. Trustworthiness Calculation
Zouridaki et al. [39][41] and Li and Li [40] introduced

methodologies for calculating trustworthiness. They use
modified Bayesian approaches by combining trust and
confidence in their methodologies. The lack of protection
against malicious attacks and/or the leakage of sensitive
information are challenges in their approaches, however. The
present study advanced these approaches by providing a
synthesis of risk-based security, security-based trust and
trust-based security into one supra-additive synergistic
framework.

IX. CONCLUSIONS AND FUTURE WORK
While systematic approaches for security metrics

development are desirable, they are rare because the current
practice of information security is a highly diverse field;
widely accepted models, methods, and tools are missing.

The present study has proposed high-level security
metrics and parameter dependencies for an example
distributed messaging system, GEMOM. The metrics have
been developed utilizing a novel security metrics
development approach based on risk-driven security
requirement decomposition. The emphasis is on the
effectiveness and correctness of security-enforcing
mechanisms for authentication, authorization,
confidentiality, integrity, availability, and non-repudiation.
The developed metrics can be utilized as decision-support
evidence in runtime adaptive security management and off-
line system security engineering and management. Some
metrics require long-term data gathering before they can be
utilized for on-line monitoring and management. The main
challenges relate to difficulties in attaining measurements,
outlining the scope, and integrating the metrics.

Reliability and integrity are generally considered to be
important objectives in security solutions, especially in
authentication and authorization systems. A notable
observation from the study is that reliability and integrity
metrics are a solid part of all decompositions of security
requirements for security-enforcing mechanisms. They can

378

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

therefore be considered as horizontal Basic Measurable
Components, common to all security functions. The study
clearly shows the dependencies between them and other
issues. Intrinsic reliability and integrity-measurability
increasing mechanisms and self-check functionalities built in
the system and its modules increase the coverage of security
evidence gathering.

This paper has described the synthesis of the risk-based
assessment of BMCs, a security-based trust model, and a
trust-based security model into one framework for assessing
and calculating the trustworthiness of the development of
measurable security. This combination extends the
capabilities of each model and leverages their best features in
order to support the adaptive development of quantifiable or
measurable security.

Further work is needed in the feasibility analysis and
validation of the proposed metrics as well as the metrics
development approach. Another interesting direction for
further experimentation and analysis is building intrinsic
security-measurability functionality in the system and its
components. As this study has concentrated on the security-
enforcing mechanisms, further work is also needed in terms
of investigating metrics for security quality in the system in
general and metrics addressing secure system lifecycle,
organizational, and business management. Future work will
also include more rigorous algorithms for analyzing
functional relationships of metrics and their composite effect,
and how they influence the calculation of the trustworthiness
of the system as a whole.

ACKNOWLEDGMENTS
The work presented in this article has been carried out in

the GEMOM FP7 research project, partly funded by the
European Commission. The authors acknowledge the
contributions to the GEMOM system description, threat
analysis, security requirements, GEMOM Monitoring Tool
and anomaly monitoring made by various GEMOM partners.

REFERENCES
[1] R. Savola and H. Abie, “Identification of basic measurable security

components for a distributed messaging system”, SECURWARE
2009, Athens/Glyfada, Greece, Jun. 18-23, 2009, pp. 121-128.

[2] R. Savola, “A security metrics taxonomization model for software-
intensive systems”, Journal of Information Processing Systems, Vol.
5, No. 4, Dec. 2009, pp. 197-206.

[3] H. Abie, I. Dattani, M. Novkovic, J. Bigham, S. Topham, and R.
Savola, “GEMOM – Significant and measurable progress beyond the
state of the art”, ICSNC 2008, Sliema, Malta, Oct. 26-31, 2008, pp.
191-196.

[4] W. Jansen, “Directions in security metrics research”, U.S. National
Institute of Standards and Technology, NISTIR 7564, Apr. 2009, 21
p.

[5] N. E. Fenton and S. L. Pfleeger, “Software metrics – a rigorous &
practical approach”, 2nd Ed., PWS Publishing Company, 1997, 638 p.

[6] G. Jelen, “SSE-CMM Security metrics”, NIST and CSSPAB
Workshop, Washington D.C., Jun., 2000.

[7] R. Savola, “Towards a taxonomy for information security metrics”,
QoP 2007, Alexandria, Virginia, USA, Oct. 29, 2007, pp. 28-30.

[8] R. Savola, “A taxonomical approach for information security metrics
development”, Nordsec 2007 Supplemental Booklet, Reykjavík,
Iceland, Oct. 11-12, 2007, 11 p.

[9] D. B. Parker, “Computer Security Management”, Reston Publishing
Company, Reston, Virginia, USA, 1981.

[10] ITU-T Recommendation X.805, “Security architecture for systems
providing end-to-end communications”, 2003.

[11] D. Longley and M. Shain, “Data and computer security: dictionary of
standards, concepts and terms”, Macmillan, 1987.

[12] D. Gollmann, “Computer security”, John Wiley & Sons, 1999.
[13] R. C. Summers, “Secure computing, threats and safeguards”,

McGraw-Hill, 1997.
[14] R. Savola, “Current and emerging security, trust, dependability and

privacy challenges in mobile telecommunications”, DEPEND 2009,
Athens/Glyfada, Greece, Jun. 18-23, 2009, pp. 7-12.

[15] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing”, IEEE
Tr. on Dependable and Secure Computing, Vol. 1, No. 1, Jan./Mar.
2004, pp. 11-33.

[16] R. Savola and H. Abie, “Development of security metrics for a
distributed messaging system”, AICT 2009, Baku, Azerbaijan, Oct.
14-16, 2009, 6 p.

[17] R. Savola, “Requirement centric security evaluation of software
intensive systems”, 2nd Int. Conf. on Dependability of Computer
Systems DepCOS-RELCOMEX ’07, Szklarska Poreba, Poland, Jun.
14-16, 2007, pp. 135-142.

[18] R. Savola and H. Abie, “On-line and off-line security measurement
framework for mobile ad hoc networks”, Journal of Networks, Vol. 4,
No. 7, Sep. 2009, pp. 565-579.

[19] M. Howard and D. LeBlanc, “Writing secure code”, Microsoft Press,
2003, 768 p.

[20] OWASP: Open Web Application Security Project.
http://www.owasp.org./

[21] C. Alberts and A. Dorofee, “Managing information security risks: the
OCTAVE (SM) approach”, Addison-Wesley, 2003. 512 p.

[22] H. Abie and Å. Skomedal, “A conceptual formal framework for
developing and maintaining security-critical systems”, International
Journal of Computer Science and Network Security, Vol. 5, No. 12,
Dec. 2005., pp. 89-98.

[23] R. Savola, “Development of security metrics based on decomposition
of security requirements and ontologies”, ICSOFT 2009, Vol. 2,
Sofia, Bulgaria, Jul. 26-29, 2009, pp. 171-174.

[24] D. Firesmith, “Specifying reusable security requirements”, Journal of
Object Technology, Vol. 3, No. 1, Jan./Feb. 2004, pp. 61-75.

[25] A. M. Davis, “Software requirements: objects, functions and states”,
Prentice Hall, Englewood Cliffs, NJ, 1993.

[26] C. Wang and W. A. Wulf, “Towards a framework for security
measurement”, 20th National Information Systems Security
Conference, Baltimore, MD, Oct. 1997, pp. 522-533.

[27] M. Howard and D. LeBlanc, “Writing secure code”, Microsoft Press,
2003, 768 p.

[28] R. C. Thomas, “12 tips for designing an infosec risk scorecard (its
harder than it looks)”, newschoolsecurity.com, Sep. 14, 2009.

[29] H. Li and G. Jiang, “Semantic message oriented middleware for
Publish/Subscribe networks”, C31 Technologies for Homeland
Security and Homeland Defense III. SPIE, Vol. 5403, 2004, pp. 124-
133.

[30] D. Lewis, J. Keeney, D. O’Sullivan, and S. Guo, “Towards a
managed extensible control plane for knowledge-based networking”,
LNCS Large Scale Management of Distributed Systems, Springer,
4269/2006 (0302-9743), 2006, pp. 98-111.

[31] S. Parkin, D. Ingham, and G. Morgan, “A message oriented
middleware solution enabling non-repudiation evidence generation
for reliable web services”, LNCS, Springer, 4526/2007 (0302-9743),
2007, pp. 9-19.

[32] R. Savola and T. Frantti, “Core security parameters for VoIP in ad
hoc networks”, WPMC 2009, Sendai, Japan, Sep. 7-10, 2009, 5 p.

379

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

[33] L. Bernstein and C. M. Yuhas, “Trustworthy systems through
quantitative software engineering”, IEEE Computer Society, John
Wiley & Sons, 2005, 437 p.

[34] D. S. Herrmann, “Complete guide to security and privacy metrics –
measuring regulatory compliance, operational resilience and ROI”,
Auerbach Publications, 2007, 824 p.

[35] M. Schiffman, G. Eschelbeck, D. Ahmad, A. Wright, and S.
Romanosky, “CVSS: A Common Vulnerability Scoring System”,
National Infrastructure Advisory Council (NIAC), 2004.

[36] M. Barrett, C. Johnson, P. Mell, S. Quinn, and K. Scarfone, “Guide to
adopting and using the Security Content Automation Protocol
(SCAP)”, NIST Special Publ. 800-117 (Draft), U.S. National Institute
of Standards and Technology, 2009.

[37] N. Jorstad and T. S. Landgrave, “Cryptographic algorithm metrics”,
20th National Information Systems Security Conference, Baltimore,
MD, Oct. 1997.

[38] H. Abie, “Adaptive security and trust management for autonomic
message-oriented middleware”, MASS 2009, IEEE Symp. on Trust,
Security and Privacy for Pervasive Applications (TSP 2009), Macau,
China, Oct. 12-14, 2009, pp. 810-817.

[39] C. Zouridaki, B. L. Mark, M. Hejmo, and R. K. Thomas, “E-Hermes:
a robust cooperative trust establishment scheme for mobile ad hoc
networks”, Ad Hoc Networks, Vol. 7, Issue 6, Aug. 2009, pp. 1156-
1168.

[40] R. Li and J. Li, “Towards neutral trust management framework in
unstructured networks”, IEEE Symposium on Trust, Security and
Privacy for Pervasive Applications (TSP ’09), Macau SAR, China,
Oct. 12-15, 2009, pp. 771-776.

[41] C. Zouridaki, B. L. Mark, M. Hejmo and R. K. Thomas, “A
quantitative trust establishment framework for reliable data packet
delivery in MANETs”, ACM Workshop on Security of Ad Hoc and
Sensor Networks (SASN ’05), Alexandria, VA, Nov. 7, 2005.

[42] R. Savola, “On the feasibility of utilizing security metrics in software-
intensive systems”, International Journal of Computer Science and
Network Security, Vol. 10, No. 1, Jan. 2010, pp. 230-239.

[43] S. M. Bellovin, “On the brittleness of software and the infeasibility of
security metrics,” IEEE Security & Privacy, Jul./Aug. 2006, p. 96.

[44] D. McCallam, “The case against numerical measures of information
assurance”, Workshop on Information Security System Scoring and
Ranking (WISSSR), ACSA and MITRE, Williamsburg, Virginia,
May, 2001 (2002).

[45] J. McHugh, “Quantitative measures of assurance: prophecy, process
or pipedream?”, Workshop on Information Security System Scoring
and Ranking (WISSSR), ACSA and MITRE, Williamsburg, Virginia,
May, 2001 (2002).

[46] A. Jaquith, “Security metrics: replacing fear, uncertainty and doubt”,
Addison-Wesley, 2007.

[47] N. Bartol, B. Bates, K. M. Goertzel, and T. Winograd, “Measuring
cyber security and information assurance: a state-of-the-art report”,
Information Assurance Technology Analysis Center IATAC, May
2009.

[48] R. Savola, “A novel security metrics taxonomy for R&D
organisations”, 7th Annual Information Security South Africa (ISSA)
Conf., Johannesburg, South Africa, Jul. 7-9, 2008, pp. 379-390.

[49] T. Heyman, R. Scandariato, C. Huygens, and W. Joosen, “Using
security patterns to combine security metrics”, 3rd Int. Conf. on
Availability, Reliability and Security (ARES), 2008, pp. 1156-1163.

[50] Systems Engineering Research Center, “Security metrics”, Draft, Jan.
2010.

[51] M. Howard, J. Pincus, and J. M. Wing, “Measuring relative attack
surfaces”, Workshop on Advanced Developments in Software and
Systems Security, 2003.

[52] P. K. Manadhata, D. K. Kaynar, and J. M. Wing, “A formal model for
a system’s attack surface”, Technical Report CMU-CS-07-144, Jul.
2007.

[53] E. Bulut, D. Khadraoui, and B. Marquet, “Multi-agent based security
assurance monitoring system for telecommunication infrastructures”,
CNIS 2007, Berkeley, CA, USA, Sep. 24-27, 2007, 6 p.

[54] P. E. Black, “SAMATE’s contribution to information assurance”,
IAnewsletter, Vol. 9, No. 2, 2006.

[55] S. Chandra and R. A. Khan, “Object oriented software security
estimation life cycle – Design phase perspective”, Journal of Software
Engineering, 2008, Vol. 2, Issue 1, pp. 39-46.

[56] ISO/IEC 15408-1:2005, “Common Criteria for information
technology security evaluation – Part 1: Introduction and general
model”, ISO/IEC, 2005.

[57] United States Department of Defense: Trusted Computer System
Evaluation Criteria (TCSEC) “Orange Book”, DoD Standard, DoD
5200.28-std, 1985.

[58] Information Technology Security Evaluation Criteria (ITSEC)
Version 1.2, Commission for the European Communities, 1991.

[59] Canadian System Security Centre, “The Canadian Trusted Computer
Product Evaluation Criteria”, Version 3.0e, Jan. 1993, 233 p.

[60] U.S. National Institute for Standards and Technology and National
Security Agency, “Federal Criteria for Information Technology
Security – Draft Version 1.0”, 2 volumes, 1993.

[61] U.S. National Computer Security Center, “Trusted Network
Interpretation of the Trusted Computer System Evaluation Criteria –
Version 1”, NCSC-TG-005, 1987.

380

International Journal on Advances in Security, vol 2 no 4, year 2009, http://www.iariajournals.org/security/

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

