

The International Journal on Advances in Internet Technology is published by IARIA.

ISSN: 1942-2652

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 4, no. 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 4, no. 3 & 4, year 2011, <start page>:<end page> , http://www.iariajournals.org/internet_technology/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2011 IARIA

International Journal on Advances in Internet Technology

Volume 4, Number 3 & 4, 2011

Editor-in-Chief

Andreas J Kassler, Karlstad University, Sweden

Editorial Advisory Board

Lasse Berntzen, Vestfold University College - Tonsberg, Norway
Michel Diaz, LAAS, France
Evangelos Kranakis, Carleton University, Canada
Bertrand Mathieu, Orange-ftgroup, France

Editorial Board

Digital Society

 Gil Ariely, Interdisciplinary Center Herzliya (IDC), Israel
 Gilbert Babin, HEC Montreal, Canada
 Lasse Berntzen, Vestfold University College - Tonsberg, Norway
 Borka Jerman-Blazic, Jozef Stefan Institute, Slovenia
 Hai Jin, Huazhong University of Science and Technology - Wuhan, China
 Andrew Kusiak, University of Iowa, USA
 Francis Rousseaux, University of Reims - Champagne Ardenne, France
 Rainer Schmidt, University of Applied Sciences – Aalen, Denmark
 Asa Smedberg, DSV, Stockholm University/KTH, Sweden
 Yutaka Takahashi, Kyoto University, Japan

Internet and Web Services

 Serge Chaumette, LaBRI, University Bordeaux 1, France
 Dickson K.W. Chiu, Dickson Computer Systems, Hong Kong
 Matthias Ehmann, University of Bayreuth, Germany
 Christian Emig, University of Karlsruhe, Germany
 Mario Freire, University of Beira Interior, Portugal
 Thomas Y Kwok, IBM T.J. Watson Research Center, USA
 Zoubir Mammeri, IRIT – Toulouse, France
 Bertrand Mathieu, Orange-ftgroup, France
 Mihhail Matskin, NTNU, Norway
 Guadalupe Ortiz Bellot, University of Extremadura Spain
 Mark Perry, University of Western Ontario/Faculty of Law/ Faculty of Science – London, Canada
 Dumitru Roman, STI, Austria
 Pierre F. Tiako, Langston University, USA
 Ioan Toma, STI Innsbruck/University Innsbruck, Austria

Communication Theory, QoS and Reliability

 Adrian Andronache, University of Luxembourg, Luxembourg
 Shingo Ata, Osaka City University, Japan
 Eugen Borcoci, University "Politehnica" of Bucharest (UPB), Romania
 Michel Diaz, LAAS, France
 Michael Menth, University of Wuerzburg, Germany
 Michal Pioro, University of Warsaw, Poland
 Joel Rodriques, University of Beira Interior, Portugal
 Zary Segall, University of Maryland, USA

Ubiquitous Systems and Technologies

 Sergey Balandin, Nokia, Finland
 Matthias Bohmer, Munster University of Applied Sciences, Germany
 David Esteban Ines, Nara Institute of Science and Technology, Japan
 Dominic Greenwood, Whitestein Technologies AG, Switzerland
 Arthur Herzog, Technische Universitat Darmstadt, Germany
 Malohat Ibrohimova, Delft University of Technology, The Netherlands
 Reinhard Klemm, Avaya Labs Research-Basking Ridge, USA
 Joseph A. Meloche, University of Wollongong, Australia
 Ali Miri, University of Ottawa, Canada
 Vladimir Stantchev, Berlin Institute of Technology, Germany
 Said Tazi, LAAS-CNRS, Universite Toulouse 1, France

Systems and Network Communications

 Eugen Borcoci, University ‘Politechncia’ Bucharest, Romania
 Anne-Marie Bosneag, Ericsson Ireland Research Centre, Ireland
 Jan de Meer, smartspace®lab.eu GmbH, Germany
 Michel Diaz, LAAS, France
 Tarek El-Bawab, Jackson State University, USA
 Mario Freire, University of Beria Interior, Portugal / IEEE Portugal Chapter
 Sorin Georgescu, Ericsson Research - Montreal, Canada
 Huaqun Guo, Institute for Infocomm Research, A*STAR, Singapore
 Jong-Hyouk Lee, INRIA, France
 Wolfgang Leister, Norsk Regnesentral (Norwegian Computing Center), Norway
 Zoubir Mammeri, IRIT - Paul Sabatier University - Toulouse, France
 Sjouke Mauw, University of Luxembourg, Luxembourg
 Reijo Savola, VTT, Finland

Future Internet

 Thomas Michal Bohnert, SAP Research, Switzerland
 Fernando Boronat, Integrated Management Coastal Research Institute, Spain
 Chin-Chen Chang, Feng Chia University - Chiayi, Taiwan
 Bill Grosky, University of Michigan-Dearborn, USA

 Sethuraman (Panch) Panchanathan, Arizona State University - Tempe, USA
 Wei Qu, Siemens Medical Solutions - Hoffman Estates, USA
 Thomas C. Schmidt, University of Applied Sciences – Hamburg, Germany

Challenges in Internet

 Olivier Audouin, Alcatel-Lucent Bell Labs - Nozay, France
 Eugen Borcoci, University “Politehnica” Bucharest, Romania
 Evangelos Kranakis, Carleton University, Canada
 Shawn McKee, University of Michigan, USA
 Yong Man Ro, Information and Communication University - Daejon, South Korea
 Francis Rousseaux, IRCAM, France
 Zhichen Xu, Yahoo! Inc., USA

Advanced P2P Systems

 Nikos Antonopoulos, University of Surrey, UK
 Filip De Turck, Ghent University – IBBT, Belgium
 Anders Fongen, Norwegian Defence Research Establishment, Norway
 Stephen Jarvis, University of Warwick, UK
 Yevgeni Koucheryavy, Tampere University of Technology, Finland
 Maozhen Li, Brunel University, UK
 Jorge Sa Silva, University of Coimbra, Portugal
 Lisandro Zambenedetti Granville, Federal University of Rio Grande do Sul, Brazil

International Journal on Advances in Internet Technology

Volume 4, Numbers 3 & 4, 2011

CONTENTS

Peer-to-Peer Virtualized Services

David Bailey, University of Malta, Malta

Kevin Vella, University of Malta, Malta

89 - 102

Aggregation Skip Graph: A Skip Graph Extension for Efficient Aggregation Query over

P2P Networks

Kota Abe, Osaka City University, Japan

Toshiyuki Abe, Osaka City University, Japan

Tatsuya Ueda, Osaka City University, Japan

Hayato Ishibashi, Osaka City University, Japan

Toshio Matsuura, Osaka City University, Japan

103 - 110

Naming, Assigning and Registering Identifiers in a Locator/Identifier-Split Internet

Architecture

Christoph Spleiß, Technische Universität München, Germany

Gerald Kunzmann, Technische Universität München, Germany

111 - 122

Data Portability Using WebComposition/Data Grid Service

Olexiy Chudnovskyy, Chemnitz University of Technology, Germany

Stefan Wild, Chemnitz University of Technology, Germany

Hendrik Gebhardt, Chemnitz University of Technology, Germany

Martin Gaedke, Chemnitz University of Technology, Germany

123 - 132

Towards Normalized Connection Elements in Industrial Automation

Dirk van der Linden, Artesis University College of Antwerp, Belgium

Herwig Mannaert, University of Antwerp, Belgium

Wolfgang Kastner, Vienna University of Technology, Austria

Herbert Peremans, University of Antwerp, Belgium

133 - 146

89

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Peer-to-Peer Virtualized Services

David Bailey and Kevin Vella
University of Malta

Msida, Malta
Email: david@davidbailey.info, kevin.vella@um.edu.mt

Abstract—This paper describes the design and operation
of a peer-to-peer framework for providing, locating and
consuming distributed services that are encapsulated within
virtual machines. We believe that the decentralized nature of
peer-to-peer networks acting in tandem with techniques such
as live virtual machine migration and replication facilitate
scalable and on-demand provision of services. Furthermore,
the use of virtual machines eases the deployment of a wide
range of legacy systems that may subsequently be exposed
through the framework. To illustrate the feasibility of running
distributed services within virtual machines, several computa-
tional benchmarks are executed on a compute cluster running
our framework, and their performance characteristics are
evaluated. While I/O-intensive benchmarks suffer a penalty
due to virtualization-related limitations in the prevailing I/O
architecture, the performance of processor-bound benchmarks
is virtually unaffected. Thus, the combination of peer-to-peer
technology and virtualization merits serious consideration as a
scalable and ubiquitous basis for distributed services. A view
of some challenges and opportunities that emerge in the design
of such frameworks is also offered.

Keywords-Virtualization; distributed systems; peer-to-peer
computing; service-oriented computing; cloud computing.

I. INTRODUCTION

This paper describes a framework that enables the dy-
namic provision, discovery, consumption and management
of software services hosted within distributed virtual ma-
chines. The framework, Xenos [1][2], uses a decentralised
peer-to-peer overlay network for advertising and locating
service instances and factories. It also leverages techniques
such as live virtual machine migration and replication to
enhance operational agility and ease of management, and to
lay the foundations for deploying fault-tolerant services. The
primary objective is to shift the focus away from managing
physical or virtual machines to managing software services.

In recent years, data centre operations have experienced
a shift in focus away from managing physical machines
to managing virtual machines. Renewed exploration of this
well-trodden path is arguably driven by virtualization’s
mantra of enhanced operational agility and ease of manage-
ment, increased resource utilisation, improved fault isolation
and reliability, and simplified integration of multiple legacy
systems. Virtualization is also permeating the cluster and
grid computing communities, and we believe it will feature
at the heart of future desktop computers and possibly even

advance a rethink of general purpose operating system
architecture.

The performance hit commonly associated with virtual-
ization has been partly addressed on commodity computers
by recent modifications to the x86 architecture [3], with both
AMD and Intel announcing specifications for integrating
IOMMUs (Input/Output Memory Management Units) with
upcoming architectures. While this largely resolves the issue
of computational slow-down and simplifies hypervisor de-
sign, virtualized I/O performance will remain mostly below
par until I/O devices are capable of holding direct and
concurrent conversations with several virtual machines on
the same host. This generally requires I/O devices to be
aware of each individual virtual machine’s memory regions
and demultiplex transfers accordingly. We assume that this
capability or a similar enabler will be commonplace in
coming years, and that the commoditization of larger multi-
core processors will reduce the frequency of expensive
world-switches as different virtual machines are mapped to
cores over space rather than time.

The paper is organized as follows. Section II provides an
overview of related work, and Section III briefly describes
the key topics that underpin this research. Section IV details
the proposed framework and the implemented prototype,
while Section V presents an evaluation of the framework.
Finally, Section VI exposes a number of issues for future
investigation, and an overview of this work’s contribution
can be found in Section VII.

II. RELATED WORK

The ideas presented here are influenced by the
Xenoservers project [4], initiated by the creators of the
Xen hypervisor. Xenoservers was designed to “build a
public infrastructure for wide-area distributed computing” by
hosting services within Xen virtual machines. The authors
argue that current solutions for providing access to online
resources, such as data storage space or an application-
specific server, is not flexible enough and is often based
on a timeline of months or years, which might not always
accommodate certain users. The Xenoserver infrastructure
would allow for users to purchase temporary resources for
immediate use and for a small time period, for instance
a group of players wanting to host a game server for a
few hours or even minutes. A global infrastructure can also

90

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

aid in exploiting locality by running code on a network
location that is close to the entities that it uses, such as
data and services, to improve performance. In order to allow
untrusted sources to submit their own applications, execution
environments need to be isolated; the authors propose to
use the Xen hypervisor [5] to provide these isolated and
secure environments in the form of virtual machines, which
also allows for a high degree of flexibility as users have a
wide array of operating system and application environments
to choose from. Xenosearch [6] locates Xenoservers using
the Pastry peer-to-peer overlay network. A Xenoservers
implementation is not generally available, hence our decision
to build and conduct experiments with Xenos.

WOW [7] is a “distributed system that combines virtual
machine, overlay networking and peer-to-peer techniques to
create scalable wide-area networks of virtual workstations
for high-throughput computing”. Applications and services
in the system are provided in virtual machines, which must
also contain a virtual network component that is used to
register the machine on a peer-to-peer overlay network when
the machine boots up. This peer-to-peer overlay network is
used to create virtual links between the virtual machines,
which are self-organizing and maintain IP connectivity be-
tween machines even if a virtual machine migrates across
the network. The authors do not provide a mechanism which
allows for searching of other services registered on the peer-
to-peer network; this is where our approach differs in that
we intend to use a peer-to-peer overlay network to advertise
the services running within the virtual machines rather than
to set up a virtual network to enable communication between
virtual machines.

SP2A [8] is a service-oriented peer-to-peer architecture
which enables peer-to-peer resource sharing in grid envi-
ronments, but is not concerned with the uses of virtualiza-
tion in distributed computing architectures, which is one
of our main interests. Several publications have focused
on the use of peer-to-peer overlay networks to implement
distributed resource indexing and discovery schemes in grids
[9][10][11]. Wadge [12] investigates the use of peer groups
to provide services in a grid, as well as transferring service
code from one node to another for increased fault-tolerance
and availability.

The dynamic provisioning of services is a relatively young
area of research, and commercial products such as Amazon
Elastic Compute Cloud (EC2) have only appeared in the past
few years. Virtualization and hardware advancements have
had a major impact on the structure of these datacenters,
which typically rely on tried-and-tested setups and favour the
traditional client-server approach to locating and consuming
services. We believe that exploiting the advantages of peer-
to-peer networks is the next step in achieving a truly
distributed, scalable and resilient services platform.

III. BACKGROUND

A. Virtualization

In computing, virtualization can be broadly defined as the
software abstraction of a set of resources, which enables
the sharing of these resources in parallel by higher-level
systems. While the actual definition and mechanisms used
varies depending on the type of virtualization in question,
the concept always remains the same; that of efficiently,
securely and transparently multiplexing a set of resources
in a manner which allows for higher-level systems to use
these resources and allowing them to assume that they are
using the real resources instead of the abstraction provided
by the mechanism. We are mostly interested in hardware-
level virtualization, where the virtualization layer sits on
top of the hardware and virtualizes the hardware devices,
allowing multiple operating systems to execute within the
virtual machine environments presented by the layer. Hard-
ware resources such as the processor, memory and I/O
are managed by the virtualization layer and shared by
the executing operating systems, although the latter might
have no knowledge of the underlying virtualization layer.
This layer is often called a virtual machine monitor or a
hypervisor.

One of the techniques used in achieving full hardware
virtulization is paravirtualization, where the hypervisor pro-
vides virtual machines that are not exact copies of the
underlying hardware architecture. This implies that the op-
erating system executing in a virtual machine provided by
the hypervisor is aware that it is running inside a virtualized
environment, and has to issue calls to the hypervisor for
certain operations. Legacy operating systems therefore need
to be ported in order to run on the hypervisor. Perhaps the
most successful paravirtualized hypervisor that has gained
widespread use in the industry is the Xen hypervisor, on
which a number of commercial solutions are based, such
as Citrix XenServer, Oracle VM and Sun xVM, as well
as heavily influencing the design of Microsoft’s Hyper-
V hypervisor. Xen supports existing application binary in-
terfaces, meaning it can support applications written for
the x86 architecture without the need for modification;
and it exposes certain physical resources directly to guest
operating systems, allowing for better performance. The
Xen hypervisor aims at supporting legacy operating systems
(with minimal porting effort) and existing applications, while
leveraging the benefits of a paravirtualized approach, such
as high performance and stronger isolation.

B. High-Performance Computing and Grids

Mergen et al. [13] argue that hypervisors offer a new
opportunity for high performance computing (HPC) envi-
ronments to circumvent the limitations imposed by legacy
operating systems. Modern hypervisors not only support
legacy systems, but they can also simultaneously execute

91

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Xenos-enabled Internet Server A

Physical Peer Machine

Xen VMM

FTP

Service
T1

Distributed

File System

Service F2

SOAP

Web

Service S2

Spare

capacity
Xenos

Coordinator

Linux

Desktop

Service

Distributed

File System

Service F1

SOAP

Web

Service S1

Web

Hosting

Service W1

E-mail

Service M1

Physical Peer Machine

Xen VMM

FTP

Service
T1

Distributed

File System

Service F4

SOAP

Web

Service S4

Spare

capacity
Xenos

Coordinator

Cross-

compilation

and IDE

Service

Distributed

File System

Service F3

SOAP

Web

Service S3

Web

Hosting

Service W1

E-mail

Service M1

Xenos-enabled Cluster

Xenos-enabled Desktop

Xenos-enabled Internet Server B

Physical Peer Machine

Xen VMM

Xenos
Coordinator

Hadoop

Worker

Physical Peer Machine

Xen VMM

Xenos
Coordinator

Hadoop

Deployer

Physical Peer Machine

Xen VMM

Xenos
Coordinator

Hadoop

Worker

Physical Peer Machine

Xen VMM

Xenos
Coordinator

Hadoop

Worker

Hadoop

Monitor

FTP

Service
T1

Physical Peer Machine

Xen VMM

Xenos
Coordinator

Web

Browser

Service

Legacy

Windows

XP

Service

Legacy

MacOS

Service

OS-agnostic

Window

Manager

Service

Live Service

Migration

Service

Distribution,

Replication

Service

Access

Hadoop

Worker

Hadoop

Worker

Figure 1. A selection of computing platforms running the Xenos framework and hosting several interacting services.

specialized execution environments in which HPC applica-
tions are run; this allows for legacy HPC software and other
non-critical operating system services, such as file systems,
to be run within the legacy operating system, while the
HPC application can exploit the hypervisor directly and
implement any optimization opportunities, such as the use
of super-pages. These specialized execution environments
are also known as library OS, since they typically contain
only the required software stacks for the application(s)
that will be executing within them. Thibault et al. [14]
implement lightweight Xen domains based on the Mini-
OS paravirtualized kernel, which is included with the Xen
hypervisor as a demonstration of how to implement a basic
guest kernel for Xen – it is able to use the Xen network,
block and console mechanisms, supports non-preemptive
threads and only one virtual memory address space. A
similar approach is taken by Anderson et al. [15], although
the focus is on security and reliability; the authors argue that
partitioning critical services and applications into domains
with tight restrictions improves trustworthiness. Falzon [16]
implements a lightweight Xen domain to explicitly execute a
thread scheduler that supports multiple processors and offers
several scheduling policies. This allows for the creation and
evaluation of different schedulers that have direct access to
the virtualized hardware, and can for instance control the
number of kernel threads mapped on a particular virtual
CPU, or disable timers and interrupts in the domain.

A number of publications have focused on the use of
virtualization and virtual machines in grid computing en-

vironments in response to a number of significant issues
such as security, administration costs and resource control.
Figueiredo et al. [17] present a number of tests that show
overheads to be minimal under the VMware Workstation
hypervisor. The authors also present an architecture for
dynamically instantiated virtual machines based on a user’s
request, where a virtual machine is distributed across three
logical entities: image servers that hold static virtual machine
states, computation servers that can dynamically instantiate
and execute images, and data servers which store user
application data. Keahey et al. [18] propose a similar ar-
chitecture, providing execution environments for grid users
called Dynamic Virtual Environments (DVEs), as well as
implementing DVEs using different technologies such as
UNIX accounts, and operating-system and hardware-level
virtual machines such as VServer sandboxes and VMware
respectively. The different implementations were analyzed
to determine their viability for use in a grid infrastructure,
and while they provided sufficient in terms of applications
without heavy I/O loads, the authors believe that all had
shortcomings in Quality of Service (QoS) functionality, and
some technologies such as VMware did not expose enough
of their functionality for direct use in the grid. Santhanam
et al. [19] experiment with different sandbox configurations,
deployed using the Xen hypevisor, and concluded that jobs
with heavy I/O loads take a performance hit when running
inside a virtual machine sandbox, although they advocate
the use of virtual machines in grid environments where
applications often tolerate delays on the order of minutes,

92

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and if the user wishes to benefit from the advantages
obtained by using virtual environments.

IV. THE XENOS FRAMEWORK

Xenos is built on top of Xen, a virtualization platform
that has gained traction as a stable and mature virtualization
solution, but any hypervisor with the appropriate hooks and
programming interfaces will suffice in principle, including a
hypothetical ROM-based hypervisor. The JXTA framework
is currently used to maintain a peer-to-peer overlay net-
work for service advertisement, discovery and, optionally,
transport. However, we feel that a more specialized or
expressive latter generation peer-to-peer framework would
better fit our requirements. The Hadoop map-reduce frame-
work, described in more detail in Section V, is used as a
benchmarking tool to evaluate the framework, but it is not
an intrinsic part of the Xenos framework itself.

A. Physiology

Figure 1 illustrates a scenario with different hardware plat-
forms running Xenos and a variety of services, which may
be any software application that can be encapsulated within
a Xen virtual machine. A commodity cluster, typically
used for high-performance computing applications, offers
users the ability to dynamically create computation services,
such as Hadoop map-reduce nodes, while also using other
services such as the Hadoop deployer and Hadoop monitor
to easily deploy these services on the network, and monitor
them for fault-tolerance and load-balancing. Xenos also runs
on desktop machines, with the user utilizing several services
such as a file system for personal data storage, and a legacy
operating system service offering traditional applications.
The user interface that the user interacts with is itself a
virtualized service, possibly forming part of a distributed
operating system made up of several services running on
the Xenos framework. If, for instance, the user is transferring
files between the file system and the Hadoop cluster, it would
be possible for the instance of the file system containing
the required files to be migrated (physically moved) to the
cluster, thus improving the performance when transferring
data to the cluster or retrieving results. Finally, another plat-
form supporting Xenos is a traditional server in a datacentre,
where services such as web, FTP and email servers, and web
services are executed as virtual machines, and are used by
clients or by other services across the Xenos cloud.

From the perspective of the user, the platform provides
two major features: the ability to search for services, obtain
information about them and make use of them, and the
ability to control these services by creating new service in-
stances, migrate running services, manage existing ones and
monitor their use. System administrators are responsible for
setting up and managing the infrastructure on which Xenos
is hosted, providing services packaged in virtual machines,

and configuring these services to appear on the Xenos peer-
to-peer network. Optionally, users or administrators can also
develop custom services that participate on the same peer-
to-peer network as the other hosts and services and act as
an additional feature to the platform. These services join
the peer-to-peer network provided by Xenos and comple-
ment the existing features of our framework, or act as
support services for a user’s existing services. These can
include fault-tolerance and load-balancing monitors, which
trigger migration and replication of services as required,
introspection services that provide useful information about
domains, and management services that use JXTA groups to
effectively manage a user’s services.

B. Architecture

Figure 2 illustrates the architecture of a single physical
machine in the framework. Each Xenos-enabled physical
machine runs the Xen hypervisor using a paravirtualized
Linux kernel in Domain 0, which is a privileged domain
capable of controlling the guest domains (virtual machines)
that will host services on the same physical machine. The
Xenos Coordinator is a Java application that executes in
Domain 0 whose primary function is to incorporate the
physical machine into Xenos’ peer-to-peer overlay network
and advertise services running on that physical machine,
through the JXTA library. Services running within guest
domains do not normally join the overlay network directly,
but are registered with the coordinator in Domain 0, which
acts as a ’notice board’ for all local services. Administrators
configure these services through text-based configuration
files that are picked up by the Coordinator on startup. It also
provides utilities for controlling these domains by making
use of the Xen Management API, and other utilities used
by other components of the system itself or directly by
administrators, such as file management routines and ID
generators for quick configuration of hosts and services.

The Xenos API is an XML-RPC programming interface
available for users and services to interact with, and is the
primary channel through which services are discovered and
managed. Users can search for services and/or hosts on the
peer-to-peer network by passing in search parameters to
the API, which then returns results describing the services
or hosts. Services may also be controlled and monitored
remotely by passing in identifiers for the services to be acted
upon. Migration and replication of services can also be trig-
gered through the API, which implements file transfer and
copying features that are required for this functionality. The
Xenos API also features an implementation of XML-RPC
over JXTA protocols, which enables hosts on the peer-to-
peer network to issue XML-RPC calls to each other without
requiring a TCP/IP socket connection, but rather use the
built-in socket functionality in JXTA. Service delivery itself
may be accomplished without the involvement of Xenos,
and is not restricted to any particular network protocol or

93

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Physical Peer Machine (virtualization-friendly multi-core desktop/server)

Xen VMM

Domain 0 VM (Xen/Linux) Dom U1 VM ...

Xen API P2P (JXTA)

Xenos Coordinator

Service creation, migration,
destruction, monitoring,

advertisement and discovery

Xenos API (Service Management)

Dom U2 VM

Service1

Legacy OS

Service2

Raw

Virtualized

Hardware

...

Service1 API Service2 API ...

Dom Un VM

ServiceN

Minimal OS

and libraries

Servicen API

Figure 2. A Xenos-enabled physical machine.

address space. However, the direct use of network protocols
beneath layer three (for example, Ethernet) would oblige
communicating services to share a physical network or a
physical machine.

In order to accommodate multiple instances of the same
service and service migration, each service type has a
template associated with it that enables the automatic config-
uration of new service instances and their Xen domains, as
illustrated in Figure 3. When replicating a service or creating
a new service instance, a new copy of the relevant template
is used. Service templates will automatically replicate on
other Xenos hosts as required so that service instances
can be spawned anywhere on the Xenos cloud. Migration
of service instances makes use of Xen’s virtual machine
migration mechanism with a slight modification to transfer
virtual machine disk images along with the virtual machine
configuration. Our current implementation inherits a Xen
restriction limiting live virtual machine migration to the local
area network, though this may be overcome as discussed in
Section VI.

C. Design Benefits

The architectural design discussed above leads to several
benefits over similar platforms. The use of a peer-to-peer
overlay network enables a decentralized approach to register-
ing and discovering services, in contrast with the centralized
approach often used within existing web services platforms,
such as Universal Description Discovery and Integration
(UDDI). By having the Xenos API available on every host
on the platform instead of a main server (and possibly
some backup servers), users of the platform can make the
applications that interact with the API more fault-tolerant by
initially searching for a number of Xenos hosts and storing
them locally as a backup list. If the host being used by
the applications becomes unavailable, another host can be

picked from the backup list and communication attempted
with it. This can also lead to implementing a load-balancing
approach to issuing API calls, so that the workload is spread
over multiple hosts instead of a single one.

JXTA provides a grouping facility, where services or
peers can be organized into groups that are created by the
user. Our framework allows administrators to specify which
groups a service should join initially; this can be used,
for instance, to group together services that offer the same
functionality, or to group together services that belong to the
same user. Services can form part of multiple groups, and are
always part of the net peer group, which is the global group
maintained by JXTA. Additionally, users who build their
own applications that form part of the peer-to-peer network
can create new groups on the fly and assign services to them.
For instance, a custom built load-balancer could create a
group and automatically monitor all the services that join it;
this scoping can help reduce the amount of messaging going
on in the network, since the load-balancer would only need
to broadcast into its created group instead of the net peer
group.

Existing commercial cloud solutions, such as Amazon
EC2, often provide computing instances that are fixed and
feature large amounts of memory, processor resources and
storage space, which are not always necessary when dealing
with lightweight or specialized services. We have already
discussed the benefits of running certain services inside
specialized execution environments in Section III; the ma-
jority of publications that we review have used Xen as
the hypervisor, as it is based on paravirtualization, which
performance significantly better that other virtualization
techniques and allows for modifications or development of
custom operating systems for running specific services. Our
platform allows administrators to create services that are
based within lightweight Xen domains, and assign to them

94

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Xenos-enabled

cluster

Xenos-enabled

desktop

Xenos-

enabled server

Hadoop

node

Hadoop

node

Hadoop

node

Hadoop

deployer

Hadoop

node

File system

service

File system

service

GUI service

Legacy OS

applications

Web

service

Web

service

FTP

server

Email

server

Web

server

Hadoop

node

template

Web server

template

Web

service

template

is a

is a

is a

is a

is a

is a

is a

File system

template

is a

Hadoop

deployer

template

is a

Legacy OS

applications

template

is a

Figure 3. The relationship between Xenos templates and services.

resources as needed. This is beneficial for certain services
that, for instance, would not require large amounts of storage
space but benefit from multiple virtual CPUs and large
amounts of memory due to their computation being mostly
processor bound. Conversely, certain services might deal
with data storage and processing, and thus require large
amount of storage space but can do with a single virtual
CPU and a small amount of memory. Although our current
prototype does not have the ability for users to upload their
own virtual machine images and configurations, this is trivial
to add to our existing infrastructure, and would be a powerful
feature that gives users even more flexibility.

V. HADOOP CASE STUDY AND PERFORMANCE
ANALYSIS

A series of preliminary tests were conducted in order to
assess the viability of our approach. The test cases all involve
deploying multiple instances of a Hadoop map-reduce wrap-
per service using a separate distributed coordination service.
We aim to explore three principal avenues, namely (1) the
automatic and dynamic deployment of the Hadoop service
to Xenos hosts and the migration of the master Hadoop
node from a failing physical machine; (2) the performance
of file I/O within virtual machines, which is crucial for
services with large-volume data processing requirements
(this is particularly relevant since Xenos requires virtual
machine images to exist in files rather than as physical disk

partitions); and (3) the performance of a series of virtualized
Hadoop map-reduce processing jobs.

A similar evaluation of running the Hadoop map-reduce
framework within a virtualized cluster is carried out by
Ibrahim et al. [20]. They argue that a virtual machine-
based Hadoop cluster can offer compensating benefits that
overshadow the potential performance hit, such as improved
resource utilization, reliability, ease of management and
deployment, and the ability to customize the guest operating
systems that host Hadoop to increase performance without
disrupting the cluster’s configuration.

A. Map-Reduce and Hadoop

In our experiments we used the Hadoop Distributed File
System (HDFS) and MapReduce components of the Apache
Hadoop framework. The map-reduce programming model,
introduced by Dean et al. [21], is aimed at processing large
amounts of data in a distributed fashion on clusters. HDFS
is a distributed file system suitable for storing large data sets
for applications with heavy data processing, such as typical
map-reduce jobs. The Hadoop map-reduce implementation
involves a master node that runs a single JobTracker, which
accepts jobs submitted by the user, schedules the job across
worker nodes by assigning map or reduce tasks to them,
monitors these tasks and re-executes failed ones. Each
worker (or slave) node runs a single TaskTracker, which is
responsible for executing the tasks assigned to it by the job

95

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tracker on the master node.

B. Deploying Hadoop Services

When setting up a computing cluster with the aim of run-
ning the Hadoop map-reduce framework, each node needs to
be configured with specific settings, such as the hostname,
SSH certificates and the hosts that it has access to, and the
HDFS and map-reduce settings that are common throughout
the cluster. When setting up a non-virtualized environment,
administrators typically configure a single node, and then
manually clone the hard disk to all the other nodes, resulting
in an identical installation across the cluster, which would
then require node-specific settings on each machine. Setting
up Hadoop on a more general cluster can be done by setting
up an installation on single node, and then distributing the in-
stallation to the other cluster nodes, typically via shell scripts
and rsync. Another alternative is to use existing deployment
frameworks that manage the configuration, deployment and
coordination of services such as Hadoop, and do much of
the work.

One of the issues that we identify with deploying any
sort of service on an existing cluster environment is the
potential to disrupt the configuration or execution of other
services when configuring the new one. If one were to use a
virtualized cluster, services could be supplied within pre-
packaged virtual machines that would not interfere with
other services running within their own virtual machines,
since the hypervisor guarantees isolation between them. The
configuration of the physical node would therefore never
need to be modified when adding new services; of course,
the initial setup of the virtualized cluster still needs to be
done manually by administrators cloning an initial setup to
all the cluster nodes, but this is inevitable. One can always
set up a physical cluster with a single service in mind, which
would not require frequent re-configuration, but this often
leads to wasted resources that virtual machines could fully
exploit if the cluster were to be virtualized.

We can identify several other benefits in using a virtual-
ized cluster for Hadoop services. Since services would be
packaged within their own virtual machine, we can easily
modify the installation and configuration of the operating
system running within the virtual machine to accommodate
Hadoop map-reduce and the HDFS and tweak its perfor-
mance, without having to modify the configuration of the
operating system running on the physical node, which is
Domain 0 in the case of Xen. Since the master nodes are po-
tential single-points-of-failure both in the HDFS and Hadoop
map-reduce, the master node can also be packaged inside
a virtual machine, which can be checkpointed regularly,
thus saving the whole virtual machine state, or migrated to
another physical host if the current host is malfunctioning
or needs to be shut down.

If we opt for a virtualized cluster on which to deploy
Hadoop, we are still faced with the task of deploying the

virtual machine containing the Hadoop map-reduce workers
on the nodes of the cluster. Deployments methods similar
to the ones when running a non-virtualized cluster can be
used, such as setting up shell scripts to transfer virtual
machine images and then issuing remote commands on
the nodes to start the virtual machines. However, a more
appropriate solution would be to use an existing platform,
which can deploy virtual machine images to the cluster’s
nodes, and allows users to administer these images remotely,
typically from the same node that acts as the map-reduce
master. The Xenos framework that we have implemented is
a perfect candidate on which to build a Hadoop deployer that
allows users and administrators to provide their own Hadoop
installation as a service within a domain, register this service
with the Xenos coordinator, and then use the framework’s
replication, migration and service control features to deploy
these services on the virtualized cluster. This requires a small
application to be developed that oversees this task, since by
itself the framework has no capabilities of deploying services
automatically, but simply provides the mechanisms that
allow this. We have therefore developed a Java application
that uses the JXTA framework to connect to the Xenos
network, and use the Xenos API to deploy the Hadoop
service supplied by the administrator. Although we have
tailored this application for the Hadoop map-reduce and
HDFS service, we feel that it can be generalized rather
easily to support any service that is registered within our
system; in fact, only a small portion of the application is
Hadoop-specific, as the rest simply deals with services that
are defined by the user in a separate configuration file. This
would provide users with a service deployer with which they
can deploy their services on the Xenos framework.

C. Evaluation Platform and Results

Our evaluation platform consists of a thirteen-host com-
modity cluster, connected over a 1 Gigabit Ethernet connec-
tion through a D-Link DGS-1224T switch. Each physical
host in the cluster runs an Intel Core 2 Duo E7200 CPU, with
3MB of L2 cache and clocked at 2.53GHz, 2GB of DDR2
RAM, and a 500GB SATA2 hard disk. All the hosts were
configured with Xen and the Xenos framework. One of the
hosts, which we refer to as the master host, was configured
with a template of the Hadoop slave service as well as an
instance of the Hadoop master node, from where we issue
commands to deploy services and execute tests; however, it
was also configured not to accept service instances of the
Hadoop slave service, meaning that we have 12 hosts on
which to instantiate Hadoop slave services. The master host
was also set as a JXTA rendezvous server, and all the Xenos
hosts configured to use it. All physical hosts were assigned
fixed IP addresses, and a DHCP server was configured on
the master host to allocate addresses to spawned domains.

In all of our tests except where stated, the domain that
we use as the Hadoop slave template which is replicated to

96

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

50

100

150

200

250

1GB 4GB 8GB

R
u

n
n

in
g

Ti
m

e
 (

s)

Data Size

HDFS WritePHY-Cluster

VM1-Cluster

0

50

100

150

200

250

1GB 4GB 8GB

R
u

n
n

in
g

Ti
m

e
 (

s)

Data Size

HDFS ReadPHY-Cluster

VM1-Cluster

Figure 4. PHY-Cluster vs VM1-Cluster with varying data sizes.

0

10

20

30

40

50

60

70

80

90

4 data nodes 8 data nodes 12 data nodes

R
u

n
n

in
g

Ti
m

e
 (

s)

Number of data nodes (cluster size)

HDFS Read

PHY-Cluster

VM1-Cluster

VM2-Cluster

VM4-Cluster

0

10

20

30

40

50

60

70

80

90

100

110

120

4 data nodes 8 data nodes 12 data nodes

R
u

n
n

in
g

Ti
m

e
 (

s)

Number of data nodes (cluster size)

HDFS Write

PHY-Cluster

VM1-Cluster

VM2-Cluster

VM4-Cluster

Figure 5. PHY-Cluster vs VM clusters with varying data nodes (cluster size) and virtual machines per physical machine.

all the hosts is configured with a 10GB disk image, 1GB
swap image, and the vmlinuz-2.6.24-27-xen kernel. Default
settings for the domain are 1 virtual CPU (VCPU), 384MB
of RAM, and set to use DHCP to obtain addresses. Domain
0 is set to use 512MB of memory, leaving the rest to be
allocated to domains, and has no restrictions on the physical
CPUs it can use. For the Hadoop tests run on the native, non-
virtualized Linux distribution, the same cluster and same
Linux installation that is used as Domain 0 is used, but
without booting into Xen so that the operating system runs
natively. In all our tests, the HDFS replication factor is set
to 2, and we do not use rack awareness since our network
only has one switch. Each task tracker is set to execute a
maximum of 2 map-tasks and 2 reduce-tasks at any given
time. No optimizations to Hadoop or any other software
component were made to suit this particular cluster.

1) Replication and Migration of Hadoop Service Tem-
plates and Services: The unoptimized replication process
took around 45 minutes to deploy a template and a single
slave service instance to each of the twelve cluster hosts,
which included a network transfer of 132GB as well as
another 132GB in local data copying; this translates to a
network throughput of around 40MB/s and a disk throughput
of around 25MBs/s. Since the process mostly involves
transferring domain files over the network and copying them
locally, its performance depends on the hardware platform
that the services are being deployed on, as well as the size

of the domains that contain the service. Other operations
performed during replication, such as issuing Xenos API
calls and updating local configuration files are typically sub-
second operations that do not affect the overall performance.
Further optimizations such as using LAN broadcasts on
the cluster to transfer the service to the hosts can be
implemented to minimize the time required for deployment.

In order to test the migration of the Hadoop master
instance, a Hadoop Wordcount benchmark was initiated on
the master, using a single slave instance deployed on each
cluster. About half-way through the job, we issue a migration
request from a small application in the master host to the
Xenos API in the same host, instructing Xenos to migrate
the master instance to another host on the cluster, which
is automatically located through a peer-to-peer search. This
causes the master to be paused while its files are moved
and its state migrated, inevitably causing some map tasks
on the slave services to fail, since they are not able to
report back to the master. Once the master has migrated, it
is un-paused and resumes executing the job, and the failed
map tasks are re-executed by Hadoop itself. The job finishes
successfully, although as expected it takes more time than if
it were not migrated, due to the re-execution of failed map
tasks. The migration itself takes less than 5 minutes, which
is practically the time needed to transfer the domain files
and the memory from the original host to the target host,
and to resolve the new address of the host. Once again,

97

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the operations issued by Xenos are lightweight and have a
negligible affect on the overall duration.

2) HDFS Performance: To evaluate the performance of
the HDFS on which Hadoop map-reduce relies, we designed
a series of tests to measure its performance when reading and
writing data in both a physical and virtualized cluster setup.
Our main objective is to determine the performance penalty
suffered by I/O operations in virtualized environments, using
different data set sizes, cluster configurations and number of
HDFS datanodes. All read and write operations were issued
using the get and put operations provided by Hadoop, which
allows reading from the HDFS to the local filesystem and
writing from the local filesystem to the HDFS respectively.
The data written into the HDFS in all tests is a large text file
automatically generated by scripts beforehand. In all results,
PHY-Cluster refers to a Hadoop cluster on native Linux,
while VM1-Cluster, VM2-Cluster and VM4-Cluster refer to
Xenos-enabled virtualized clusters with one, two and four
virtualized Hadoop slave services deployed per physical host
respectively.

We first evaluate the performance of the HDFS when read-
ing and writing different data sizes (1GB, 4GB and 8GB)
under a physical and a virtualized environment with only one
service instance per host (VM1-Cluster). 12 cluster hosts are
used in all these tests, resulting in 12 datanodes being made
available to the Hadoop master. As shown in Figure 4, PHY-
Cluster performs better than VM1-Cluster in both reading
and writing, which is expected due to the overheads typical
in virtual machines. While the performance gap is marginal
for the 1GB data set, which translates to around 85MB per
datanode, the gap increases with bigger data sets that involve
more data per node.

Another evaluation carried out for HDFS is to identify
whether the number of virtualized service instances on each
physical host affects read and write performance. For each
test, we read and write 256MB for each datanode, as in
the previous test, meaning 1GB, 2GB and 3GB for 4, 8
and 12 datanodes respectively. As shown in Figure 5, PHY-
Cluster once again outperforms all the virtualized setups
as expected. However, we note an interesting difference
between reading and writing on virtualized datanodes; when
writing, the performance gap grows significantly larger as
the number of datanodes increases, but remains stable when
reading. Ibrahim et al. [20] also make this observation in
one of their tests, indicating that the write performance
gap increased markedly but it increased only slightly when
reading.

3) Hadoop Benchmarks: One of the possible benefits of
running Hadoop jobs within virtual machines is increasing
the amount of computation nodes thus using the physical
processing resources available more efficiently. To evaluate
this, we execute several benchmark jobs that are provided
as examples by Hadoop. In all of the evaluations presented
below, we execute Hadoop jobs on the physical (native)

cluster and three other virtualized cluster setups, as shown
in Table I. We use 12 physical hosts throughout all tests,
but since the number of service instances (VMs) per host
changes, we have a different amount of Hadoop nodes
available in certain setups. We again refer to these setups as
PHY-Cluster, VM1-Cluster, VM2-Cluster and VM4-Cluster.
Note that since the domain of each service instance is set to
use 1 VCPU, when deploying four domains on each physical
host, the total number of VCPUs on the host is larger than
the number of physical CPU cores available, which can have
a detrimental effect on the performance of the domains on
the host, due to CPU contention. The best VCPU to CPU
core ratio is in the VM2-Cluster case, where each VCPU is
mapped to a CPU core, as shown in Table I.

The Wordcount benchmark counts the occurrence of each
word in a given text file, and outputs each word and its
associated count to a file on the HDFS. Each mapper takes
a line as input, tokenizes it and outputs a list of words with
the initial count of each, which is 1. The reducer sums the
counts of each word and outputs the word and its associated
count. We execute the benchmark varying the input data size,
using 1GB and 8GB data files. As shown in Figure 6, the
performance of the VM2-Cluster and VM4-Cluster is better
than the VM1-Cluster, indicating that the extra computation
nodes being made available are providing a performance
benefit. However, the performance of PHY-Cluster is still
better than all the virtualized clusters. In the Wordcount
benchmark, Ibrahim et al. [20] achieved better performance
on their virtualized clusters with 2 and 4 VMs per physical
host than their physical (native) cluster; however each host
in their evaluations was equipped with 8 cores, and their
VCPU to CPU core ratio is always less than 1.

The Sort benchmark sorts an input file containing
<key,value> pairs and outputs the sorted data to the file
system. The input data is usually generated using the Ran-
domWriter sample application provided with Hadoop, which
can be used to write large data sets to the HDFS, consisting
of sequence files. The mappers reads each record and outputs
a <key, record> pair, sorting them in the process, and
the reducer simply outputs all the pairs unchanged. We
execute the benchmark varying the input data size, using
1GB and 8GB data files. As shown in Figure 7, increasing
the number of computation nodes does not result in a
performance benefit for the VM2-Cluster and VM4-Cluster;
their performance actually degrades significantly. During the
tests we observed that while the mappers started executing
at a quick rate, once the reducers started executing, the
whole job execution slowed down considerably; this was
also observed by Ibrahim et al. [20] in their evaluation of the
Sort benchmark. The authors argue that this can be attributed
to the large amount of data transferred from the mappers
to the reducers when they start, causing the virtualized
Hadoop nodes on the same physical host to compete for I/O
resources. The performance of the HDFS is also a factor,

98

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster
Services (VMs) - 1 VM/host 2 VM/host 4 VM/host
Hadoop nodes 12 12 24 48
VCPU : CPU core ratio - 1:2 1:1 2:1

Table I
THE PHYSICAL AND VIRTUALIZED CLUSTERS SETUPS ON WHICH HADOOP JOBS ARE EXECUTED.

0

50

100

150

200

250

300

350

400

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster

R
u

n
n

in
g

Ti
m

e
 (

s)

Cluster setup

Wordcount

1GB

8GB

Figure 6. Wordcount execution on PHY-Cluster and VM clusters with varying data input size and virtual machines per physical machine.

0

100

200

300

400

500

600

700

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster

R
u

n
n

in
g

Ti
m

e
 (

s)

Cluster setup

Sort

1GB

8GB

Figure 7. Sort execution on PHY-Cluster and VM clusters with varying data input size and virtual machines per physical machine.

since large amounts of data are being read and written at
the same time.

The PiEstimator application included with Hadoop uses a
quasi-Monte Carlo method to estimate the value of Pi. The
mappers generate points in a unit square, and then count the
points inside and outside of the inscribed circle of the square.
The reducers accumulate these points from the mappers, and
estimate the value of Pi based on the ratio of inside to outside
points. The job takes as input the number of mappers to start,
and the number of points to generate for each mapper; 120
mappers and 10,000 points were used in all tests. As shown
in Figure 8, the performance of VM2-Cluster and VM4-
Cluster shows a decisive improvement over VM1-Cluster,
since more processing nodes are available, and very little
I/O operations are done on the HDFS. In order to verify
whether the ratio of VCPUs to physical cores has an effect
on performance, we setup a VM1-Cluster with each VM
assigned 2 VCPUs instead of 1; this resulted in the same
amount of Hadoop nodes available, but each node has an

extra VCPU compared to the standard VM1-Cluster. We
ran the PiEstimator tests on this cluster and noticed a con-
siderable performance improvement, although not as high
as the VM2-Cluster and VM4-Cluster. Interestingly enough,
we performed a test on PHY-Cluster where we restricted
the Linux kernel to use only a single core, expecting to
see a performance degradation when compared with a dual-
core setup. However there was no degradation; this could
be a deficiency with this particular Hadoop job or Hadoop
itself, although it does not explain how VM1-Cluster with
two VCPUs achieved better performance than with a single
VCPU. It would be an interesting exercise to perform more
tests, varying parameters such as the number of map-tasks
and reduce-tasks allowed per node, to identify the reasons
for this observation.

D. Summary of Results

Using the Hadoop map-reduce framework and the HDFS
as a test case, we evaluated the Xenos framework in terms of
the functionality and features that it provides, and whether

99

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0

5

10

15

20

25

30

35

40

45

50

PHY-Cluster VM1-Cluster VM2-Cluster VM4-Cluster
R

u
n

n
in

g
Ti

m
e

 (
s)

Cluster setup

PiEstimator

Figure 8. PiEstimator execution on PHY-Cluster and VM clusters with varying virtual machines per physical machine.

the use of virtualization introduces a performance penalty
that might not make it feasible to use such a framework for
certain data intensive applications such as Hadoop. Using
the functionality exposed by the Xenos API, we successfully
developed an application that automatically deploys Hadoop
map-reduce services over a cluster, allowing the user to
specify the number of cluster hosts to use, and the number
of services per host. We also successfully migrated the
Hadoop master node from its original host to another; the
node resumed without issues and eventually the job was
completed.

As expected, reading and writing operations on the HDFS
when run on a virtualized cluster suffers a performance
penalty when compared to a physical (native) cluster setup.
For small data transfers and cluster setups, the gap is
negligible, but increases steadily when involving large data
sets or a large number of cluster nodes. While we ac-
knowledge that these I/O performance penalties can be a
barrier when adopting virtualization, a significant amount of
ongoing work and research is aiding in reducing this cost
and increasing hardware support for virtual I/O.

Increasing the number of computation nodes by adding
more virtualized service instances per physical host benefits
certain Hadoop jobs that are processor bound, since more
efficient use of the physical processing resources is being
made. However, jobs that are more I/O bound and that
deal with large data sets tend to suffer a performance hit
due to the performance degradation of the HDFS. For this
reason, an interesting experiment would be to separate the
HDFS from the service instances, which become computa-
tion nodes that execute the Hadoop tasks but use a non-
virtualized HDFS, and evaluate whether any performance
benefits are obtained.

To summarize, we have shown that any negative per-
formance effects arising from using Xenos are related to
the deficiencies in current virtualized I/O systems, and not
due to the overhead imposed by Xenos, which is kept to
a minimum. A peer-to-peer virtualized services platform
similar to Xenos allows for rapid deployment of services,
with the additional benefit that it does not require applica-

tions to be modified. We have also shown that leveraging
the superior search capabilities of peer-to-peer networks
and virtualization features such as migration allows for a
more scalable and resilient approach to dynamic service
provisioning. Once a platform like Xenos is in place, we can
focus on managing services instead of managing physical
machines.

VI. TOPICS FOR FURTHER INVESTIGATION

Xenos can fill the role of a test-bed to facilitate experi-
mentation with a variety of emerging issues in distributed
virtualized services, some of which are briefly discussed
here.

A. A Library of Essential Services

The core functionality provided by the Xenos framework
can be further extended and abstracted away through ad-
ditional services. Examples include service wrappers for
load-balancing and fault-tolerance (virtual machine check-
pointing is invisible to the service(s) hosted within), virtual
machine pooling and replication, service deployers such as
the Hadoop deployer discussed previously, platform emula-
tors, legacy services supporting a range of operating systems,
and a Xenos-UDDI adapter that can be used to search
for Xenos services via UDDI. Xenos does not impose a
single method for actual service delivery, thus web services,
Sun RPC, and even services using raw Ethernet may be
advertised.

B. Seamless Wide-Area Service Migration

The issue of live virtual machine migration over WANs
has been addressed by several authors and a number of
prototypes are available. Travostino et al. [22] approach the
problem of preserving TCP connections by creating dynamic
IP tunnels and assigning a fixed IP address to each virtual
machine, which communicates with clients via a virtual gate-
way interface that is set up by Xen. After migration, a virtual
machine retains its address, and the IP tunnels are configured
accordingly to preserve network routes – this is completely
transparent to TCP or any other higher level protocol.
Bradford et al. [23] combine the IP tunneling approach with

100

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Physical devices (some of which may be IOMMU-enhanced)

Dom0 Linux OSDomU Service 1

 Xen

Thread scheduler

Shared I/O ring

buffers

Communication

front-end

Direct TCP/IP

or JXTA connection

to other Dom0

JXTA connection

to P2P overlay

network

DomU Service 2

File system

Communication

front-end
Device drivers

Communication

back-end

TCP/IP

network stack

JXTA P2PXenos

Coordinator

Data transfer path

Control path between Dom0 and DomUs

JXTA control path

Figure 9. An alternate architecture allowing for various transport methods.

Dynamic DNS to address the problem of preserving network
connections. More importantly, the authors also implement a
pre-copy approach for transferring the disk image attached to
a virtual machine, using a mechanism similar to that used by
Xen when live migrating the state of a virtual machine. This
greatly minimizes downtime even if the actual migration
takes long due to poor network performance. Harney et al.
[24] suggest using the mobility features in the IPv6 protocol
to preserve network communication sessions, an approach
that is viable in the long-term.

C. Alternative Transport Methods For Service Delivery

Applications featuring fine grained concurrency span-
ning across virtual and physical machines stand to gain
from inter-virtual machine communication path optimiza-
tions such as shared memory communication for services
residing on the same physical machine, and hypervisor-
bypass network communication for distributed services. In
both instances, the secure initialization of each communica-
tion path would be delegated to Xenos, allowing the data
to move directly between the participating virtual machines
and virtualization-enabled I/O devices. In some cases, an I/O
could be permanently and exclusively bound to a specific
service for low-latency dedicated access. Another enhance-
ment is to allow services to piggy-back their communication
over the JXTA protocol, which would allow communication
between services that cannot reach one another outside of

the peer-to-peer network. Figure 9 illustrates this concept.

D. Security, Authentication and Service Provisioning

A number of underlying mechanisms could be inher-
ited from the Xen hypervisor and the JXTA peer-to-peer
framework or their respective alternatives. To our benefit,
JXTA provides several security and authentication features,
as discussed by Yeager et al. [25]; these include TLS
(Transport Layer Security), and support for centralized and
distributed certification authorities. Xen provides a basis for
automated accounting and billing services that track service
consumption as well as physical resource use. However,
Xenos should at least provide unified and distributed user,
service and hierarchical service group authentication and
permission mechanisms, a non-trivial undertaking in itself.

E. The Operating System-Agnostic Operating System

Software architectures in the vein of Xenos could fit
the role of a distributed microkernel in a virtualization-
embracing operating system that consists of interacting light-
weight services hosted within virtual machines, including a
multi-core thread scheduler, file systems (a stripped down
Linux kernel), and device drivers. Each operating system
service would run within its own light-weight Xen domain
and expose itself through Xenos services (reminiscent of
system calls). Xenos services would also host legacy oper-
ating systems and applications, presented to users through an

101

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operating system-agnostic window manager hosted in a sep-
arate virtual machine. Applications with particular resource
requirements or requiring isolation, such as computer games
or web browsers, may easily be hosted in their own virtual
machines, supported by a minimal application-specific ker-
nel or library or even executing on ‘bare virtualized metal’.
Xen, and virtual machine monitors in general, have been
described as “microkernels done right” [26], although others
have argued that the drawbacks that muted the adoption of
microkernels [27] still apply.

VII. CONCLUSION

An approach to building distributed middleware where
services are hosted within virtual machines interconnected
through a peer-to-peer network has been presented through
the Xenos framework. Xenos extends well-established solu-
tions for virtualization hypervisors and peer-to-peer overlay
networks to deliver the beginnings of a fully decentralized
solution for virtualized service hosting, discovery and deliv-
ery.

Using the Hadoop map-reduce framework and the HDFS
as a test case, it was established that minimal performance
overheads are associated with using the Xenos framework
itself, and that the overheads introduced through the use of
virtual machines are principally linked with the incidence
of I/O operations. It is expected that forthcoming hardware
support for virtualization will further reduce the gap between
virtualized and native I/O performance pinpointed in the
results, while simplifying hypervisors. This will further con-
solidate the virtual machine’s position as a viable alternative
for hosting both computation- and I/O-intensive tasks.

In practice, Xenos automated to a large degree the de-
ployment of jobs while enabling the seamless migration of
live Hadoop nodes. We thus believe that the combination
of peer-to-peer technology and virtualization merits serious
consideration as a basis for resilient distributed services.

REFERENCES

[1] D. Bailey and K. Vella, “Towards peer-to-peer virtualized
service hosting, discovery and delivery,” in AP2PS ’10:
Proceesings of the The Second International Conference on
Advances in P2P Systems, 2010, pp. 44–49.

[2] D. Bailey, “Xenos: A service-oriented peer-to-peer framework
for paravirtualized domains,” Master’s thesis, University of
Malta, 2010.

[3] P. Willmann, S. Rixner, and A. L. Cox, “Protection strategies
for direct access to virtualized I/O devices,” in ATC’08:
USENIX 2008 Annual Technical Conference on Annual Tech-
nical Conference. Berkeley, CA, USA: USENIX Associa-
tion, 2008, pp. 15–28.

[4] K. A. Fraser, S. M. Hand, T. L. Harris, I. M. Leslie, and I. A.
Pratt, “The XenoServer computing infrastructure,” University
of Cambridge Computer Laboratory, Tech. Rep., 2003.

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles. New
York, NY, USA: ACM, 2003, pp. 164–177.

[6] D. Spence and T. Harris, “XenoSearch: Distributed resource
discovery in the XenoServer open platform,” in HPDC ’03:
Proceedings of the 12th IEEE International Symposium on
High Performance Distributed Computing. Washington, DC,
USA: IEEE Computer Society, 2003, p. 216.

[7] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo,
“WOW: Self-organizing wide area overlay networks of virtual
workstations,” in In Proc. of the 15th International Sympo-
sium on High-Performance Distributed Computing (HPDC-
15, 2006, pp. 30–41.

[8] M. Amoretti, F. Zanichelli, and G. Conte, “SP2A: a service-
oriented framework for P2P-based grids,” in MGC ’05: Pro-
ceedings of the 3rd international workshop on Middleware
for grid computing. New York, NY, USA: ACM, 2005, pp.
1–6.

[9] V. March, Y. M. Teo, and X. Wang, “DGRID: a DHT-based
resource indexing and discovery scheme for computational
grids,” in ACSW ’07: Proceedings of the fifth Australasian
symposium on ACSW frontiers. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2007, pp. 41–
48.

[10] Q. Xia, R. Yang, W. Wang, and D. Yang, “Fully decentralized
DHT based approach to grid service discovery using overlay
networks,” Computer and Information Technology, Interna-
tional Conference on, pp. 1140–1145, 2005.

[11] D. Talia, P. Trunfio, J. Zeng, and M. Hgqvist, “A DHT-based
peer-to-peer framework for resource discovery in grids,”
Institute on System Architecture, CoreGRID - Network of
Excellence, Tech. Rep. TR-0048, June 2006.

[12] W. Wadge, “Providing a grid-like experience in a P2P envi-
ronment,” Master’s thesis, University of Malta, 2007.

[13] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Vir-
tualization for high-performance computing,” SIGOPS Oper.
Syst. Rev., vol. 40, no. 2, pp. 8–11, 2006.

[14] S. Thibault and T. Deegan, “Improving performance by
embedding HPC applications in lightweight Xen domains,”
in HPCVirt ’08: Proceedings of the 2nd workshop on System-
level virtualization for high performance computing. New
York, NY, USA: ACM, 2008, pp. 9–15.

[15] M. J. Anderson, M. Moffie, and C. I. Dalton, “Towards
trustworthy virtualisation environments: Xen library OS se-
curity service infrastructure,” Hewlett-Packard Laboratories,
Tech. Rep. HPL-2007-69, April 2007. [Online]. Available:
http://www.hpl.hp.com/techreports/2007/HPL-2007-69.pdf

[16] K. Falzon, “Thread scheduling within paravirtualised do-
mains,” Bachelor of Science (Hons) Dissertation, University
of Malta, 2009.

102

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[17] R. J. Figueiredo, P. A. Dinda, and J. A. B. Fortes, “A
case for grid computing on virtual machines,” in ICDCS
’03: Proceedings of the 23rd International Conference on
Distributed Computing Systems. Washington, DC, USA:
IEEE Computer Society, 2003, p. 550.

[18] K. Keahey, K. Doering, and I. Foster, “From sandbox to
playground: Dynamic virtual environments in the grid,” in
GRID ’04: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 34–42.

[19] S. Santhanam, P. Elango, A. Arpaci-Dusseau, and M. Livny,
“Deploying virtual machines as sandboxes for the grid,” in
WORLDS’05: Proceedings of the 2nd conference on Real,
Large Distributed Systems. Berkeley, CA, USA: USENIX
Association, 2005, pp. 7–12.

[20] S. Ibrahim, H. Jin, L. Lu, L. Qi, S. Wu, and X. Shi,
“Evaluating MapReduce on virtual machines: The Hadoop
case,” in CloudCom, 2009, pp. 519–528.

[21] J. Dean and S. Ghemawat, “MapReduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[22] F. Travostino, P. Daspit, L. Gommans, C. Jog, C. de Laat,
J. Mambretti, I. Monga, B. van Oudenaarde, S. Raghunath,
and P. Y. Wang, “Seamless live migration of virtual machines
over the MAN/WAN,” Future Gener. Comput. Syst., vol. 22,
no. 8, pp. 901–907, 2006.

[23] R. Bradford, E. Kotsovinos, A. Feldmann, and H. Schiöberg,
“Live wide-area migration of virtual machines including
local persistent state,” in VEE ’07: Proceedings of the 3rd
international conference on Virtual execution environments.
New York, NY, USA: ACM, 2007, pp. 169–179.

[24] E. Harney, S. Goasguen, J. Martin, M. Murphy, and M. West-
all, “The efficacy of live virtual machine migrations over the
internet,” in VTDC ’07: Proceedings of the 3rd international
workshop on Virtualization technology in distributed comput-
ing. New York, NY, USA: ACM, 2007, pp. 1–7.

[25] W. Yeager and J. Williams, “Secure peer-to-peer networking:
The JXTA example,” IT Professional, vol. 4, pp. 53–57, 2002.

[26] S. Hand, A. Warfield, K. Fraser, E. Kotsovinos, and D. Ma-
genheimer, “Are virtual machine monitors microkernels done
right?” in HOTOS’05: Proceedings of the 10th conference
on Hot Topics in Operating Systems. Berkeley, CA, USA:
USENIX Association, 2005.

[27] G. Heiser, V. Uhlig, and J. LeVasseur, “Are virtual-machine
monitors microkernels done right?” SIGOPS Oper. Syst. Rev.,
vol. 40, no. 1, pp. 95–99, 2006.

103

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Aggregation Skip Graph: A Skip Graph Extension
for Efficient Aggregation Query over P2P Networks

Kota Abe, Toshiyuki Abe, Tatsuya Ueda, Hayato Ishibashi and Toshio Matsuura
Graduate School for Creative Cities, Osaka City University

Osaka, Japan
Email: {k-abe,t-abe,tueda,ishibashi,matsuura}@sousei.gscc.osaka-cu.ac.jp

Abstract—Skip graphs are a structured overlay network that
allows range queries. In this article, we propose a skip graph
extension called aggregation skip graphs, which efficiently execute
aggregation queries over peer-to-peer network. An aggregation
query is a query to compute an aggregate, such as MAX,
MIN, SUM, or AVERAGE, of values on multiple nodes. While
aggregation queries can be implemented over range queries of
conventional skip graphs, it is not practical when the query
range contains numerous nodes because it requires the number of
messages in proportion to the number of nodes within the query
range. In aggregation skip graphs, the number of messages is
reduced to logarithmic order. Furthermore, computing MAX or
MIN can be executed with fewer messages as the query range
becomes wider. In aggregation skip graphs, aggregation queries
are executed by using periodically collected partial aggregates
for local ranges of each node. We have confirmed the efficiency
of the aggregation skip graph by simulations.

Keywords—aggregation query; peer-to-peer networks; skip
graphs

I. INTRODUCTION

P2P (Peer-to-Peer) systems have attracted considerable at-
tention as technology for performing distributed processing
on massive amounts of information using multiple nodes
(computers) connected via a network. In P2P systems, each
node works autonomously cooperating with other nodes that
constitute a system that can be scaled by increasing the number
of nodes.

Generally, P2P systems can be grouped into two major cat-
egories: unstructured and structured P2P systems. Structured
P2P systems is able to look up data efficiently (typically in
logarithmic or constant order), by imposing restrictions on the
network topology.

Regarding structured P2P systems, DHT (Distributed Hash
Table)-based systems, such as Chord [2], Pastry [3], and
Tapestry [4], have been extensively researched. DHTs are a
class of decentralized systems that can efficiently store and
search for key and value pairs. DHTs also excel at load
distribution. However, DHTs hash keys to determine the node
that will store the data, and hence a value cannot be searched
for if the correct value of the key is not known. Therefore, it
is difficult with DHT to search for nodes whose key is within
a specified range (range query).

As a structured P2P system which supports range queries,
the skip graph [5] has attracted considerable attention. A skip
graph is a distributed data structure that is constructed from

multiple skip lists [6] that have keys in ascending order. The
skip graph is suitable for managing distributed resources where
the order of the keys is important.

Aggregation queries can be considered a subclass of range
queries. An aggregation query is a query to compute an
aggregate, such as the MAX, MIN, SUM, or AVERAGE,
from the values that are stored in multiple nodes within a
specified range. Aggregation queries are useful and sometimes
essential for P2P database systems. Aggregation queries have
a wide variety of applications. For example, across a range
of nodes in a distributed computing system such as a grid, an
aggregation query can be used to obtain the average CPU load,
the node with the maximum CPU load, or the total amount of
available disk space. An aggregation query can also be used
to compute the average or maximum value from sensor data
within a specified range on a sensor network. Other possible
usage of aggregation queries can be found in [7][8].

While aggregation queries can be implemented by using
range query over skip graphs, this is not efficient because every
node in the specified range must process the aggregation query
message; thus, this method stresses network bandwidth and
CPU especially when aggregation queries having a wide range
are frequently issued.

In this paper, we propose the aggregation skip graph,
a skip graph extension that efficiently execute aggregation
queries. In the aggregation skip graph, the expected number
of messages and hops for a single aggregation query is
O(log n + log r), where n denotes the number of nodes
and r denotes the number of nodes within the query range.
Furthermore, computing MAX or MIN can be executed with
fewer messages as the query range becomes wider.

We discuss related work in Section II and present the
algorithm of the aggregation skip graph in Section III. In
Section IV, we evaluate and discuss the aggregation skip
graph. Lastly, in Section V, we summarize this work and
discuss future work.

II. RELATED WORK

A. Aggregation in P2P Network

Some research has focused on computing aggregations on
P2P networks, to name a few, in the literature [7]–[11].

Most of the existing methods construct a reduction tree
for executing aggregation queries, as summarized in [10].
However, this approach incurs a cost and complexity because

104

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

constructing a reduction tree over a P2P network is equal to
adding another overlay network layer over an overlay network.

In addition, to our knowledge, none of the existing methods
support computing aggregations in a subset of nodes; they
compute aggregates only on all nodes.

As we discuss later, the aggregation skip graph does not
require constructing a reduction tree, nor even maintaining
additional links to remote nodes; aggregation queries are
executed utilizing the data structure of underlying skip graphs.
Furthermore, it can compute aggregates within a subset of
nodes, by specifying a key range.

B. Skip Graph and Skip Tree Graph
A skip graph [5] is a type of structured overlay network.

The skip graph structure is shown in Fig. 1. The squares in
the figure represent nodes, and the number within each square
is the key. Each node has a membership vector, which is a
uniform random number in base w integer. Here, we assume
w = 2.

Skip graphs consist of multiple levels, and level i contains
2i doubly linked lists. At level 0, all of the nodes belong to
only one linked list. At level i(> 0), the nodes for which the
low-order i digit of the membership vector matches belong to
the same linked list. In the linked list, the nodes are connected
by the key in ascending order. We assume that the leftmost
node in the linked list and the rightmost node are connected
(i.e., circular doubly-linked list). To maintain the linked lists,
each node has pointers (IP address, etc.) to the left and right
nodes at each level.

In a skip graph, when the level increases by 1, the average
number of nodes for one linked list decreases by 1/2. We
refer to the level at which the number of nodes in the linked
list becomes 1 as the maxLevel. The maxLevel corresponds
to the height of the skip graph. In the skip graph for n
nodes, the average maxLevel is O(log n), and the number of
hops required for node insertion, deletion and search is also
O(log n).

With skip graphs, aggregation queries can be easily imple-
mented over range queries, in which one is asked all keys
in [x, y]. Range queries require all nodes within the range
receive a message. If we denote the number of nodes within
the target range of the aggregation query by r, then range
queries requires O(log n + r) messages and hops on average.

The skip tree graph [12] is a variant of skip graph, which al-
lows fast aggregation queries by introducing additional point-
ers called conjugated nodes at each level. Skip tree graphs run
range queries in O(log n + r) messages and O(log n + log r)
hops.

In either skip graphs or skip tree graphs, the number
of messages for range queries increases in proportion to r;
thus, these methods are not practical for aggregation queries,
especially when aggregation queries with a wide range are
frequently issued.

III. PROPOSED METHOD

In this section, we describe the detail of the aggregation
skip graph.

Level 0

Level 1

Level 2

Level 3

Membership Vector 010 100 111 001 110101

14

7

7

14
9

7
9

6
14

14
92

2

2

2

6

5

95

5

5

6

Key

Fig. 1. Example of skip graphs

In the following sections, at first, we focus on aggregation
queries to find the largest value in a specified range (i.e.,
MAX). We discuss other general aggregates (such as AVER-
AGE, SUM, etc.) later in Section III-D.

A. Data Structure

In aggregation skip graphs, each node stores a key–value
pair. In the same manner as conventional skip graphs, the
linked lists at each level are sorted by key in ascending order.
The value is not necessarily related to the order of the key,
and may change, for example, as in the case of sensor data.

The data stored in each node of an aggregation skip graph
are shown in Table I. The key, membership vector, left[]
(pointer to the left node at each level), right[] (pointer to
the right node at each level), and maxLevel are the same as
in conventional skip graphs. Hereinafter, we use the notation
P.key to denote the key of node P. Also, we use the notation
“node x” to denote the node whose key is x.

In addition to the skip graph, each node of a aggregation
skip graph stores agval[] and keys[]. The value of the node
is stored in agval[0]. P.agval[i] (0 < i) stores the MAX value
within the nodes between P (inclusive) to P.right[i] (exclusive)
in the linked list at level 0, where P.right[i] denotes the right
node of node P at level i. P.keys[i] (0 < i) stores the key
set that corresponds to the P.agval[i]. (A set is used because
multiple keys may share the same MAX value.) P.keys[0] is
not used. We describe the method to collect agval[] and keys[]
later in Section III-C.

In skip graphs, the pointers for the left and right nodes point
to more distant nodes as the level increases. Therefore, as the
level increases, agval[] stores MAX values in a wider range,
and agval[maxLevel] stores the MAX value for all nodes.

Fig. 2 shows an example of an aggregation skip graph. The
squares in level 0 show the value (agval[0]) of a node, and
agval[i]/keys[i] in level i (0 < i).

105

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I
DATA MANAGED BY EACH NODE

Variable Description
key Key
m Membership vector
right[] Array of pointers to right node
left[] Array of pointers to left node
maxLevel First level at which the node is the only node

in the linked list
agval[] Array of collected MAX values for each

level (agval[0] is the value of the node)
keys[] Array of key sets that correspond to agval[]

Let us consider, as an example, the square at level 2 of
node 5. The square contains 5/6 because the MAX value in
the nodes between node 5 (inclusive) and node 9 (exclusive),
which is the right node of node 5 at level 2, is 5 and the
corresponding key is 6. Note that all of the nodes contain 9/2

at the highest level because the MAX value for all nodes is 9
and the corresponding key is 2.

In an aggregation skip graph, insertion and deletion of nodes
can be accomplished by using the conventional skip graph
algorithm; thus, this is not discussed here.

B. Query Algorithm

Here, we describe the algorithm for aggregation queries.
The algorithm gives the MAX value (and the corresponding

key set) within all values stored by nodes whose key is in the
specified key range r = [r.min, r.max].

In the following, we provide a brief overview of the
algorithm first (Section III-B1) and the details next (Section
III-B2).

1) Algorithm overview: An aggregation query proceeds,
starting from a node on the left side of the specified range
(having a smaller key), to a node on the right side of the
range.

Level 0

Level 1

Level 2

Level 3

2 6 7 9 14Key
Membership Vector 010 100 111 001 110

5
101

7

7/14

9/2

9/2

9/2

9/29/2

9/2

9/2

9

5/6

2

5/6 3/7

5/6

9/2

9/2

2

7/14

9/2

35

agval[i]/keys[i]

Value

Fig. 2. Example of aggregation skip graph

Let us consider the case where node P issues an aggregation
query for range r. If P is within r, P forwards the query
message to node Q, where Q is a node known to P, which
is outside of range r and the closest to r.min. (If P is outside
range r, then read the Q below as P instead.)

Let i denote the current level, starting from maxLevel −
1. Let s denote the range from Q to Q.right[i], and x the
MAX value in s. Node Q executes one of the following steps,
determined by the relation between range r, range s and x.
This is depicted in Fig. 3 (1)–(4). In the figure, the arrow
represents the pointer from Q to Q.right[i].

(1) Range s includes range r, and the key of x is
within r.
It is clear that x is also the MAX value for r; thus,
x is returned to P as the MAX value and the query
terminates.

(2) Range s has a common area with range r, and
the key of x is within r.
The value x is the MAX value for the common area
between range s and range r. However, because an
even larger value may exist in the remaining range
r, the query is forwarded to Q.right[i]. The value
of x and the corresponding key are included in the
forwarded message.

(3) Range s has a common area with range r, but
the key of x is not within r
In this case, no information is obtained about the
MAX value within range r; thus, the current level
(i) is decreased by 1 and this process is repeated
again from the beginning.

(4) Range s and range r do not have any common
areas
The MAX value in range r does not exist in range
s; thus, the query is sent to Q.right[i].
In this case, Q.right[i] acts as the new Q and the
process is repeated again in the same manner.

Next, we describe the algorithm for a node that receives
a forwarded query message from node Q in case (2). We
denote such a node by R. Again, let i denote the current level,
starting from maxLevel− 1. Also, let t denote the range from
R to R.right[i], and let y denote the MAX value in t. Node R
executes one of the following steps. This is depicted in Fig. 3
(5)–(7).

(5) Range t has a common area with range r, and
the key of y is within r
The max(x, y) is returned to P and the query termi-
nates.

(6) Range t has a common area with range r, but the
key of y is not within in r
If x > y, x is returned to P as the MAX value and
the query terminates. Otherwise, decrease the current
level (i) by 1 and repeat this process.

(7) Range t is included in range r
The query is forwarded to R.right[i]. The max(x, y)
and the corresponding key are included in the for-

106

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

y

range r

(1)

(2)

(3)

Q

Q

Q

Q(4)

(5)

(6)

(7)

R

R

R

x

x

x

x

y

y

s

s

s

s

t

t

t

Fig. 3. Relationship between node and range

warded message.

2) Algorithm details: Here, we present the detailed algo-
rithm in pseudocode.

Node P initiates an aggregation query by calling
agQuery(r, d, P, −∞, ∅). The parameter d indicates
the direction of the query. The initial value of d is, LEFT if
P.key is included in range r, otherwise RIGHT.

In the description, RPC (Remote Procedure Call) is used
for communication. The notation a ≺ b ≺ c means (a < b <
c ∨ b < c < a ∨ c < a < b). (a ≺ b ≺ c = true if
node a, b, c appear in this order in a sorted circular linked list,
following the right link starting from node a.)
// r: key range [r.min, r.max]
// d: forwarding direction (LEFT or RIGHT)
// s: query issuing node
// v: MAX value that has been acquired thus far
// k: set of keys that corresponds to v
P.agQuery(r, d, s, v, k)

if elements of P.keys[maxLevel] are included in r then
send P.agval[maxLevel] and P.keys[maxLevel] to node s
return

end if
{When forwarding to the left (trying to reach the left side of range r)}
if d = LEFT then

search for the node n that is closest to r.min and satisfies
(r.max ≺ n.key ≺ r.min) from the routing table of P (i.e.,
P.left[] and P.right[])
if such node n exists then

call agQuery(r, RIGHT, s, v, k) on node n
else

let n be the node that is closest to r.min and satisfies (r.min
≺ n.key ≺ P.key), found in the routing table of P
call agQuery(r, LEFT, s, v, k) on node n

end if
return

end if
{When forwarding to the right}
if d = RIGHT then

if P.key is included in r and a level j exists that satisfies (P.key
≺ r.max ≺ P.right[j]) and v > P.agval[j] then
{Corresponds to the case where x > y in SectionIII-B1 case (6)}
send v and k to node s
return

end if
{The process for finding i that satisfies the conditions in the next if
statement corresponds to (3) or (6)}
if level k exists such that elements of P.keys[k] are included
within r (let i be the largest value for such k) then
{Update the v and k}
if P.agval[i] > v then

v = P.agval[i], k = P.keys[i]
else if P.agval[i] = v then

k = k ∪ P.keys[i]
end if
{Terminate if the query exceeds the rightmost end of r}
if r.min ≺ r.max ≺ P.right[i].key then
{Corresponds to (1) or (5)}
send v and k to node s
return

end if
{Corresponds to (2) or (7)}
call agQuery(r, RIGHT, s, v, k) on P.right[i]
return

else
if P.key ≺ r.max ≺ P.right[0].key then
{No node exists within the range}
send null to node s

else if P.right[0].key is included in r then
{The case that P is the node directly to the left end of r}
call agQuery(r, RIGHT, s, v, k) on P.right[0]

else
{Corresponds to (4)}
search for the node n that is closest to r.min and satisfies
(P.key ≺ n.key ≺ r.min) from the routing table of P
call agQuery(r, RIGHT, s, v, k) on n

end if
return

end if
end if

C. Aggregates Collecting Algorithm

Because nodes may join or leave, and the value of nodes
may change, we periodically collect and update the agval[]
and keys[] of each node. We next explain the algorithm used
to accomplish this.

1) Algorithm overview: When a node joins an aggregation
skip graph, all entries of agval[] and keys[] of the node are
respectively set to the value and the key of the node. Then,
each node periodically sends an update message to collect
agval[] and keys[] for each level. This is shown in Fig. 4.
The thick line in the figure indicates the message flow when
node 5 sends an update message. (It is assumed that node
5 has newly joined the aggregation skip graph.) The update
message is forwarded to the left node, starting from level
maxLevel− 1. If the left node is the originating node of the
update message (node 5), then the level is decreased and the
forwarding continues. Finally at level zero, the message returns
to the originating node (node 5).

The update message contains v[] and k[] to store the MAX
value and the corresponding key set for each level. While
the message is being forwarded to the left at level i, the

107

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Level 0

Level 1

Level 2

Level 3

2 6 7 9 14Key
Membership Vector 010 100 111 001 110

5
101

7

7/14

9/2

9/2

9/2

9/29/2

9/2

9/2

9

5/6

2

2/5 3/7

2/5

2/5

9/2

2

7/14

9/2

35

The v[] in the update message that each node forwards to the left node

Node P

Node 5 (P)

2v[0]
v[1] 2

v[3] 2
v[2] 2

Node 9

2v[0]
v[1] 2

v[3] 9
v[2] 2

Node 7

2v[0]
v[1] 2

v[3] 9
v[2] 3

Node 6

2v[0]
v[1] 5

v[3] 9
v[2] 3

Fig. 4. Message flow of an update message

MAX value of agval[i] on the node that the message passes
is collected in v[i + 1]. When the message returns to the
originating node, agval[i] (i > 0) is calculated using the
following formula:

P.agval[i]← max{v[j] | 0 ≤ j ≤ i}.

The lower part of Fig. 4 shows v[] in an update message
that each node forwards to the left node. When the originating
node (node 5) receives the update message, its agval[] is set
to {2, 5, 5, 9}.

To obtain the correct agval[] and keys[] for every node,
each node must execute the update procedure described above
maxLevel times because the accuracy of the information stored
in an update message level i (i.e., v[i] and k[i]) depends on
the accuracy of agval[i− 1] and keys[i− 1] of each node that
the message passes.

2) Algorithm details: Here, we present the detailed algo-
rithm using pseudocode.

Each node periodically execute update(maxLevel -
1, P.agval[], P.keys[], P) for updating its agval[]
and keys[] .
// lv: level
// v[]: array of aggregated value
// k[]: array of key set
// s: originating node of update message
P.update(lv, v[], k[], s)
{When the message returns to the originating node}
if lv = 0 and P = s then

for i = 1 to maxLevel do
find j where v[j] is the MAX value from v[0] to v[i]

P.agval[i] ← v[j]
P.keys[i] ← k[j]
{If multiple j’s correspond to the MAX value, k[j] is a union set
of them}

end for
return

end if
{A larger value is found}
if v[lv + 1] < P.agval[lv] then

v[lv + 1] ← P.agval[lv]
k[lv + 1] ← P.keys[lv]

else if v[lv + 1] = P.agval[lv] then
k[lv + 1] ← k[lv + 1] ∪ P.keys[lv]

end if
{Find a level from the top where the left node is not s}
for i = lv downto 1 do

if P.left[i] 6= s then
call update(i, v, k, s) on P.left[i]
return

end if
end for
call update(0, v, k, s) on P.left[0]
return

D. Computing General Aggregates

While the algorithm described so far targets the MAX as the
aggregates, it is trivial to adapt to the MIN. To compute other
general aggregates such as the AVERAGE, SUM or COUNT,
the following modification is required.

Instead of storing the MAX value, agval[] stores both the
sum of values and number of nodes within each range. The ag-
gregates collecting algorithm should be modified accordingly.
In the case of computing the MAX value, the result may be
obtained in an early step (i.e., it is not always necessary to
reach the nodes at each end of the region.). However, when
computing the AVERAGE, SUM or COUNT, it is always
necessary to reach the node at both ends; first route a query
message to the leftmost node of the query range and then route
the message to the rightmost node of the range. This requires
total O(log n + log r) messages and hops.

In general, this method can compute any aggregation func-
tion f that satisfies a property f(S) = f(S1) ◦ f(S2) where
S, S1 and S2 are a set of data that satisfies S = S1 + S2

and ◦ is a binary operator. In addition, a function consisting
of combination of such f can be computed. For example, the
variance (1

N

∑N
i=1 x2

i − x) can be computed using COUNT,
SUM of squares and AVERAGE.

IV. EVALUATION AND DISCUSSION

In this section, we give some evaluation and discussion of
the aggregation skip graph. We take n as the total number of
nodes, r as the target range for the aggregation query.

A. Cost of the Aggregation Query

Here, we examine the number of messages and hops
required for an aggregation query. The algorithm proposed
in this paper does not send messages to multiple nodes
simultaneously, so the required number of hops and number
of messages are equal.

108

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) MAX and MIN: When computing the MAX (or MIN),
in the worst case, the query algorithm in Section III-B gives
the maximum number of hops when the closest nodes on both
sides outside of range r store values that are larger than the
largest value within r. In such cases, the aggregation query
message (1) first arrives at the node immediately to the left
of r, and then (2) reaches the rightmost node within r. This
requires O(log n + log r) hops on average.

However, in an aggregation skip graph, as the target range of
the aggregation query becomes wider, the probability becomes
higher that the MAX (or MIN) value stored in agval[] of each
node falls within the query range. Therefore, on average the
aggregation query is able to be executed in fewer hops. To
evaluate the number of hops, we ran the following simulation.

We set the number of nodes (n) as 1,000 for the simu-
lation. We assigned a key and value to each node using a
random number between 0 and 9,999. We also assigned the
membership vector using a random number.

Next, we registered each node in the aggregation skip graph.
We also set the agval[] and keys[] of each node using the
algorithm discussed in Section III-C.

We executed the simulation varying the size of the aggre-
gation query range, from 1% to 95% of the key value range
(0 to 9,999). (We used 1% steps from 1% to 10%, and 5%
steps beyond 10%.) We measured the maximum, the average,
and the 50th and 90th percentiles, of number of hops.

The trial was performed 1,000 times for each range size.
For each experiment, the initiating node of the aggregation
query and the range of the aggregation query were selected
using random numbers.

The results are shown in Fig. 5. The x-axis shows the
width of the aggregation query range, and the y-axis shows
the number of hops.

From the graph, we can confirm that as the target range of
the aggregation query becomes wider, the number of average
hops decreases. In addition, according to the 50th percentile
value, we can see that the query often terminates in 0 hops
when the range size is large.

The maximum number of hops is not stable. This is because
there is no tight upper bound of hops in skip graphs; it is
affected by distribution of membership vectors.

2) General Aggregates: We also executed a simulation
for computing general aggregates (See Section III-D) in the
same condition (Fig. 6). It confirms that computing general
aggregates is executed in O(log n + log r) messages.

B. Cost of Collecting Aggregates

As discussed in Section III-C, each node must periodically
collect aggregates into its agval[] and keys[]. Here, we discuss
the cost of this procedure.

On average, the number of hops that the message is for-
warded to the left node in one level is about 1 hop, assuming
uniformity of membership vectors. Considering the average
maxLevel is in O(log n), an update message sent from a
particular node will be forwarded O(log n) times on average
before it returns to the node.

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

of

 h
op

s

range query extent (%)

max
90 percentile

average
50 percentile

Fig. 5. Number of hops vs query range size for computing MAX

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90 100

of

 h
op

s

range query extent (%)

max
90 percentile

average
50 percentile

Fig. 6. Number of hops vs query range size for computing general aggregates

Each node executes this procedure periodically. If the period
of this procedure is t, then O(n log n) update messages are for-
warded by all nodes in t. Because these messages are scattered
over n nodes, each node processes O(log n) messages in t on
average.

Let us investigate this additional cost is worth paying by
comparing the estimated number of messages for an aggrega-
tion skip graph with that for a conventional skip graph using
simple range queries.

We assume that each node issues q aggregation queries in
period t and each query targets dpne nodes (0 < p ≤ 1). In
the conventional method, qn(c1 log2 n + dpne) messages are
issued in t, where c1 (and c2, c3 below) is a constant factor.
In the aggregation skip graph, nc2 log2 n messages are issued
for collecting aggregates and qn(c1 log2 n + c3 log2dpne)
messages are issued for aggregation queries, which sum up to
nc2 log2 n + qn(c1 log2 n + c3 log2dpne) messages in t. Note
that this calculation can be applied both to the worst case of
computing MAX or MIN and to the average case of computing
general aggregates (see Section IV-A).

The aggregation skip graph is more efficient than the
conventional method with regard to the number of mes-

109

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0.01 0.1 1 10 100

q
(#

 o
f a

gg
r.

qu
er

y
pe

r n
od

e
in

 t)

p (range query extent, %)

n=100
n=1,000

n=10,000
n=100,000

Fig. 7. Graph to determine which, the aggregation skip graph or the
conventional skip graph, is efficient. Both axes are in logarithmic scale. The
area under the curve is the region where the conventional skip graph is more
efficient.

sages if qn(c1 log2 n + dpne) > nc2 log2 n + qn(c1 log2 n +
c3 log2dpne), which is equivalent to q > (c2 log2 n)/(dpne −
c3 log2dpne).

Fig. 7 is a plot of function (c2 log2 n)/(dpne−c3 log2dpne)
in several n, varying p from 0 to 1. The x-axis shows p and
the y-axis shows the q, both in logarithmic scale. We use
c2 = 1.08, c3 = 0.91, that are obtained from a preliminary
experiment (c1 is eliminated in the function). The area under
the curve is the region where the conventional skip graph is
more efficient. For example, if n = 100, 000 and each node
issues 0.1 queries in t, the aggregation skip graph is more
efficient when the query covers more than about 0.18% of
nodes, or 180 nodes. As one can see from the graph, the
aggregation skip graph is in general more efficient than the
conventional skip graph when the query frequency is high. In
addition, even if the query frequency is low, the aggregation
skip graph is more efficient unless both the query range and
the number of nodes are very small.

C. Recovering from Failures

Due to a node failure or ungraceful leaving, the link
structure of (aggregation) skip graphs might be temporarily
broken. In that case, agval[] and keys[] of some nodes might
have out-of-date values. However, because these values are
periodically updated, this situation is eventually resolved as
the link structure of the skip graphs is recovered. (We assume
that some repair algorithm for skip graphs is engaged.)

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed aggregation skip graphs,
which allows efficient aggregation queries. The structure of
aggregation skip graphs is quite simple; utilizing the structure
of skip graphs enables eliminating construction of a reduction
tree. Thus, it can be easily implemented over skip graphs.
The aggregation skip graph supports computing aggregates on
a subset of nodes by specifying key ranges, which cannot be

accomplished with conventional aggregation algorithms in P2P
networks.

Computing aggregates with aggregation skip graphs requires
only O(log n + log r) messages, which is a substantial im-
provement over the O(log n + r) messages required of range
queries over conventional skip graphs (n denotes the number
of nodes and r denotes the number of nodes within the query
range). In addition, computing the MAX or MIN is quite fast;
it requires fewer messages as the query range becomes wider.

The aggregation skip graph has the following drawbacks:
(1) additional costs are incurred because each node collects
aggregates periodically; and (2) the aggregation query results
do not reflect the up-to-date situation because results are based
on periodically collected aggregates. However, we believe
that aggregation skip graphs are useful for P2P systems that
execute aggregation queries over a wide target range or that
have large number of nodes.

One of our future work is to devise a method to reduce the
cost of collecting aggregates. The following methods should
be considered. (1) adaptively adjust the collection period, or
(2) update (and propagate) aggregates only when necessary.
Another future work is to give an exhaustive comparison be-
tween the aggregation skip graph with the existing techniques
such as in [7]–[11].

ACKNOWLEDGMENTS

We would like to express our gratitude to Dr. Mikio Yoshida
at BBR Inc. for his insightful comments and suggestions. This
research was partially supported by the National Institute of
Information and Communications Technology (NICT), Japan.

REFERENCES

[1] Kota Abe, Toshiyuki Abe, Tatsuya Ueda, Hayato Ishibashi, and Toshio
Matsuura. Aggregation skip graph: An extension of skip graph for
efficient aggregation query. In AP2PS ’10: Proceedings of the 2nd
International Conference on Advances in P2P Systems, pages 93–99,
2010.

[2] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. ACM SIGCOMM Computer Communication
Review, 31(4):149–160, 2001.

[3] Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. Lecture
Notes in Computer Science, 2218:329–350, 2001.

[4] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Technical
Report UCB/CSD-01-1141, UC Berkeley, April 2001.

[5] James Aspnes and Gauri Shah. Skip graphs. ACM Trans. on Algorithms,
3(4):1–25, 2007.

[6] William Pugh. Skip lists: A probabilistic alternative to balanced trees.
Communications of the ACM, 33:668–676, 1990.

[7] Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. Fast
estimation of aggregates in unstructured networks. In International
Conference on Autonomic and Autonomous Systems (ICAS), pages 88–
93. IEEE Computer Society, 2009.

[8] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Transactions on Computer
Systems, 23(3):219–252, 2005.

[9] Mayank Bawa, Hector Garcia-Molina, Aristides Gionis, and Rajeev
Motwani. Estimating aggregates on a peer-to-peer network. Technical
Report 2003-24, Stanford InfoLab, 2003.

110

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] Norvald H. Ryeng and Kjetil Nørvåg. Robust aggregation in peer-
to-peer database systems. In Proceedings of the 2008 international
symposium on Database engineering & applications (IDEAS’08), pages
29–37. ACM, 2008.

[11] Ji Li, Karen Sollins, and Dah-Yoh Lim. Implementing aggregation
and broadcast over distributed hash tables. SIGCOMM Compututer
Communication Review, 35(1):81–92, 2005.

[12] Alejandra González Beltrán, Peter Milligan, and Paul Sage. Range
queries over skip tree graphs. Computer Communications, 31(2):358–
374, 2008.

111

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Naming, Assigning and Registering Identifiers in a
Locator/Identifier-Split Internet Architecture

Christoph Spleiß, Gerald Kunzmann1

Technische Universität München
Department of Communication Engineering

Munich, Germany
{christoph.spleiss, gerald.kunzmann}@tum.de

Abstract—Splitting the IP-address into locator and identifier
seems to be a promising approach for a Future Internet
Architecture. Although this solution addresses the most critical
issues of today’s architecture, new challenges arise through
the necessary mapping system to resolve identifiers into the
corresponding locators. In this work, we give an overview of a
scheme how to name identifiers not only for hosts, but basically
for anything that needs to be identified in a future Internet.
Our approach is based on the HiiMap locator/ID split Internet
architecture and supports user-friendly identifiers for hosts,
content, and persons and does not rely on DNS. We show
how the registration and assignment for identifiers is handled
and which modifications in the network stack are necessary.
Furthermore, a possible solution for a lookup mechanism that
can deal with spelling mistakes and typing errors in order to
improve the quality of experience to the user is provided.

Keywords-Locator/ID-split, Future Internet, Naming
schemes, Content Addressing.

I. INTRODUCTION

Today’s Internet architecture has been developed over
40 years ago and its only purpose was to interconnect a
few single nodes. At that time, no one expected that the
Internet and the number of connected devices would grow
to the current size. Measurements show that the Internet
continues growing at a tremendous high rate. The address
space of the current IPv4 addresses is already too small to
address every single node in the Internet and the growth
of BGP routing tables sizes in the Default Free Zone (DFZ)
becomes critical for the Internet’s scalability [1]–[4]. Beyond
that, mechanisms like traffic engineering (TE) or multi
homing are further increasing the BGP tables sizes, as IP
address blocks are artificially de-aggregated or advertised
multiple times. While IPv6 is a promising solution for the
shortage of addresses, it will probably increase the Border
Gateway Protocol (BGP) routing table problem. Therefore,
at least for IPv6, a new and scalable routing architecture is
necessary. Besides that, more and more devices connected to
the Internet are mobile, such as smart phones or netbooks.
Even more and more cars, which are mobile by definition,
have access to the Internet. However, the current Internet

1Dr. Kunzmann is now working for DOCOMO Communications Labo-
ratories Europe GmbH, Landsberger Strasse 312, Munich, Germany.

architecture has only very weak support for mobility, as
the IP-address changes whenever a device roams between
different access points.

All problems mentioned above occur because the IP-
address, no matter if IPv4 or IPv6, is semantically over-
loaded with two completely independent values. It is used
to identify a specific host in the Internet, while on the other
hand, it is also used to locate this node. Separating the
current IP address into two independent parts for reachability
and identification is a promising solution to many prob-
lematic issues with today’s Internet [5]. With this approach
a known identifier (ID) can always be used to reach a
specific host, no matter where it is currently attached to
the network. Thereby, a logical communication session is
always bounded to the ID and not to the locator. A locator
change due to mobility is handled by the network stack
and is completely transparent to the communication session
and the overlying application. It does not disconnect an
ongoing communication anymore. Furthermore, it is possible
to assign more locators to a specific ID, e.g., if a host is
multihomed.

However, not only the number of hosts has developed
differently than initially expected, but also the way people
use the Internet. While the current Internet architecture is
designed for accessing a specific machine, todays focus has
shifted on accessing a specific piece of information. The
host storing the information is thereby of minor interest. The
idea is a new network architecture named Content Centric
Network (CCN) [6]–[8] where content and information can
be directly addressed independent of its storage location,
which usually points to a host. Furthermore, the emergence
of social networks, Web 2.0 applications, Voice over IP
(VoIP) and instant messaging applications additionally put
the person in the focus of interest. People want to commu-
nicate with each other, regardless of the device each of the
person is using.

The split of locator and ID thereby offers ideal prereq-
uisites for the support of addressing schemes for content,
information and persons. Using this paradigm, an ID is
assigned for every host, content object and person. A highly
scalable mapping system, which is a mandatory part of every

112

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

locator/ID separated Internet architecture, translates IDs into
the corresponding locators. Note that the mapping system
can not only return a set of locators, which are necessary to
access a specific host, but it can also return a more complex
description of a content object or a person.

A crucial question in conjunction with a locator/ID sepa-
rated Internet architecture is how to name, assign and register
IDs. As IDs are used as control information in communi-
cation protocols and packet headers, they are mostly fixed-
length bit strings that can be hardly memorized by humans.
However, in order to avoid a second resolution system like
DNS that translates easy memorizable names to IDs, we
need a way how to uniformly name IDs. In this work, we
present a flexible and adaptable naming scheme for IDs that
can be used to identify hosts, content, persons and is open for
future extensions. We furthermore present techniques how
to register IDs and how assign them accordingly. Although
our approach can be adapted to basically any locator/ID
separated Internet architecture, it is currently based on the
HiiMap Internet architecture [9], as HiiMap provides a
highly scalable and customizable mapping system. It does
not rely on the Domain Name System and allows each entity
to calculate the requested ID on its own.

The paper is structured as follows. In Section 2, we
discuss related work and different concepts of locator/ID
split architectures. Section 3 describes our approach of a
new naming scheme for IDs while Section 4 deals with
registration and assignment issues. Section 5 demonstrates
necessary modifications in the network stack and Section 6
discusses a possible lookup algorithm that tolerates spelling
mistakes and allows unsharp queries to a certain extent.
Section 7 summarizes the results and concludes.

II. RELATED WORK

Many proposals dealing with the split of locator and ID
have been published so far, but only a few of them discuss
how to name IDs. However, almost all of them use a bit-
representation of constant length as ID.

A. Host-based approaches

The majority of these proposals are solely host-based
approaches. Among them Hair [11], FIRMS [13], LISP [14],
HIP [15], HIMALIS [16] and many others. In the following,
we will describe three of them more detailed, as their
way how to implement the locator/ID-split is representative.
LISP: In contrast to other architectures that are examined in
this work, LISP does not separate the identifier from routing
purposes. Within an edge network or autonomous system
(AS), the normal IP-address still serves as so called Endpoint
Identifier (EID) and routing address at the same time. While
the EID is only routable inside a LISP-domain, an additional
set of addresses is used for the routing between different
LISP-domains, which are called Routing Locators (RLOC).
RLOCs are the public IP-addresses of the border routers of

a LISP-domain, globally routable, and independent of the
nodes’ IP addresses inside the domain. Whenever a packet
is sent between different LISP-domains, the packet is first
routed to the Ingress Tunnel Router (ITR), encapsulated in a
new IP packet, and routed to the Egress Tunnel Router (ETR)
according to the RLOCs. The ETR unpacks the original
packet and forwards it to the final destination. A mapping
system is necessary to resolve foreign EIDs (EIDs that are
not in the same domain) to the corresponding RLOCs. How-
ever, as in normal IP networks, the EID changes whenever a
node changes its access to the network. Furthermore, DNS
is still necessary to resolve human readable hostnames to
EIDs.

HIP: The Host Identity Protocol implements the loca-
tor/ID split by introducing an additional layer between the
network and the transport layer. For applications from higher
layers the IP address is replaced by the Host Identity Tag
(HIT), which serves as identifier. HIP leaves the IP-layer
untouched and the locator is a simple IPv4 or IPv6 address.
Therefore, HIP does not rely on special gateways, which is
very migration-friendly. However, as it does not influence the
routing system, it does not take any countermeasures against
the growth of the BGP routing tables. Instead, the main
focuses of HIP are security features. The Host Identifier
(HI) is a public key of an asymmetric key pair and used for
identification and cryptographic purposes at the same time.
The HI is not used in packet headers, as the key length can
vary over time. Instead, the HIT, which is a hash value from
the HI, is used for addressing purposes. Encryption, authen-
ticity and integrity can be achieved due to the presence of an
asymmetric key pair. However, the coupling of identifier and
public key is a major drawback, as the ID changes whenever
the key pair changes. While no permanent validity may be
a desirable feature for cryptographic key pairs, it is not for
an identifier.

HIMALIS: Like HIP, the HIMALIS (Heterogeneity In-
clusion and Mobility Adaption through Locator ID Separa-
tion in New Generation Network) approach realizes the loca-
tor/ID split by introducing an extra layer between network
and transport layer, the so-called Identity Sublayer. Upper
layers solely use the host IDs for session identification,
while the lower layer use the locator for packet forwarding
and routing. HIMALIS can use any kind of addressing
scheme for locators and supports security features based
on asymmetric keys. Despite that, it does not burden the
ID with the semantic of a public key. HIMALIS uses
domain names as well as host IDs to identify hosts. In
contrast to other approaches, a scheme how to generate
host IDs out of the domain name using a hash function is
shown. However, HIMALIS uses three different databases
for resolving domain names and hostnames to IDs and
locators (Domain Name Registry, Host Name Registry and
ID Registry), which results in increased maintenance effort
to achieve data consistency.

113

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Content-based approaches

Contrary to host based approaches, several proposals for
a future Internet architecture take into account the changing
demands regarding the intended use of the Internet, namely
the focus on retrieving information [6].

The NetInf (Network of Information) architecture shows
how locator/ID separation can be used for content-centric
networking [8]. By introducing an information model for any
kind of content, NetInf allows fast retrieval of information in
the desired representation. Thereby, each information object
(IO) includes a detailed description of the content and its
representations, with locators pointing to the machine that
stores the information. The ID is assigned to the IO and
is composed out of different hash values of the content
creator’s public key and a label created by the owner. In
order to find a specific IO, the creator’s public key and label
must be known exactly. A first approach of NetInf is realized
as an overlay architecture that uses the current routing
and forwarding system, while a second alternative plans to
deal with name-based routing mechanisms that provide an
integrated name resolution and routing architecture.

Another Future Internet Architecture focusing on content
is TRIAD [7]. One key aspect of TRIAD is the explicit
introduction of a content layer that supports content routing,
caching and transformation. It uses character strings of
variable length as content IDs and uses the packet address
solely as locator. The TRIAD content layer consists of
content routers that redirect requests to content servers
and content caches that actually store the content. DNS is
used to resolve locators for content objects and the content
delivery is purely based on IP in order to achieve maximum
compatibility with the current Internet architecture.

C. Hybrid approaches

A proposal for a Next Generation Internet architecture
that supports basically any kind of addressing scheme is the
HiiMap architecture [9]. Due to the locator/ID separation
and a highly flexible mapping system, HiiMap allows for
addressing hosts as well as content and is still open for future
extensions and requirements. In the following, we use the
term entity for any addressable item.

The HiiMap architecture uses never changing IDs, so
called UIDs (unique ID) and two-tier locators. One part
of the locator is the LTA (local temporary address) that is
assigned by a provider and routable inside the provider’s
own network. The other part is the gUID (gateway UID).
This is a global routable address of the provider’s border
gateway router and specifies an entrance point into the
network. Thereby, each provider can choose its own local
addressing scheme that can be adapted to specific needs.
However, a common addressing scheme for all providers is
necessary for the gUID in order to route packets [17].

HiiMap splits the mapping system into different regions,
whereby each region is its own independent mapping system

that is responsible for the UID/locator mappings of entities
registered in this region. The mapping system in each region
consists of a one-hop distributed hash table (DHT) to reduce
lookup times. As DHTs can be easily extended by adding
more hosts, the mapping system is highly scalable. In order
to query for UIDs which regions are not known, a region
prefix (RP) to any UID is introduced (compare Figure 1).
This RP can be queried at the so-called Global Authority
(GA), which resolves UIDs to RPs. The GA is a centralized
instance and acts as root of a public key infrastructure, thus
providing a complete security infrastructure. As RP-changes
are expected to be rare, they can be cached locally.

Like other approaches, HiiMap uses fixed length bit
strings of 128 bits as UID. As plaintext strings are not
feasible as UIDs due to their variable length, a naming
scheme is necessary to assign UIDs to all kinds of entities.
Thereby, the existing Domain Name System is to be replaced
by the more flexible HiiMap mapping system.

III. NEW NAMING SCHEME FOR IDENTIFIERS

In this section, we introduce a naming scheme for IDs
that is suitable to address basically any entity and that can
be generated out of human friendly information. Although
we use the HiiMap architecture exemplarily for introducing
this approach, it can also be adapted to other locator/ID split
architectures.

A. General Requirements for Identifiers

When introducing a Future Internet Architecture based on
locator/ID separation, the ID has to fulfill some mandatory
requisites. In the following, we sum up general requirements
for IDs proposed by the ITU [18]:

• The ID’s namespace must completely decouple the
network layer from the higher layers.

• The ID uniquely identifies the endpoint of a communi-
cation session from anything above the transport layer.

• The ID can be associated with more than one locator
and must not change whenever any locator changes.

• A communication session is linked to the ID and must
not disconnect when the locator changes.

In addition to the ITU we add further requirements:
• An ID must be able to address any kind of entity, not

only physical hosts.
• Every communication peer can generate the ID of its

communication partner out of a human readable and
memorable string.

• The ID is globally unique, but it must be possible to
issue temporary IDs.

• The registration process for new IDs must be easy.
• IDs must be suitable for DHT storage.
While some of these aspects mainly affect the design of

a Future Internet Architecture based on a locator/ID split,
some issues are directly related with the naming of IDs.

114

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 Ext 2
1 static host plain text domain name hash of local hostname service
2 non-static host global prefix assigned by provider hash of local hostname service

3, 4 content plain text content name child content version number
5 person first + last name random communication channel

Table I: Generic contents of UID fields corresponding to different types

B. Generalized Identifier

As IDs are used in the transport layer protocol to de-
termine the endpoint of a communication, we cannot avoid
using fixed-length bit strings to realize packet headers of
constant size. In combination with DHTs, which also require
fixed-length bit strings, the usage of a hashing function is
obvious. In contrast to other approaches, which compose the
ID of one hash value only, we split the ID in several prede-
termined fields whose purposes are known to all entities.

In the following, we introduce a generalized scheme how
to compose global unique IDs (UID) for any entity and
give concrete examples how to name hosts, content and
persons. Our scheme allows storing all these IDs in the
same mapping database and is yet flexible enough to support
different databases for different types of IDs.

Figure 1 shows the generalized structure of an ID, which
is composed of a region prefix (RP) according to HiiMap
and an UID. The UID consists of a type field (T), the hash
value of a human friendly name for the entity to be identified
as well as two extension fields (Ext 1 and Ext 2). The UID
is stored in the mapping system of a specific region, denoted
by the RP.

The type field T denotes to which type of entity the UID
belongs to. T allocates the most significant bits (MSB) in
the UID, which allows to map different ID types to different
databases in the mapping system. As some entities require
more complex entries in the mapping system, it may be
desirable to use different databases that are optimized for the
needs of a specific entity. We suggest using 128 bits for the
UID, whereby 4 bits are used to determine the type, 76 bits
are assigned for the hash value, 32 bits for Ext 1 and 16 bits
for Ext 2. In the following, we show realizations for applying
UIDs to different types: host, content and persons. Table I
gives an overview how the UID is composed according to
the type of entity. Each part is described in detail in the
following subsections. Note that our scheme is not limited
to these types, but can easily be extended.

RP T Hash(name) [Ext 1] Ext 2 UID

Figure 1: Identifier UID with regional prefix RP

C. Identifiers for Hosts

IDs for hosts are the most common use case today and
DNS is used to resolve hostnames to IP addresses in order
to access a specific machine. The hostname, or FQDN (full
qualified domain name), which specifies the exact position
in the tree hierarchy of the DNS, can be roughly compared
to the ID in a locator/ID separated Internet architecture.
However, the FQDN is solely used in the application layer
and is not present in any lower layer network protocol.

Similar to today’s hostnames, we introduce a hierarchy
to our UIDs. However, contrary to FQDNs, our scheme
is limited to two hierarchical levels: a global part and a
local part. While the global part is used to identify a whole
domain, e.g. a company or an institute at a university, the
local part is used to identify single machines within this
domain. Note that the term domain does not refer to a
domain like in today’s DNS hierarchy. A domain in our
solution has a flat hierarchy and simply defines an authority
for one or more hosts. We differentiate between two different
types of host UIDs and give an overview in Table II:

1) Static Host Identifier: Static host UIDs are never
changing IDs of type T=1 that can be generated by hashing
a human readable hostname. Their main purpose is for
companies or private persons that want to have a registered
UID that is always assigned to their host or hosts.

Hash: The domain name part of the plain text hostname
is used to generate the hash field of the UID. An example
can be mycompany.org as domain name.

Ext 1: The hash value of the local host name is used
to generate this field. A local hostname is unique inside a
specific domain. An example for a local hostname could be
pc-work-003. That way, together with the domain name, a
host in the Internet is unambiguously identified.

Ext 2: The Ext 2 field is used to identify a specific service
on the host. It can be compared to today’s TCP or UDP
ports. An application or service listening for connections
must register its Ext 2 value at the network stack in order
to receive data. Some values for Ext 2 are predetermined,
e.g., for file transfer or remote administration, others can
be chosen freely. However, specifying a value in Ext 2 is
not necessary when requesting the locator for a specific host
from the mapping system and can therefore be set to zero. As
the host is precisely identified with the global and local UID
part, it is not necessary to store identifiers for each service of

115

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 Ext 2

1 static host plain text domain name,
e.g., mycompany.org

hash of local hostname,
e.g., pc-work-003

0 used for requesting the locator
from the mapping system

1..n− 1 standardized Ext 2 values for
n−1 common applications and
services

n..216 further values for proprietary or
open use

2 non-static host
global prefix assigned
by provider, e.g.,
provider12345

as above as above

Table II: Contents of UID fields for hosts

the host as they would all point to the same locator. Instead,
Ext 2 is set to zero in the UID when querying the mapping
system and filled with the specific service identifier when
actually accessing the node.

For privacy reasons it is possible not to publish the UID
for a private host in the global mapping system but only in
a local database. For a single point of contact it is possible
to use an UID with Ext 1 set to zero, which points to, e.g., a
login server, router or load balancer that forwards incoming
requests to designated internal hosts.

Note that the host has to update its mapping entry pointing
to new locator(s) upon any locator change.

2) Non-static Host Identifier: Contrary to static host IDs
and the basic idea of never changing UIDs there will always
be the need for non-static host UIDs, i.e., IDs that do not
have to be registered, that are assigned to a host for a specific
time, and that are returned to the issuer if no longer needed.
We assign the type value T=2 to these class of UIDs. An
example can be a private household with a DSL, cable
or dial-up Internet connection and a few hosts connected
through a router. Each host needs its own, distinct UID to
make connections with other hosts in the Internet. However,
it does not need to have a registered, never changing UID
if no permanent accessibility is needed.

Hash: The global part is assigned during the login process
to the router or middlebox that provides Internet access to
the other hosts. It can be compared to the advertisement of an
IPv6 prefix. The global part, e.g., the hash of provider12345,
is valid as long as the customer has a contract with its
provider. A new global part is assigned if the customer
changes its provider. Yet, the transfer of a global UID part
between different providers should be possible. In order to
assign non-static UIDs to customers, each provider holds
a pool of global UID parts. The mapping entry for a spe-
cific non-static host UID is generated by the corresponding
host immediately after assignment and whenever its locator
changes. However, each host with no static UID assigned
must proactively request a non-static host UID, either by

its provider or router and middlebox, respectively. Note that
the global part of a non-static host UID does not necessarily
consist out of the hash value of a plaintext string. It depends
on the provider if he uses hash values or just consecutive
numbers out of a contiguous pool.

Ext 1: Like with static UIDs, the local part of a non-static
UID is generated from the local hostname of a machine.
Therefore, a name for each host is mandatory.

Ext 2: Identical to the Ext 2 field used for static host
UIDs.

D. Identifiers for Content
As the focus of the users in the Internet is shifting from

accessing specific nodes to accessing information and con-
tent, different approaches towards a content-centric network
have been made as shown in Chapter II. By applying the
idea of information models, like the NetInf approach, to
our naming scheme, each content, which can be, e.g., a
webpage or an audio or video file, gets its own distinct UID.
Hereby, the UID does not point to the data object itself but
to the information model of the content that has a further
description and metadata stored. We use two different types
for content UIDs: T=3 and T=4, whereas T=3 is used for
content that is not subjected to public change, and T=4 which
is used for content that is free to public changes.

Hash: For generating the UID of a content we have to
use a meaningful name that can describe the corresponding
content or information. While this is indeed quite a difficult
task, possible solutions can be, e.g., the name of a well-
known newspaper like nytimes, which refers to the front
page of the New York Times online version. Similar, the
name of an artist could refer to an information object where
albums or movies are linked.

In our proposal, this plaintext name is used as input to a
known hash function to generate the hash part of the UID. As
the spelling of the content description is not always exactly
known, we suggest a lookup mechanism that can cope with
minor spelling mistakes in Section VI.

Ext 1: This field is optional and can be used to access
some more specific parts of the content or information that

116

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 (optional) Ext 2 (optional) (Pointer to)

3, 4 content meaningful content
name or description,
e.g., nytimes

Child content or information:

• hash of child content name,
e.g., sports

• number/ID: e.g. DOI
• value 0: request toplevel de-

scription of content object,
i.e., list of possible values
with short description

Version of content:

0 (when querying
mapping)
0 (when requesting
content)
1..216 (when
requesting content)

mapping entry
of content ob-
ject
current or ac-
tual version
some older ver-
sions

Table III: Contents of UID fields for content

is directly related with the main object. This can be, e.g.,
one specific article from a newspaper site or a sub-page
that deals with a specific topic like sports or politics. Other
examples are specific albums or pieces of music from an
artist. Ext 1 can help to avoid downloading a maybe bigger
object description of the main content to gather the desired
information. Another benefit is that each child object has
its own locator and therefore can be stored on different
locations while still being accessible through its parent
UID. This is not possible today as, e.g., the URL of a
newspaper article is directly coupled with the host storing the
information. Ext 1 is created by hashing the human readable
name for the detailed description or just by using consecutive
numbers. The latter is for example useful to assign a specific
article of a newspaper. It can be compared to the Digital
Object Identifier (DOI) in digital libraries [19]. In order to
access a specific content object which Ext 1 value is not
known, the user can access the top-level description of this
content object by setting Ext 1 to zero. This description then
includes lists with all possible values for Ext 1 with a short
description.

Ext 2: This field can be used to access a specific version
of the desired content or information. Like in a versioning
system, the Ext 2 field allows the user to easily access any
earlier version and the changes made to the information.
The content description is obtained by setting Ext 2 to zero
where different values for Ext 2 are listed. Of course, each
new version needs an update of the mapping entry including
potential new locators. Note that we do not create own
mapping entries for each Ext 2 value. Instead, available
values for Ext 2 are listed in the mapping entry that is
identifier by the hash part together with Ext 1. Like with
host addressing, Ext 2 is always set to zero when querying
the mapping system and filled with the desired value when
actually requesting the content.

Table III summarizes the purposes of the UID fields for
content objects. Unlike with host addressing, we cannot
simply connect to a locator returned by the mapping system.
As the information object is a description of content or in-
formation, the requesting application or user has to evaluate
the information object and select the desired representation

according to the user’s needs. Thus, the network stack will
not evaluate the data received from the mapping system for
a content UID query but forward it to the corresponding ap-
plication. The detailed interaction of applications requesting
content UIDs and the network stack will be discussed in
Chapter V.

Note that in case a name, e.g., nytimes, refers to both a
host (company) as well as content (webpage), the type field
is used to differentiate whether a locator (for type host) or
a content description (for type content) is returned.

E. Identifiers for Persons

With the emergence of social networks, Internet-capable
devices, Voice-over-IP (VoIP), etc., the need for personal IDs
arose, as the person itself is moving in the focus of interest.
Whenever somebody wants to contact a specific person he is
interested in the communication with that person and does
not want to care about the device, e.g., which phone or
computer the person is currently using for communication.
However, the user must have the possibility to choose the
desired communications channel. That can be an email, a
phone call, a message on a mailbox, a chat with an instant
messenger or a message in a social network and so on.
Furthermore, the personal UID can be used to make digital
signatures which is necessary for contracts whatsoever. It
has the assigned type T=5.

Hash: The main part of a person’s UID consists of a hash
value calculated from the person’s full name, i.e., first name
plus last name. As many people have the same first and
last name, the hash value is ambiguous and we need further
information to distinguish between different persons.

Ext 1: For this purpose we use a pseudo-random number
for Ext 1 when initially generating a person’s UID [20]. This
initial generation is not done by the person itself in order to
avoid multiple usage of the same Ext 1 value, but is issued by
a federal authority and valid for lifetime . It can be compared
to the number of a passport or the social security number,
which do not change over the persons lifetime.

Ext 2: This field is used to specify the communication
channel to the corresponding person and has a set of prede-
termined values, e.g., for email, VoIP, or instant messaging.

117

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T Type Input to Hash(name) Ext 1 (optional) Ext 2 (optional) (Pointer to)

5 person first + last name
(random) number is-
sued by federal au-
thority

0 request personal pro-
file of person

1 request locator of
machine

2..n predetermined stan-
dart values

n..216 open for future ex-
tensions

mapping entry of
personal profile
machine user is
working on
mail server, VoIP
phone or VoIP
provider, chat
server, etc.

0 0 access directory

Table IV: Contents of UID fields for persons

Note, there are still enough unused values for future needs.
According to each Ext 2 value, different locators can be
stored in the mapping system. For example, the Ext 2 value
referring to the VoIP account can point to the locator of
a VoIP provider or directly to a VoIP phone, the value
referring to the mailbox can point to a mail server. The
mapping entry for Ext 2 set to zero includes the person’s
full name and, depending on the person’s privacy settings,
further details about the person like birth date or current
residential address. We refer to this as apersonal profile
according to [21]. Ext 2 set to one is used to get the locator
of the machine the person is currently working on if the
corresponding person agreed to publish this information.
Thereby, the communication channel can be signaled in
a higher layer or by using the machines service identifier
Ext 2 when contacting the corresponding host. Note that the
exposure of the device’s locator the person is currently using
can be abused to generate a movement profile. We suggest
to use a privacy service like showed in [22] to avoid these
issues.

However, to contact a specific person, not only the per-
son’s name but also Ext 1 must be known. There are two pos-
sibilities: First, the initiating person knows the correct UID
of its communication partner because they have exchanged
it in any way, e.g., with business cards. Second, the holder
of a personal UID can agree to be indexed in a directory that
is accessible through a personal UID with Ext 1 and Ext 2
set to zero. It stores the personal profiles of all persons that
have the same name including their random Ext 1 values plus
additional information to distinguish persons. According to
the persons privacy settings, further details about city or
street can be published, like in a traditional printed or online
phone book. Table IV summarizes the necessary fields for
personal UIDs.

In order to avoid abuse of personal UIDs, the usage of
PKI mechanisms that guarantee the presence of the corre-
sponding private key is mandatory for every transaction.

IV. IDENTIFIER REGISTRATION AND ASSIGNMENT

As each UID is globally unique by definition, it must
be ensured that only one entity at a time has a specific
UID assigned. It must be further prevented that any entity
is hijacking an UID for malicious purposes.

A. Static host UIDs

The registration process for a static host UID can be
compared to today’s domain names and is depicted in
Figure 2. Whenever a user wants to register a new static
host UID for his hosts, he has to register a UID for each
host together with a public key of this host at his local
registry or local NIC (Network Information Center) with
a REGISTER_UID. If the UID is still available, the NIC
creates the initial mapping entry in the mapping system with
CREATE_UID and stores the hosts public key. Updates are
only allowed if the UPDATE_MAPPING message is signed
with the correct private key, thus avoiding the UID to be
hijacked.

Whenever the host connects to the Internet, it first requests
a valid locator at the designated router with REQ_LOCATOR.
Together with the locator assignment, the locator for the
mapping system is delivered (ASSIGN_LOCATOR) and the
host can update its mapping entry. Whenever the host’s
access point changes, it will request a new locator and
immediately update the mapping entry with the new valid
locator.

The UID at the node is configured via a system file
like /etc/hostname and /etc/domainname. The owner of a
host must proclaim changing the key-pair of a node at the
mapping region. Note that for static UIDs every new UID
must be registered at the registry. It is not possible to register
only the domain part and to freely choose values for Ext 1,
as each static UID needs its own key pair.

B. Non-static host UIDs

The purpose of non-static UIDs is that they do not need
a registration process, as their prefixes are dynamically
assigned by a provider and therefore belong to that provider.
However, it must be possible for hosts with non-static UIDs

118

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Host Router/Middlebox Provider

Mapping

UPDATE_MAPPING
(UID, loc, pubkey+SIG)

UPDATE_OK
(mapping_loc)

REQ_LOCATOR
(pubkey, UID)

ASSIGN_LOCATOR
(loc, mapping_loc)

check
pubkey
and SIG,
update
data

store
new loc

create initial
mapping entry
without loc,
allow updates
only for pubkey

NIC/RegistryUser
REGISTER_UID
(pubkey)

REGISTER_OK
ow

ns
 h

os
t &

as
si

gn
s

U
ID

CREATE_UID
(pubkey)

Figure 2: Signal flow chart for static UID registration and assignment

Host Router/Middlebox Provider NIC/Registry Mapping
REQ_NSUID_GLOB_LIST

(prov.pubkey)

ASSIGN_NSUID_GLOB
(NSUID-global

parts)

CREATE_NSUID_GLOB
(prov.pubkey)REQ_NSUID_GLOB

(pubkey, [old NSUID-glob])

ASSIGN_NSUID_GLOB
(loc, mapping_loc)

UPDATE_MAPPING
(NSUID, loc, pubkey+SIG)

UPDATE_MAPPING
(NSUID, loc, pubkey, prov.pubkey+SIG)

UPDATE_OK
(mapping_loc)REQ_NSUID_GLOB

(pubkey, [old NSUID-glob])

ASSIGN_NSUID_GLOB
(loc, mapping_loc)

UPDATE_MAPPING
(NSUID, loc, pubkey+SIG)

UPDATE_MAPPING
(NSUID, loc, pubkey+SIG)

UPDATE_MAPPING
(NSUID, loc, pubkey, prov.pubkey+SIG)

UPDATE_OK
(mapping_loc)

check prov.
pubkey for
NSUID &
grant
pubkey

store
NSUID
glob &
loc

store
NSUID
& loc

Figure 3: Signal flow chart for non-static UID registration and assignment

Host Router/Middlebox Provider Mapping

UPDATE_MAPPING
(NSUID, loc, pubkey)

UPDATE_OK
(mapping_loc)

REQ_LOCATOR
(pubkey, NSUID)

ASSIGN_LOCATOR
(loc, mapping_loc)

check if
pubkey
valid to
update
NSUID

store
new loc

NSUID
assigned

If UPDATE_MAPPING fails, e.g., due to a provider change, Mapping-System returns
UPDATE_FORBIDDEN and the host now requests a new non-static UID prefix.

UPDATE_FORBIDDEN
(reason)

REQ_NSUID_GLOB
(pubkey, [old NSUID-glob])

Figure 4: Signal flow chart for non-static UID roaming

119

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to change their mapping entries due to roaming although
they have not been individually registered.

In order to distribute global parts for non-static UIDs, the
provider has to request its pool of non-static UID global
parts at the local registry together with its public key. The
NIC creates the initial mapping entries for these global non-
static UID parts, whereby changes are only allowed by the
provider. Figure 3 depicts the complete registration process.

Whenever a home router or middle-box without assigned
global UID part tries to connect to the Internet, it requests a
global non-static UID part by sending a REQ_NSUID_GLOB
message to the provider. Note that this message must be sent
over a providers line (messages on gray background), as the
provider must verify if the device is allowed to request a
global UID part. He can do this by, e.g., checking login
credentials. Similar to a DHCP request, the middle-box can
request a global UID part that has been assigned before (old
NSUID_GLOB). After the assignment of a global UID part,
a valid locator for the device, and the locator of the mapping
system (ASSIGN_NSUID_GLOB), the middle-box updates
its mapping entry. Again, this process must be done over
the providers line, as only the provider can update the initial
mapping entry, because it has the corresponding private key.
Therefore, mapping_loc in the ASSIGN_NSUID_GLOB
message points to a mapping relay at the provider, which
signs UPDATE_MAPPING with the providers private key
and instructs the mapping system to allow updates di-
rectly from the device in the future. The mapping system
responds with UPDATE_OK and a new mapping_loc,
which directly points to the mapping system. However,
mapping_loc that points to the providers mapping relay
is still stored in the middlebox, as it is needed for internal
hosts to initially update their mapping entries.

Internal hosts are sending their request for a global UID
part to the middle-box, which assigns the same global UID
part received by the provider, together with a locator and
the locator of the mapping relay. The update of the mapping
entry is the same as for the middle-box.

In case of roaming (Figure 4), the host usually already has
an assigned non-static UID. Therefore, it does not request a
global UID part at its new access point, but just requests a
new locator with REQ_LOCATOR. It receives a new locator
with ASSIGN_LOCATOR, which also includes the locator of
the mapping system to update its mapping entry. However,
if the update at the mapping system fails, e.g., because the
global UID part has become invalid, the mapping system
returns UPDATE_FORBIDDEN and a reason for the reject.
Depending on that reason the host will then start to request
a new global UID prefix. Such an error can occur if, e.g., the
contract between the provider and the customer that owns
the host has expired.

C. Content UIDs

The procedure for content UIDs is basically the same like
for static host UIDs. The content creator has to initially
register the hash part of the UID at the mapping system.
However, it does not need to register each single content
object that is provided. Then the content provider can freely
create new content that only differs in Ext 1 and Ext 2. By
doing so, the content creator always uses the same public-
key pair for all content objects, and the mapping system
requires a valid signature upon changing any mapping entry.

While this procedure is sufficient for professional or
commercial content that is managed by one authority, a
different approach is necessary for content that is free to
public changes, like articles in Wikipedia. Here, everybody
is allowed to create a new version of the corresponding
content that differs in Ext 2. However, no new mapping
entry is generated for every new Ext 2 value, but the new
Ext 2 value including the corresponding locator is added to
the existing mapping entry. The changing person has to sign
this new entry with its own private key and the mapping
system must grant changes not only to the initial creator of
the mapping entry. In order to differentiate between content
that may be changed by anyone, we have introduced two
different type values 3 and 4 that simplify the setting of the
correct permissions for each mapping entry.

D. Personal UIDs

Unlike with UIDs for hosts or content, UIDs for persons
are assigned by an authority of the state. As the personal UID
can be used to make transactions and legal contracts, it has to
be guaranteed that the UID cannot be abused. Furthermore, it
has to be guaranteed that values for Ext 1 are unambiguous.
That would not be the case if everybody would generate its
own random value for Ext 1. Thus, during the registration
process, an authority assigns a free Ext 1 value and creates
the mapping entry for the person requesting a UID. The
authority furthermore checks the presence of a valid key-pair
and deposits the public key together with the mapping entry
in the mapping system. Then, the person can update and
create any entry for Ext 2 in its mapping entry on its own.
Changing the key pair must always be accomplished through
the issuing authority. Like before, Ext 2 is set to zero when
querying for the mapping entry of a specific person and
solely used when establishing a communication. The persons
UID, together with the cryptographic key pair, maybe stored
on a chip that is embedded in the ID card. This feature is
already supported by many governments today.

V. STACK INTERACTION

As the current Internet architecture does not support any
kind of locator/identifier separation, major changes in the
network stack are necessary to enable this new network
paradigm. Based on the HiiMap approach and in order
to avoid a hierarchical and inflexible design like in the

120

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Network
Block IPv4 IPv6 other Locator-DB

Mapping BlockType Dispatcher

Host Block Content Block Person Block

Type Dispatcher

Storage

Application Layer

Physical Layer

Datalink Layer

Middleware

Figure 5: New network stack with middleware and interacting
building blocks

Open Systems Interconnection (OSI) reference model, we
suggest to use building blocks that can freely interact in
the so-called middleware. Applications in the upper layer
can choose to which types they want to connect and the
middleware provides the mapping lookup, handles the con-
nection setup and keeps track of changing locators. Note
that this architecture requires no changes in the datalink and
physical layer. Figure 5 shows the schematic model of the
middleware. Building blocks are shown in gray and the Type
Dispatcher forwards incoming and outgoing data packets
to the responsible building block. Note this middleware is
necessary on all devices connected to the Internet. However,
during a migration phase, it is possible to gradually introduce
the specific building blocks. Nevertheless, the Network and
Host Block are mandatory from the beginning to allow at
least host-to-host communication.

A. Network Block

The task of the network block is to select adequate
protocols for inter-networking, according to the network
configuration. These can be for example IPv4, IPv6 or
future protocols with new addressing schemes and routing
techniques. The network block is solely working on locator-
level, and prepends the necessary routing and forwarding
header to the data packets. Furthermore, the building block
is responsible for the locator values of all connected network
interfaces and also requests non-static global UID parts if
necessary. It keeps track of all UIDs and the corresponding
locator values that are being used in the locator database.
It notifies all these communication partners upon a local lo-
cator change, thus ensuring a interruption-free data transfer.
Moreover, it notifies the mapping module to update the entry
in the mapping system.

B. Mapping Block

This building block is responsible for keeping the host’s
mapping entries up to date. Locator changes of the network
interfaces are reported from the network block and updated
in the mapping system. Despite that, receives requests for
UID resolution from other building blocks and forwards
these requests to the mapping system. It returns the corre-
sponding locators, content descriptions or personal profiles

to the requested building block. The mapping block uses
the mapping_loc value that is returned at the locator
assignment process for the communication with the mapping
system.

C. Host Block

Every application that wants to be accessible through a
specific service identifier (Ext 2 in host UIDs) must register
this identifier at the host block. Incoming connections for
UIDs with type ”host” are dispatched at the type dispatcher
and forwarded to the host block. If any application is
listening at the corresponding service identifier, the data
is forwarded. Furthermore, the host block handles outgoing
connections to other hosts and accepts connection requests
to host UIDs. It selects one locator value returned by the
mapping block and forwards the data packet to the network
block. The host block also keeps track of locator changes at
its communicating peers.

D. Content Block

The tasks of the content block contain the reception of any
kind of content, including the evaluation of the information
object with the content description returned by the mapping
system, as well as the provision of own content that is stored
locally.

1) Content reception: The request of any application that
wants to receive a specific content object is dispatched to the
content block. According to the desired UID, the content
block requests the information object from the mapping
system. Furthermore the application has the possibility to set
some filter rules regarding the requested content, e.g., mini-
mal/maximal bit-rate for audio and video files, or resolution
for pictures. Mobile devices can benefit from that filtering
option, as the application has the possibility to request only
the smallest available version of the content. If the filtered
content description still has more than one source available,
the final choice has to be taken by the application or user
respectively.

2) Content provision: The other way round, the content
block is also responsible for the provision of content objects
that are stored on the local machine. Thereby, content that
shall be publicly available is registered at the content block
including the corresponding content UID. The content block
notifies the mapping block about new available content,
which in turn registers the content UIDs at the mapping
system. Requests for content UIDs are dispatched to the
content block, which delivers the desired content to the
inquirer. Note that the content block must have access to
the storage location of all registered content objects.

E. Person Block

The person block is responsible for any kind of personal
communication between users. Every application dealing
with chat capabilities, instant messaging, email, and voice-

121

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

or video communication registers itself at this building
block. According to the connected applications and settings
of the user, the person block, in conjunction with the
mapping block, modifies the mapping entry of the persons
UID in the mapping system. The personal UID is configured
via a card reader and the persons ID card that also stores the
persons private key. Incoming connections are immediately
forwarded to the corresponding registered application. If
the user agrees to continuously update the locator(s) of his
machine, the person block takes care of this action.

VI. LOOKUP MECHANISM

The idea of our naming scheme for IDs is based on
the fact that each UID can be generated out of a known
plain text string with a known hash function and without
an additional naming system like DNS. However, as the
main part of any UID consists of a hash function, the
desired entity can only be found if the plain text string that
builds the UID is exactly known and no spelling mistake
or typing error occurred. This is particularly a problem for
querying UIDs, where phonetical identical search strings can
be spelled in different ways, e.g, ”color” and ”colour”. To
overcome this drawback, we suggest a lookup mechanism
that is based on n-grams in addition to the pure UID lookup.
Harding [23] and Pitler [24] showed that the usage of n-
gram based queries can significantly improve the detection
of spelling errors in noun phrases and word tokens. Note
that this feature must be supported and implemented in the
mapping system as well as in the mapping block of each
querying machine [25].

A. n-gram generation

Although DHTs only support exact-match lookups, it is
possible to use n-grams to perform substring and simi-
larity searches. Hereby, each plaintext string is split up
into substrings of length n, which are called n-grams. The
hash value of each n-gram together with the corresponding
complete plaintext string is then stored as key/value pair in
the DHT [25].

A typical value for n is two or three. As an example with
n = 3, the content name P set to nytimes is split up into
I = 5 trigrams hi with i = 1, ..., I: nyt, yti, tim, ime, mes.
In addition to the actual mapping entry indexed by the
UID, the hash value H(hi) of each n-gram hi is inserted
in the mapping system together with the corresponding
plain text name P . Thereby, the mapping entry for an n-
gram consists of the tuple 〈H(hi); plaintext string〉 [20].
Although these tuples are stored in the same mapping system
like the UID, we suggest using a different database within
the mapping system for performance reasons. Whenever the
entity changes its location, no updates of the n-grams are
necessary, as they do not contain any locator information
but only the entities’ plaintext name.

B. Querying UIDs

Whenever querying the mapping system for a specific
UID, the first step in the lookup process is using the pre-
calculated (or already known) UID as query parameter. Only
if the mapping system is not able to find a mapping entry to
the corresponding UID, e.g., because of a spelling mistake,
the n-gram lookup is executed. It is up to the user or
application if an n-gram based query request is initiated.
An n-gram based query can also be initiated if the query
does not return the desired result.

In doing so, the second step is to calculate the cor-
responding n-grams out of the plaintext string and query
the mapping system for each n-gram. The mapping system
sorts all matching n-grams according to the frequency of
the plaintext string and returns the list to the user. With
high probability, the desired plaintext has a high rank in
the returned list. By further correlating the input string with
each returned plaintext string, e.g., by using the Levenshtein
distance, the result is even more precise [26].

As the results returned by an n-gram query must be
further evaluated, the mapping block in the middleware
will forward that data to the corresponding building block.
This block can already select the best matching result, or
forwards the possible choices directly to the application,
which is responsible for correct representation to the user
that takes the final decision. However, although this feature
is similar to Google’s ”Did you mean...?”, the mechanism
is not suitable to handle complex queries with semantically
coherent terms as Google can do. However, it can help to
significantly improve the quality of returned search results
and thus the quality of experience to the user, as phonetical
similar words can be found despite different spelling.

VII. CONCLUSION

In this work, we presented a new naming scheme for
IDs in locator/ID separated Future Internet Architectures
based on the HiiMap proposal. The generalized ID scheme
is suitable for basically addressing any kind of entity and we
gave examples for hosts, content and persons. As each UID
can be computed out of a human readable plaintext string,
an additional naming system like DNS is not necessary
any more. Due to the extendible type field, we have the
possibility to assign ID-types also for, e.g., mobile phones,
sensors, or even cars or abstract services that provide any
functionality to a user. As IDs are independent from locators,
a communication session is not interrupted upon an access
point change. We showed instructions how new UIDs for
each type are assigned and registered and which changes
in the network stack are necessary in order to enable the
addressing scheme proposed in this work. Furthermore, by
introducing an n-gram based extended lookup mechanism
we are able to cope with spelling errors and typing mistakes.

122

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work was funded by the Federal Ministry of Edu-
cation and Research of the Federal Republic of Germany
(Project ID 01BK0807). The authors alone are responsible
for the content of the paper.

REFERENCES

[1] C. Spleiß and G. Kunzmann, “A Naming scheme for Iden-
tifiers in a Locator/Identifier-Split Internet Architecture,” in
ICN 2011, Proceedings of 10th International Conference on
Networks, Sint Maarten, Netherland, January 2011, pp. 57–
62.

[2] A. Afanasyev, N. Tilley, B. Longstaff, and L. Zhang, “BGP
routing table: Trends and challenges,” in Proc. of the 12th
Youth Technological Conference Ḧigh Technologies and In-
tellectual Systems¨, Moscow, Russia, April 2010.

[3] X. Meng, Z. Xu, B. Zhang, G. Huston, S. Lu, and L. Zhang,
“IPv4 address allocation and the BGP routing table evolu-
tion,” ACM SIGCOMM Computer Communication Review,
vol. 35, no. 1, p. 80, 2005.

[4] ISC, “The ISC Domain Survey,” http://www.isc.org/solutions/
survey, Internet System Consortium, 2010.

[5] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure,
“Evaluating the benefits of the locator/identifier separation,”
in Proceedings of 2nd ACM/IEEE International Workshop on
Mobility in the evolving Internet Architecture, 2007, pp. 1–6.

[6] V. Jacobson, D. Smetters, J. Thornton, M. Plass, N. Briggs,
and R. Braynard, “Networking named content,” in Proceed-
ings of the 5th international conference on Emerging network-
ing experiments and technologies. ACM, 2009, pp. 1–12.

[7] D. Cheriton and M. Gritter, “TRIAD: A new next-generation
Internet architecture,” Tech. Rep., 2000. [Online]. Available:
http://www.dsg.stanford.edu/triad

[8] C. Dannewitz, “NetInf: An Information-Centric Design for
the Future Internet,” Proceedings of 3rd GI/ITG KuVS Work-
shop on The Future Internet, May 2009.

[9] O. Hanka, G. Kunzmann, C. Spleiß, and J. Eberspächer,
“HiiMap: Hierarchical Internet Mapping Architecture,” in 1st
International Conference on Future Information Networks,
October 2009.

[10] M. Menth, M. Hartmann, and D. Klein, “Global locator,
local locator, and identifier split (GLI-split),” University of
Würzburg, Institute of Computer Science, Technical Report,
2010.

[11] A. Feldmann, L. Cittadini, W. Mühlbauer, R. Bush, and
O. Maennel, “HAIR: Hierarchical Architecture for Internet
Routing,” in Proceedings of the 2009 Workshop on Re-
architecting the Internet. ACM, 2009, pp. 43–48.

[12] J. Pan, S. Paul, R. Jain, and M. Bowman, “MILSA: A
Mobility and Multihoming Supporting Identifier Locator Split
Architecture for Naming in the Next Generation Internet,” in
IEEE GLOBECOM, 2008, pp. 1–6.

[13] M. Menth, M. Hartmann, and M. Höfling, “FIRMS: a map-
ping system for future internet routing,” IEEE Journal on
Selected Areas in Communications, vol. 28, no. 8, pp. 1326–
1331, 2010.

[14] D. Farinacci, V. Fuller, D. Oran, D. Meyer, and S. Brim,
“Locator/ID separation protocol (LISP),” Draft, 2010.
[Online]. Available: http://tools.ietf.org/html/draft-ietf-lisp-07

[15] R. Moskowitz and P. Nikander, “Host identity protocol (HIP)
architecture,” RFC 4423, Tech. Rep., May 2006.

[16] V. Kafle and M. Inoue, “HIMALIS: Heterogeneity Inclusion
and Mobility Adaptation through Locator ID Separation in
New Generation Network,” IEICE TRANSACTIONS on Com-
munications, vol. 93, no. 3, pp. 478–489, 2010.

[17] O. Hanka, C. Spleiß, G. Kunzmann, and J. Eberspächer,
“A novel DHT-based Network Architecture for the Next
Generation Internet,” in Proceedings of the 8th International
Conference on Networks, Cancun, Mexico, March 2009.

[18] ITU, “Draft Recommendation ITU-T Y.2015: General re-
quirements for ID/locator separation in NGN,” International
Telecommunication Union, 2009.

[19] N. Paskin, “Digital Object Identifier (DOI R©) System,” Ency-
clopedia of library and information sciences, pp. 1586–1592,
2010.

[20] G. Kunzmann, “Performance Analysis and Optimized Opera-
tion of Structured Overlay Networks,” Dissertation, Technis-
che Universität München, 2009.

[21] C. Spleiß and G. Kunzmann, “Decentralized supplementary
services for Voice-over-IP telephony,” in Proceedings of the
13th open European summer school and IFIP TC6. 6 con-
ference on Dependable and adaptable networks and services,
2007, pp. 62–69.

[22] O. Hanka, “A Privacy Service for Locator/Identifier-Split
Architectures Based on Mobile IP Mechanisms,” in Proceed-
ings of 2nd International Conference on Advances in Future
Internet, Venice, Italy, July 2010.

[23] S. Harding, W. Croft, and C. Weir, “Probabilistic retrieval of
OCR degraded text using N-grams,” Research and advanced
technology for digital libraries, pp. 345–359, 1997.

[24] E. Pitler, S. Bergsma, D. Lin, and K. Church, “Using web-
scale N-grams to improve base NP parsing performance,”
in Proceedings of the 23rd International Conference on
Computational Linguistics. Association for Computational
Linguistics, 2010, pp. 886–894.

[25] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker,
and I. Stoica, “Complex queries in DHT-based peer-to-peer
networks,” Peer-to-Peer Systems, pp. 242–250, 2002.

[26] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus
among words: Lattice-based word error minimization,” in
6th European Conference on Speech Communication and
Technology, 1999.

123

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data Portability Using WebComposition/Data Grid Service

Olexiy Chudnovskyy, Stefan Wild, Hendrik Gebhardt and Martin Gaedke
Faculty of Computer Science

Chemnitz University of Technology

Chemnitz, Germany

olexiy.chudnovskyy@informatik.tu-chemnitz.de, stefan.wild@informatik.tu-chemnitz.de,

hendrik.gebhardt@informatik.tu-chemnitz.de, martin.gaedke@informatik.tu-chemnitz.de

Abstract - Web 2.0 has become the ubiquitous platform for

publishing, sharing and linking of content. While users are

empowered to create and manage their data, the latter is still

scattered and controlled by distributed and heterogeneous

Web applications. The data is usually stored in internal silos

and is only partially exposed through platform APIs. As a

result, the reuse possibilities, fine-grained access control and

maintenance of distributed data pieces become a time-

consuming and costly activity, if feasible at all. In this paper,

we introduce our approach to develop Web applications based

on the principles of data portability, decentralization and user-

defined access control. Our main contributions are (1) a novel

Web service-based storage solution for the read-write Web,

combined with (2) a security framework for WebID

authentication and authorization based on WebAccessControl

lists (WAC), and (3) a corresponding systematic approach for

Web applications development based on loosely-coupled and

user-controlled storage solutions.

Keywords - WebComposition; Data Engineering; REST; WebID;

Web 2.0

I. INTRODUCTION

In the age of Web 2.0, it is the users, who produce a huge
amount of data by contributing to blogs, wikis, discussion
boards, feedback channels or social networks [1]. The
numerous platforms on the Web facilitate this activity by
providing sophisticated publishing tools, data sharing
functionalities and environments for collaborative work.
While users enjoy the simplicity and comfort given by these
applications, they usually face the problem that “their”
created data belongs to the service provider and is basically
out of their control [2]. The data can be accessed, edited or
linked only in the ways that were originally foreseen by
platform developers. For example, user profile stored in
Facebook cannot be synchronized with profiles in other
social networks. An uploaded picture cannot be linked with
others using new relationship types like “same event” or
“same place”. The accessibility and portability of data
depends on APIs, usage terms and conditions of different
platforms. In summary, users are not only hindered in their
sharing, linking and publishing possibilities – they do not
really control their data anymore. Application developers, on
their side, are hindered in consuming the published content,
either because existing platforms expose it in a restricted

way or do not include enough metadata required for the
particular domain.

There is a clear need for storage solutions, frameworks
and tools, which would support both: users and developers in
their corresponding activities. In this paper, we present our
approach to decouple Web applications from storage
solutions and analyze the resulting consequences regarding
data access, security and application development process. In
particular, the contributions of the paper are the following:

1. A novel Web-service-based storage solution
enabling data publishing and linking based on the
principles of Linked Data. The solution acts as a
portable Web component, which provides repository
functionality and also enables aggregation of access
to distributed heterogeneous data sources.

2. A security framework for user-defined access
control based on the social graph defined by the
Friend-of-a-Friend ontology (FOAF). We apply the
WebID concept [3] and WebAccessControl protocol
[4] to design a reusable module for client
authentication and authorization.

3. A systematic approach to develop storage-decoupled
Web applications. We adapt modeling techniques
and tools used to design application data domain and
provide guidance in adoption of the presented
architecture.

The rest of the paper is organized as follows: in
Section II, we discuss the concept of application-independent
storage solution and introduce our implementation based on
WebComposition/Data Grid Service (DGS). In Section III,
we describe the utilized authentication and authorization
approach based on WebID and WebAccessControl protocol.
Section IV discusses how traditional development process
should be adapted to take the new architecture into account.
In Section V, we illustrate our approach by implementing a
simple photo management application. Finally, in Section
VI, we summarize the paper and give an outlook into our
further work.

II. WEBCOMPOSITION/DATA GRID SERVICE AND READ-

WRITE WEB

WebComposition/Data Grid Service [5] is the core
element of the fourth generation of the WebComposition
approach [6]. It acts as an extensible storage and gateway

124

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1 WebComposition/Data Grid Service

solution, which focuses on data integration and uniform
access to distributed data sources [7][1]. Data Grid Service
has several interfaces and applies the Linked Data principles
to identify, describe and link internal resources.

Following, we describe the data model, interface and
functional capabilities of Data Grid Service. Furthermore, we
give an insight into its internal architecture and show
extension possibilities.

A. Data model

The data space managed by WebComposition/Data Grid
Service consists of a set of typed lists. Lists can have
different nature and provide different operations on items
inside. For example, the core modules of Data Grid Service
implement operations on XML resources, which can be
retrieved, updated, removed or linked with others. Extension
modules implement handling of binary collections or
structured access to external data sources, like relational
databases, user tweets, blog entries, documents etc. In all
cases, Data Grid Service provides a common view on
distributed data spaces and exposes them to clients as lists of
entries (Figure 1).

Beside typed lists, the so called virtual resources can be
defined within Data Grid Service. While they do not offer
any storage or gateway functionality, they are used to
provide additional access and manipulation methods on the
top of the existing lists. An example of such a virtual
resource is the one enabling further representations of
existing resources. With the help of transformation
stylesheets like XSLT, the default XML representation of
resources can be extended with RSS, Atom, JSON and other
formats.

Collections and items within Data Grid Service can be

annotated to provide additional information about their
origin, author, creation time etc. Annotations also give
information about resource behavior and defined access
control. Furthermore, a repository-wide metadata is
available, where specification of the lists and general service
description are stored.

B. Interface

WebComposition/Data Grid Service follows the REST
architectural style to identify and manipulate internal
resources. All resources within Data Grid Service are
identified using URIs. Some pre-defined URI-patterns are
used to access metadata ({resource URI}/meta) or

access control lists ({service URI}/meta/acl) etc. The
standard HTTP methods GET, POST, PUT and DELETE are
used to read, create, update and delete resources. Depending
on the configuration, some of the resources may require
authorization before executing the operations.

REST/HTTP interface provides several advantages for
multi-tier architectures, where data storage is decoupled from
services and third-party applications. First, it is simple,
complies with well-proven Web standards and can be
seamlessly integrated into the Web landscape [8]. Second,
REST/HTTP enables loose coupling between services and
clients. A REST-based storage solution can evolve
independently and extend its functionality without breaking
the contract. And finally, based on the HTTP protocol, third-
party providers are empowered to provide additional services
on the top of user-controlled storage solutions, e.g., caching,
security etc.

Though REST/HTTP is the main and most suitable
interface for decoupled data storages, also SOAP and
XML/RPC endpoints are foreseen to support business

125

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

scenarios and proprietary clients.

C. Core functionality

Data Grid Service provides several core modules, which
enable management of both structured and unstructured
content. In particular, users have the possibility to upload
their profile information, multimedia content and define fine-
grained access control on the resources. Applications can
utilize the published content and create new collections
within Data Grid Service to store their internal data. In both
cases, user is the only owner of the data and can extend,
update or revoke access at any time.

Following example creates a new XML list within Data
Grid Service:

<collection xmlns="http://www.w3.org/2007/app"

xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:dgs="http://www.webcomposition.net/2008/02/d

gs/">

<atom:title>profiles</atom:title>

<dgs:dataspaceengines>

 <dgs:dataspaceengine

dgs:type="http://.../CacheDataSpaceEngine" />

 <dgs:dataspaceengine

dgs:type="http://.../XmlDataSpaceEngine"

xmlns:dx="http://.../XmlDataSpaceEngine/" >

 <dx:primarykey>

 childnode1/childnode2/id

 </dx:primarykey>

 </dgs:dataspaceengine>

</dgs:dataspaceengines>

</collection>

Listing 1. Definition of new list

The request contains title and type of the list as well as
list-specific metadata. The type of the list defines the
module(s) (or so called Data Space Engines), which would
be responsible for the HTTP requests on corresponding URI
namespace. The metadata may describe the behavior of the
module more precisely, e.g., security policies or
configuration settings. After creation it is accessible under
{list URI}/meta URI and can be retrieved in Resource
Description Framework (RDF) format.

A single request can be processed by several modules,
called within a pipeline, where output of one module is
passed to another one as input. This enables pre- and post-
processing of incoming data - for example, for caching or
transformation purposes.

Following, we present the core modules of Data Grid
Service, their capabilities and usage examples.

1) Data Space Engine for XML lists
XML is a well-understood and easy to use format, which

is commonly used in distributed Web applications. Data Grid
Service uses XML as the main data representation format,
mainly because of many existing tools and standards to
validate, to transform and to navigate through XML-based
documents. The module “Data Space Engine for XML lists”
provides a broad range of functionality to deal with XML

resources. Though basic Create/Read/Update/Delete
(CRUD) functionality is supported for all kinds of XML
resources, the main purpose of this Data Space Engine is to
manage so called XML lists, i.e., XML resources, which
have a flat tree structure and contain a list of semantically
and structurally related XML items. The list model can be
applied for many kinds of Web applications, e.g., blogs,
content-management-systems, e-commerce applications etc.

By restricting the view from general XML resources to
XML lists, the Data Space Engine can provide additional
functionality specific to lists. In particular, the module
provides operations to identify and retrieve single items,
append new or delete existing ones. Furthermore, XML
Schema and XSLT stylesheets can be applied to perform
data validation or create alternative representation formats of
list items.

XML lists are useful to represent user- or application-
produced content and make it available to others. For
example, a simple address book service can model user
contacts as XML items and publish them as a collection in
the user’s storage solution:

$curl https://dgs.example.org/contacts

<contacts>

 <contact id="1001">

 <firstname>John</firstname>

 <secondname>Smith</secondname>

 <address>

 <street>2nd Avenue</street>

 <number>54</number>

 <zip>11124</zip>

 <city>New York</city>

 </address>

</contact>

 <contact id="1002">

 …

 <contact id="1003">

 …

</contacts>

Listing 2. Example of XML list

Following the RESTful architecture style the contact

items can be retrieved, created, updated or deleted using the
corresponding HTTP methods. However, as soon as user
enables write access to further service providers, she might
want to restrict the structure of the list items or check them
for valid content. For this purpose, an XML schema is
defined for the list, causing validation of document after all
incoming write requests.

The XML representation of list items empowers
application developers to use complex data structures while
describing their data. An XML item is a tree, whose depth
can vary depending on the application needs. In order to
update nested items, like the contact address in the example
above (so called partial update operation), the module
provides the concept of URI templates, which enables
dynamic assignment of URIs to item pieces. URI templates
are configuration settings for the module and can be defined
at run-time by adding dedicated metadata to the XML list:

126

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

POST /contacts/meta HTTP/1.1

Host: user1.datagridservice.example.org

Content-Type: text/n3

…

@prefix meta:

<http://www.webcomposition.net/2008/02/dgs/meta/>.

<http://dgs.example.org/contacts>

meta:urlTemplate

[

meta:url "contacts/{value}/address";

meta:xPath "/contacts[@id='{value}']/address"

].

Listing 3. Definition of URI template

An URI template consists of 2 patterns - the one to be

applied on URIs of incoming requests and the one to be
applied on XML list to select the desired subnodes. As a
result, the nested XML nodes get associated with the URI
https://dgs.example.org/contacts/{contact-

id}/address and can be manipulated the same way as the
parent ones.

Furthermore, arbitrary views on the XML lists can be
defined in the same way. The expressiveness of view
definitions, however, is limited to the expressiveness of
XPath query language. As an example, one could define a
view on all persons living in a particular city and retrieve
them using a dedicated URI pattern.

Many data-driven applications rely on entity-relationship
models while designing and managing their data domain. To
model the “JOIN” operations on resources, i.e., to retrieve all
the related items for some given one, XML Data Space
Engine introduces the concept of relationships. Relationships
define the connection between two items in terms of some
given ontology. The relationships are described using RDF
and belong to the list metadata. The definitions can be
consumed by service clients in order to discover and apply
additional retrieval functions. A relationship is configured
through 3 obligatory and 3 optional attributes:

 Parent: A URI of the list to act as a primary list, e.g.,
http://dgs.example.org/contacts

 Child: A URI of the list to act as a subordinate list,
e.g., http://dgs.example.org/pictures

 Predicate: A URI of RDF predicate to act as a
foreign key, defining a connection between primary
and secondary list items, e.g.,
http://xmlns.com/foaf/0.1/img.

A relationship configured using the above attributes
enables processing of the following URI pattern:

http://{service_host}/{parent_list_name}/

{parent_item_id}/{child_list_name}

As a result, only those items from child list are retrieved,

which are linked to the parent list item using the relationship-
specific predicate. For example, a GET request on
http://dgs.example.org/contacts/1001/pictures would
return picture descriptions associated with the contact 1001.

A POST HTTP request on the same URI is used to add
new items to the child list linking them simultaneously with
the specified parent list item.

To create an inverse link from child item to the parent
one, each time a direct connection is established, the optional
Inverse Predicate attribute is used, containing a URI of RDF
predicate for the inverse relationship. A corresponding RDF
statement is then automatically added to the child list
metadata, acting as a foreign key to the parent list item. The
same URI patterns can be applied to retrieve, create or delete
parent items linked to some given child item.

If many relationships between the same parent and child
list should be modeled (1:n, n:m), optional Parent and Child
Aliases can be defined to match the incoming request with
corresponding relationship definition. Listing 4 gives an
insight into the list metadata and shows the internal
relationship representation.

In summary, Data Space Engine for XML lists enables
users and third-party applications to store and manage their
data using simple and flexible data model. It follows
principles of RESTful architecture style and can be applied
to implement a broad range of data-centric Web applications.

2) Data Space Engine for binary resources
Current Web 2.0 applications require from storage

solutions efficient support of both structured data and
arbitrary binary content. Some of the data is supposed to be
public, while access to other has to be limited. This fact
elicits corresponding requirements on resource publishing
and access control functions.

In case of public resources, users should be assisted by
annotating and linking resources among each other’s. For
example, metadata available in the uploaded media files has
to be exposed in machine-processable format, so that Web
crawlers and service clients can utilize it to implement more
intelligent search and discovery functions. Providing links to
related content is also essential to enable third-party
applications to explore the user space.

127

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Data Space Engine for binary resources implements
basic CRUD functionality for the arbitrary content. Binary
resources are grouped within collections. The GET request
on the collection returns an Atom feed with basic
descriptions of collection items. To create and update new
resources, corresponding HTTP requests with MIME type
specification are used. The annotations and metadata of the
items is accessible using the {resource URI}/meta URI
pattern. Third-party applications can consume this metadata
according to their needs or update it using corresponding
HTTP methods.

We have implemented automatic metadata extraction for
some common MIME types (based on pre-defined mapping
between file attributes and RDF properties). For example,
just after uploading an MP3 file to Data Grid Service, the
artist and album information are immediately published
using RDF and terms coming from Music Ontology [9]:

<rdf:Description

rdf:about="http://dgs.example.org/music/31"

xmlns:ns0=”http://purl.org/ontology/mo/”>

 <dc:date>2005</dc:date>

 <dc:description>

 Amazon.com Song ID: 20206547

 </dc:description>

 <dc:title>Von Hier An Blind</dc:title>

 <ns0:album>Von Hier An Blind</ns0:album>

 <ns1:genre>Pop</ns1:genre>

 <ns2:singer>Wir Sind Helden</ns2:singer>

<rdf:Description>

 Listing 5. Example of metadata extraction

Similarly, Data Space Engine analyzes PDF, JPEG and

MPEG file encodings in order to extract the metadata and
expose it using the RDF and common vocabularies.

3) Data Space Engine for XSLT transformations
Data Space Engine for XSLT transformations enables

definition of further representations of XML resources. For
example, contact details from the example above can be
exposed as JSON list, CSV table, Atom Feed etc. For this
purpose, new resources are added to Data Grid Service and

configured to be processed by the XSLT module. The
configuration contains the specification of the XML resource
to be transformed, the MIME type of the resulting resource
and the XSLT stylesheet with the transformation algorithm
(Listing 6).

The resource configuration and the stylesheet are
considered as resource metadata and can be updated later to
adapt the module behavior.

4) Data Space Engines for external services
The design of the architecture foresees extensibility

possibilities by implementing the pre-defined module
interface. As such, further data spaces, e.g., user blogs,
tweets, activity streams or multimedia content scattered
across different platforms can be embedded into Data Grid
Service. Third-party applications may access this content
according to policies defined by the user. We implemented
gateways to Twitter, Dropbox and Flickr as examples to let
users and applications discover the data in one place and
consume it using one single unified REST/HTTP interface.

5) SPARQL Endpoint
All of the resources within Data Grid Service can be

annotated using RDF metadata. To let service clients find
resources they are interested in, we implemented a dedicated
SPARQL endpoint, accessible at the dedicated {service

URI}/meta/sparql URI. By sending compliant queries,
clients can search for resources within Data Grid Service’s
data spaces.

III. SECURITY FRAMEWORK FOR PORTABLE DATA

While consolidating the user data in one place, storage

solution has to guarantee its safety, security and privacy. As

such, only authorized clients are allowed to read and modify

the data. The choice of the authorization mechanism is

crucial in order to address different types of clients and the

peculiarities of the Web domain. Our goal is to enable easy-

to-understand but still fine-grained access control, where

rules are expressive enough to take users’ social graph and

relationships in account.

$curl https://dgs.example.org/contacts/meta

<rdf:Description rdf:about="http://dgs.example.org/contacts/">

<dc:creator rdf:resource=”http://dgs.example.org/profiles/27” />

<dc:title rdf:resource=”Contacts” />

...

</rdf:Description>

...

<rdf:Description

 rdf:about="http://dgs.example.org/contacts/meta/relationships/68">

 <dm:source rdf:resource="http://dgs.example.org/contacts" />

 <dm:target rdf:resource="http://dgs.example.org/pictures" />

 <dm:predicate rdf:resource=”http://xmlns.com/foaf/0.1/img" />

 <dm:inverse-predicate rdf:resource=”http://purl.org/dc/elements/1.1/creator” />

</rdf:Description>

 Listing 4. Example of the list metadata

128

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The emerging WebID standard is a promising

technology, which enables single sign-on, flexible identity

management and complex authorization rules. Every agent

(person, organization or application) is identified using a

URI, which refers to the user’s corresponding public profile.

To prove that the WebID belongs to the user, he creates

a self-signed certificate, which points to his WebID. The

X.509 v3 certificate standard allows the binding of

additional identities to the subject of the certificate through

a subject alternative names extension [10]. Furthermore, the

user extends the profile document with certificate’s public

key. When the user agent tries to access a protected

resource, the server asks for the client certificate, before

connection is established. The possession of the certificate is

verified during the SSL/TLS handshake and is the first step

in the authentication process. As the second step, server

compares the certificates’ public key with the one stored in

the WebID profile. The comparison is usually performed

with a dedicated SPARQL query on user profile URI. The

successful authentication process proves that the FOAF

resource belongs to the user and provides additional

information to the server about the user profile, social

relationships, etc.

After the user has been authenticated, the storage

solution determines if he has enough rights to access the

requested resource. We utilize WebAccessControl

mechanism, which complements WebID with access control

lists based on Semantic Web technologies [11].

WebAccessControl is inspired by authorization mechanisms

implemented in many file systems. It allows placing a set of

permissions on a specific resource for a user or a group,

identified by an URI:

@prefix acl: <http://www.w3.org/ns/auth/acl>.

[acl:accessTo <http://example.org/img.png>;

acl:mode acl:Read, acl:agentClass foaf:Agent].

[acl:accessTo <http://example.org/img.png>;

acl:mode acl:Read, acl:Write; acl:agent

<http://example.org/foaf#joe>]

Listing 7. Example of WebAccessControl list

The access control lists are RDF resources with

precisely defined semantics. The example above is an N3

serialization of the access control list and protects the

resource with URI http://example.org/img.png. The first

rule makes the resource readable for every user agent with a

valid WebID, while the second one grants write permissions

to the identity http://example.org/foaf#joe.

Currently, WebAccessControl foresees four different

access modes. In addition to the mentioned Read and Write

modes, one is able to grant Append and Control

permissions. Append is a restricted Write permission, where

one is only allowed to attach new data to the resource (e.g.,

in case of log files). If the agent should be capable of

modifying the access control list, the mode Control has to

be set.

The WAC list is stored centralized within Data Grid

Service. The owner of the storage solution has write

permissions to the access control list and can define the

access rules for other agents.

The presented authentication and authorization

mechanism is implemented as independent and reusable

module. It is invoked before the request reaches the Data

Space Engines-pipeline and checks if user has a valid

WebID and was assigned required permissions to access the

resource. The check of the permissions is done by mapping

the HTTP methods GET, POST, PUT and DELETE to its

<collection xmlns="http://www.w3.org/2007/app" xmlns:atom="http://www.w3.org/2005/Atom"

xmlns:dgs="http://www.webcomposition.net/2008/02/dgs/">

<atom:title>contacts-atom</atom:title>

 <dgs:dataspaceengines>

 <dgs:dataspaceengine dgs:type="http://.../XsltDataSpaceEngine"

 xmlns:dsexslt="http://.../XsltDataSpaceEngine/" >

 <dsexslt:source>contacts</dsexslt:soruce>

 <dsexslt:mimetype>application/atom+xml</dsexslt:mimetype>

 <dsexslt:stylesheet>

 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="xml" indent="yes"/>

 <xsl:template match="contacts">

 <feed xmlns="http://www.w3.org/2005/Atom">

 ...

 <xsl:apply-templates select="contact"/>

 </feed>

 </xsl:template>

 ...

 </xsl:stylesheet>

 </dsexslt:stylesheet>

 </dgs:dataspaceengine>

 </dgs:dataspaceengines>

</collection>

Listing 6. Data Space Engine for XSLT resources

129

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2 Development cycle of storage-decoupled Web applications

equivalents in the WebAccessControl ontology. We mapped

HTTP GET to acl:Read, HTTP PUT as well as HTTP

DELETE to acl:Write and HTTP POST to acl:Append.

IV. DEVELOPMENT OF WEB APPLICATIONS USING

WEBCOMPOSITION/DATA GRID SERVICE

We envision that users will be the only owners of their
data independently from its usage by third-party Web
applications. Applications have to provide an added value on
the top of the data and not limiting its reuse, sharing and
linking possibilities. To deal with the fact, that the storage is
decoupled from the application and is shared on the Web
between many applications, the classical development
processes, models and supporting tools for data-driven Web
applications should be adapted (Figure 2).

To illustrate our approach, we consider a simple Web
application for management of photo albums. The platform
should enable users to manage their pictures, tag them, and
assign them to photo albums. Users should be able to browse
albums of others and search for pictures using different
criteria. Though there are plenty of platforms on the Web
providing similar functionality, all of them require users to
put the data inside one single platform.

Following, we show how to engineer Web applications,
which do not host the user data in internal data silos, but
utilize user-controlled storage solutions.

The development of the Web application starts with a
requirements engineering step. We analyze user needs and
capture their requirements regarding functional and non-
functional aspects of the Web application. For our example
scenario, we refine and write down the functionality
described above. Apart other possible non-functional

requirements, we focus on the fact that the data should be
stored decentralized in user-controlled storage solutions.

After the requirements are captured, we analyze the
structure of business domain in order to produce the
conceptual model of the application. The result of the
analysis is usually an Entity-Relationship (ER) model, which
captures different types of objects from the business world,
their attributes and relationships. To meet the peculiarities of
storage-decoupled Web applications, we extend the model
and distinguish between local and global entities, which
should indicate that entity belongs either to user or to the
application data space. For example, pictures and albums are
entities, which belong to user and should be maintained
within his data space, while platform-wide categories and
tags can be managed centralized in the application data
space.

Entity-Relationship model is an important artifact, which
is used, among others, for database schema specification and
automated code generation. In our approach, we apply
distributed and Web-based storage solutions instead of
monolithic databases, so that the data can be shared between
different application and services. To enable independent
(and possibly serendipitous) data consumption, not only
structure, but also semantics of the data should be unified
and captured within dedicated models. To meet this need,
we extend the Entity-Relationship model with semantic-
specific aspects. In particular, we capture the semantics of
entities, attributes and relationships using common
ontologies and vocabularies. For example, entity Picture can
be annotated with http://xmlns.com/foaf/0.1/Image

concept, and its attributes with
http://purl.org/dc/elements/1.1/description and
http://purl.org/dc/terms/created coming from FOAF
and Dublin Core profiles respectively (Figure 3).

130

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Picture

-title : string = dc:title
-link : string = atom:link
-creator : string = dc:creator
-description : string = dc:description
-created : Date = dcm:created

Category

-title : string = dc:title
-created : Date = dcm:created

Album

-title : string = dc:title
-description : string = dcm:description
-created : Date = dcm:created

foaf:Image (local)

sioc_t:ImageGallery (local)

sioc_t:Category (global)

sioc:container_of

sioc:has_container

sioc:topic

Tag

-label : string = rdfs:label

sioc_t:Tag (global)
sioc:topic

Figure 3 Extended Entity-Relationship model of the example application

By putting more semantics into the ER-model, the
storage solutions are empowered to deliver data after the
Linked Data principles. Due to the common model and
explicit semantics, data stored within user storage can be
discovered and reused more efficiently. In our approach, we
transform the ER-model into a set of Data Grid Service
XML lists, corresponding XML Schemas, relationship
objects and transformation stylesheets to produce RDF/XML
representation of application content.

The rest of the development process can be executed as
in traditional Web applications. In the hypertext design phase
we specify data display, input and navigation functions. We
apply faceted navigation pattern for category browsing,
thumbnails for album and set-based navigation for picture
lists [12]. It is desirable that the storage solution has built-in
support for these operations, so they perform more
efficiently.

Our application has common three-tier architecture [13],
where data server is a distributed layer of user-controlled
storage solutions. We use WebComposition/Data Grid
Service due to its broad support for both binary resources
and structured XML content. Annotation and data
transformation enables publishing of data after Linked Data
principles, so that data created by one application can be
seamlessly consumed by another. Furthermore we utilize
ASP.NET Model-View-Controller framework [14] as “glue”
between user interface and data storage.

To implement application authentication and
authorization mechanisms, we apply the same approach as
with securing user storages. The security modules described
in Section III can be reused and integrated into the
application. As a result, users authenticate themselves by
presenting a certificate with WebID field, so that application
can reuse the profile information stored within the FOAF
file. To consume application services, user has to prepare a
data space within his storage solution to be used by
application and store it in his configuration settings.

Corresponding access control rules have to be defined within
the storage solution, so that application, identified by WebID
as well, can access the required data.

The resulting application is tested and installed in the
target environment (Figure 4).

Figure 4 The photo album management application based on Data Grid

Service [15]

We notice that the application is loosely coupled with its

data storage, which means, that their evolution can take place
independently and hence be performed more efficiently.

V. RELATED WORK

Many distributed data storage solutions focusing on
scalability, availability and simple data modeling appeared
during the last couple of years [16]. In this section, the
important contributions in this field of research are analyzed
and discussed. The presented approaches can be roughly
separated into the three areas: structured, distributed data
storages, classical NoSQL databases and publishing tools.

131

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

DataWiki [17] is a platform to manage structured data
using basic CRUDS operations enabled via a RESTful Web
service API. To access or modify data sets stored in the
DataWiki, mashups and forms can be created and hosted
independently from the platform. All documents available in
the DataWiki can be exported as Atom feeds. Information
sharing with other systems is supported through built-in
federation. Although the DataWiki approach separates data
and representation from each other, it lacks of coping with
large unstructured data sets, e.g., binary large objects.

data.fm [18] is an open source Web service implementing
the REST architectural style, which supports common
request methods and various response and media types, e.g.,
JSON, RSS or Atom, to perform access and retrieval
operations on structured data sets available in the internal
cloud storage. A graphical Web interface offers a convenient
way to create new storage clouds with optionally restricting
their access via ACLs. Data within the internal storage is
organized in files and directories, which can be adapted from
privileged persons through the API or GUI. Like the
DataWiki platform, data.fm is well-suited for managing
structured data, but compared to our approach, data.fm
cannot apply post-transformations, e.g., via XSLT, to
responses.

Another representative in this context is OpenLink
Virtuoso [19], a structured data cluster providing certain
virtualization layers to handle heterogeneous data sources
and processing components. Principally, the software
consists of an object-relational database accessible through
specific database engines, integrated web and application
servers. OpenLink Virtuoso provides a rich set of interfaces,
e.g., SOAP, REST, XML-RPC, and SPARQL, to query for
the uniquely identifiable elements stored in the database. In
addition, the software supports protocols, e.g., Blogger and
Atom 1.0, to publish data in a suitable form as well as
components to interact with many types of application, e.g.,
wikis and address books. Although Virtuoso is a powerful
tool to manage different types of data, it is complicated in
installation and administration, which may become a crucial
factor in success of user-controlled storage solutions. In
contrast, Data Grid Service doesn’t require a database or
triple store in the backend and is installed using a simple
installation wizard.

Similar to our approach, NoSQL solutions can be used as
Web components, which support essential CRUD
functionality for structured and unstructured data. For
example, Apache CouchDB [20] stores schema-free data as
name-value pairs, which are accessible through a RESTful
Web interface. Like CouchDB, Amazon S3 [21] can be used
to store unstructured data and access it through a
REST/HTTP or a SOAP interface. In addition, Amazon S3 is
often accompanied with Amazon SimpleDB [22], which
allows saving structured, but schema-free data sets. NoSQL
databases are designed to provide a scalable, fault-tolerant
and flexible storage solution for schema-free data. Though
NoSQL solutions can handle frequently changing document
structures and new file types, the qualified data validation via
document schemas is missing. Furthermore, they do not

provide any support to centralize user data and enable fine-
grained access control.

In conjunction with classic relational databases, the so
called publishing tools can be applied to expose user data as
Linked Data. The publishing tools automate the tasks of
interpreting incoming HTTP requests, dereferencing URIs
and converting the data in a proper form. One representative
of this kind of tool is D2R server [23], which selectively
transforms data from a legacy data source into RDF. The
transformation is performed based on the parameters
specified in the request. Currently, D2R server supports
HTML and RDF browsers and provides a SPARQL endpoint
to query the database content. Similar to D2R server, Triplify
[24] converts the results of queries transmitted to a relational
database into RDF, JSON or Linked Data. However, Triplify
just executes a transformation of the output, i.e., queries have
to be written in SQL. In contrast to our approach, the
publishing tools only perform non-modifying operations on
the legacy databases and do not aim to integrate other Web-
based data sources.

Though the presented tools facilitate tasks of storing,
publishing and linking data on the Web, they do not provide
an integrated solution. Data wikis are flexible tools enabling
collaborative data acquisition but cannot deal with
unstructured data and distributed data spaces. NoSQL
databases are scalable Web-based storage solutions, but are
not so extensible in the sense of integrating additional data
spaces. Finally, publishing tools support users gathering
Linked Data out of legacy database. However, they cannot
be used to propagate modifications back to the same storage.

VI. CONCLUSION AND OUTLOOK

In this paper, we have presented our approach to engineer
Web applications based on user-controlled storage solutions.
The separation of applications and data brings many
advantages both for the end-user but also for application
developers. Users have the full control of their data - they
can specify what data should be public or private, what parts
the third-party applications are allowed to access and how
this data is linked to other resources. Application developers
profit from the accessibility of user data and can deliver
novel services more easily. Finally, the evolution of storage
solutions and applications can take place independently and
therefore less coordination and synchronization effort is
needed.

We introduced WebComposition/Data Grid Service, a
loosely coupled persistence and gateway layer for Web
applications. We have shown how Data Grid Service can be
used as a Web-based storage solution and how users can
define access control using WebAccessControl lists. We
presented reusable authentication and authorization modules
based on the emerging WebID standard. Finally, we
described a systematic approach to develop Web applications
for decoupled storage solutions and illustrated it using a
simple photo album management example.

In future, we expect the growth of the flexibility and
functionality of user-controlled storages. As more and more
applications access and change user data, the need to keep
provenance information emerges. To meet this demand we

132

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are going to add management and monitoring functionality
for Data Grid Service. Especially quota assignment and
event logging are important issues to protect the users’ data
space from malicious use and attacks. To link and
synchronize data between storage solutions of different
users, we are building dedicated publish/subscribe
infrastructures. Finally, we are planning to extend the
vocabulary for specification of access control lists and
implement additional authorization rules based on the social
graph of the user.

VII. REFERENCES

[1] O. Chudnovskyy and M. Gaedke, “Development of Web

2.0 Applications using WebComposition / Data Grid

Service,” in The Second International Conferences on

Advanced Service Computing (Service Computation

2010), 2010, pp. 55-61.

[2] T. Berners-Lee, “Socially aware cloud storage - Design

Issues,” 2009. [Online]. Available:

http://www.w3.org/DesignIssues/CloudStorage.html.

[Accessed: 23-Jan-2012].

[3] Manu Sporny, Toby Inkster, Henry Story, Bruno

Harbulot, and Reto Bachmann-Gmür, “WebID 1.0 - Web

Identification and Discovery,” W3C Editor’s Draft, 2011.

[Online]. Available:

http://www.w3.org/2005/Incubator/webid/spec/.

[Accessed: 23-Jan-2012].

[4] W3C, “WebAccessControl - W3C Wiki,” 2011. [Online].

Available: http://www.w3.org/wiki/WebAccessControl.

[Accessed: 23-Jan-2012].

[5] O. Chudnovskyy and M. Gaedke, “WebComposition/Data

Grid Service v1.0: Demo.” [Online]. Available:

https://vsr.informatik.tu-

chemnitz.de/demo/datagridservice/. [Accessed: 23-Jan-

2012].

[6] H.-W. Gellersen, R. Wicke, and M. Gaedke,

“WebComposition: An Object-Oriented Support System

for the Web Engineering Lifecycle,” in Electronic Proc.

of The 6th International WWW Conference, 1997.

[7] M. Gaedke, D. Härtzer, and A. Heil, “WebComposition /

DGS : Dynamic Service Components for Web 2.0

Development,” in Proceedings of the 6th International

Conference on Advances in Mobile Computing and

Multimedia, 2008, no. c, pp. 2-5.

[8] E. Wilde and M. Gaedke, “Web Engineering Revisited.,”

in BCS Int. Acad. Conf., 2008, pp. 41-50.

[9] Y. Raimond, F. Giasson, K. Jacobson, G. Fazekas, T.

Gängler, and S. Reinhardt, “Music Ontology

Specification,” 2010. [Online]. Available:

http://musicontology.com/. [Accessed: 23-Jan-2012].

[10] D. Solo, R. Housley, and W. Ford, “RFC 2459: Internet

X.509 Public Key Infrastructure Certificate and CRL

Profile,” 1999. [Online]. Available:

http://tools.ietf.org/html/rfc2459. [Accessed: 23-Jan-

2012].

[11] J. Hollenbach, J. Presbrey, and T. Berners-lee, “Using

RDF Metadata To Enable Access Control on the Social

Semantic Web,” in Proceedings of the Workshop on

Collaborative Construction, Management and Linking of

Structured Knowledge (CK2009), 2009.

[12] G. Rossi, D. Schwabe, and F. Lyardet, “Improving Web

information systems with navigational patterns,”

Computer Networks, vol. 31, no. 11-16, pp. 1667-1678,

May 1999.

[13] M. Fowler, Patterns of Enterprise Application

Architecture. Addison-Wesley Professional, 2002, p. 560.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software

le. Addison-Wesley, 1994.

[15] O. Chudnovskyy and M. Gaedke, “DGS Photogallery:

Demo.” [Online]. Available: https://vsr.informatik.tu-

chemnitz.de/demo/photogallery. [Accessed: 23-Jan-2012].

[16] R. Cattell, “Scalable SQL and NoSQL data stores,” ACM

SIGMOD Record, vol. 39, no. 4, p. 12, May 2011.

[17] Google, “DataWiki,” 2011. [Online]. Available:

http://code.google.com/p/datawiki/. [Accessed: 23-Jan-

2012].

[18] Data.fm, “Data Cloud,” 2011. [Online]. Available:

http://data.fm/. [Accessed: 23-Jan-2012].

[19] OpenLink Software, “Virtuoso Universal Server.”

[Online]. Available: http://virtuoso.openlinksw.com/.

[Accessed: 23-Jan-2012].

[20] The Apache Software Foundation, “Apache CouchDB:

The CouchDB Project,” 2008. [Online]. Available:

http://couchdb.apache.org/. [Accessed: 23-Jan-2012].

[21] Amazon, “Simple Storage Service (Amazon S3).”

[Online]. Available: http://aws.amazon.com/de/s3/.

[Accessed: 23-Jan-2012].

[22] Amazon, “SimpleDB.” [Online]. Available:

http://aws.amazon.com/de/simpledb/. [Accessed: 23-Jan-

2012].

[23] C. Bizer and R. Cyganiak, “D2R server - publishing

relational databases on the Semantic Web,” in Poster at

the 5th International Semantic Web Conference

(ISWC2006), 2006.

[24] S. Auer, S. Dietzold, J. Lehmann, S. Hellmann, and D.

Aumueller, “Triplify – Light-Weight Linked Data

Publication from Relational Databases,” Proceedings of

the 18th international conference on World Wide Web,

pp. 621-630, 2009.

133

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards Normalized Connection Elements in Industrial Automation

Dirk van der Linden1, Herwig Mannaert2, Wolfgang Kastner3, Herbert Peremans2

1Artesis University College of Antwerp, Electromechanics Research Group, Belgium
dirk.vanderlinden@artesis.be

2University of Antwerp, Belgium
{herwig.mannaert, herbert.peremans}@ua.ac.be

3Vienna University of Technology, Automation Systems Group, Austria
k@auto.tuwien.ac.at

Abstract—There is a tendency to Web-enable automation
control systems, with consequently the challenge to propagate
and aggregate data and control over the Internet. While
classical industrial controller systems are limited to a local
network, Web-enabled systems can be coupled in a new
dimension. However, this also introduces larger impacts of
changes and combinatorial effects. The Normalized Systems
theory was recently proposed with the explicit goal of keeping
these impacts bounded. It can be applied from the production
control level up to the Web-enabled interface. One of the
key principles of the Normalized Systems theory is to enforce
Separation of Concerns in a multi-technology environment.
To this end, this paper introduces Normalized Connection
Elements as a stable interface between PLC software and field
devices. As a case in point, the IEC 61131-3 code design of an
ISA88 Control Module following these principles is discussed.

Keywords-Normalized Systems; Automation control soft-
ware; IEC 61131-3; ISA88; OPC UA.

I. INTRODUCTION

Meeting the requirements of a software project has always
been one of the top priorities of software engineering.
However, not rarely, after taking in service, or even during
the development, customers come up with new requirements.
Project managers try to satisfy these additional requirements
accompanied with an extra cost to the customer. The esti-
mation of these additional efforts, depending on the devel-
opment progress of the project, is often not straightforward.
Managers tend to focus on functional requirements, while
experienced engineers know that non-functional require-
ments can sometimes cause more efforts and costs. Evolv-
ability became one of the most desirable non-functional
requirements in software development, but is hard to control.
One of the most annoying problems automation engineers
are confronted with is the fear to cause side-effects with
an intervention [1]. They have often no clear view in how
many places they have to adapt code to be consistent with the
consequences of a change. Some development environments
provide tools like cross references to address this, but the
behavior of a development environment is vendor-dependent,

although the programming languages are typically based on
IEC 61131-3 [2].

The Normalized Systems theory has recently been pro-
posed for engineering evolvable information systems [3].
This theory also has the potential to improve control soft-
ware for the automation of production systems. In produc-
tion control systems, the end user always has the right to a
copy of the source code. However, it is seldom manageable
to incrementally add changes to these systems, due to the
same problems as we see in business information systems,
such as undesired couplings, side-effects, combinatorial ef-
fects. Finding solutions for these problems includes several
aspects. Some standards like ISA88 suggest the use of
building blocks on the macro level. The Normalized Systems
theory suggests how these building blocks should be coded
on the micro level. Interfacing between modules can be
supported with the OPC UA standard.

Just like transaction support software and decision support
software systems, production automation systems also have
a tendency to evolve to integrated systems. Tracking and
tracing production data is not only improving the business, in
some cases it is also required by law (in particular in the food
and pharmacy sectors). Due to the scope of totally integrated
systems (combination of information systems and production
systems), the amount of suitable single vendor systems is
low or even non-existing. Large vendor companies may
offer totally integrated solutions, but mostly these solutions
are assembled from products with different history. For the
engineer, this situation is very similar to a multi-vendor
environment. Also, assembling software instead of program-
ming is a challenge Doug McIlroy called for already decades
ago [4]. Several guidelines, approaches, tools and techniques
have been proposed that aim at assisting in achieving this
goal. Unfortunately, none of these approaches have proven
to be truly able to meet this challenge.

Globalization is bringing opportunities for companies who
are focusing their target market on small niches, which are
part of a totally integrated system. These products can ex-
pand single-vendor systems, or can become part of a multi-

134

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

vendor system. Moreover, strictly single-vendor systems are
rather rare in modern industry. Sometimes they are built from
scratch, but once improvements or expansions are needed,
products of multiple vendors might bring solutions. Hence,
over time single-vendor systems often evolve to multi-
vendor systems. Each of these systems can be considered
as a different technology. Isolating these technologies to
prevent them exporting the impact of their internal changes
into other technologies is the key contribution of this paper.

Minor changes, often optimizations or improvements of
the original concept, occur shortly after taking-in-service.
Major changes occur when new economical or technological
requirements are introduced over time. As a consequence,
software projects should not only satisfy the current require-
ments, but should also support future requirements [5].

The scope of changes in production control systems, or
the impact of changes to related modules in a multi-vendor
environment is typically smaller than in ERP (Enterprise
Resource Planning) systems and large supply chain systems.
However, there is a similarity in the problem of evolvabil-
ity [3]. Since the possibilities of industrial communication
increase, we anticipate to encounter similar problems to
the ones in business information systems. The more the
tendency of vertical integration (field devices up to ERP
systems) increases, the more the impact of changes on the
production level can increase. Since OPC UA (Open Product
Connectivity - Unified Architecture) [6] enables Web-based
communication between field controllers and all types of
software platforms, over local networks or the Internet, the
amount of combinatorial effects after a change can rise
significantly (change propagation).

This paper introduces a proof of principle on how the
software of an ISA88 Control Module [7] can be developed
following the Normalized Systems theory. Some developers
could recognize parts of this approach, because (as should
be emphasized) each of the Normalized Systems theorems
is not completely new, and some even relate to the heuristic
knowledge of developers. However, formulating this knowl-
edge as theorems that prevent combinatorial effects supports
systematic identification of these combinatorial effects so
that systems can be built to exhibit a minimum of these
combinatorial effects [3]. The Normalized Systems theory
allows the handling of a business flow of entities like orders,
parts or products. For these process-oriented solutions, five
patterns for evolvable software elements are defined [8]. In
this paper, however, we focus on the control of a piece of
physical equipment in an automated production system. The
code of an ISA88 based Control Module is not process-
oriented but equipment-oriented [1]. The focus of this code
is not about how a product has to be made, but about
how the equipment has to be controlled. Consequently, we
need another type of programming language because of
the nature of industrial controllers. Since the patterns for
evolvable software elements are fundamental, we can use

them as a base for IEC 61131-3 code. For this code, we
concentrate on 3 patterns: Data Elements, Action Elements
and Connection Elements. The Connection Elements can
connect software entities in two directions: first, towards the
physical process hardware, and second, towards higher level,
non-IEC 61131-3 software modules. The first concerns IEC
61131-3 code, the second typically Web-enabled platform
independent systems via an OPC UA interface. In this
paper, we focus on the connection with process physical
hardware. The possibility of OPC UA-based Connection
Elements is crucial to enable upcoming larger automation
systems, whose parts are connected via the Internet, and
will be worked out in detail in future work. Such automation
software entities should be able to evolve over time. This is a
key requirement in the beginning age of decentralized energy
generators and consumers prominently known as smart grid
[9].

The remainder of this paper is structured as follows. In
Section II, we discuss the Normalized Systems theory. In
Section III, we give an overview of industrial standards
on which industrial production Control Modules can be
based. These standards include software modeling and de-
sign patterns, communication capabilities, and programming
languages. In Section IV, an evolvable Control Module is
introduced. In Section V, we discuss some changes and their
evaluation. We tested the robustness of the Control Module
against these changes in our industrial automation labora-
tory. In Section VI, we conclude and introduce suggestions
for future research.

II. NORMALIZED SYSTEMS

Adding small changes or extending an existing software
system with new functionality often leads to an increase in
architectural complexity and a decrease in software quality
[10]. This is regarded as more expensive than developing the
same functionality from scratch. This phenomenon is known
as Lehman’s law of increasing complexity [11], expressing
the degradation of information systems’ structure over time:

”As an evolving program is continually changed,
its complexity, reflecting deteriorating structure,
increases unless work is done to maintain or
reduce it.”

To challenge this law, the Normalized Systems theory
has recently been established [12]. Since the Normalized
Systems theory takes modularity as basis, the principles are
independent of any specific programming language, devel-
opment environment or framework. Modularity implies that
every module hides its internal details from its environment:
another module does not need a white box view (i.e.,
analysis of the internal data and code) of the first module in
order to be able to call and use this module. Hiding internal
details is referred to as the black box principle. The user
or caller of a black box module only needs to know the

135

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1: Cumulative impact over time [13]

interface of the module, i.e., the name of the module, the
input and output parameters [3].

A. Stability

The starting point of the theory is system stability. In
systems theory, one of the most fundamental properties of
a system is its stability: in a stable system, a bounded input
function results in bounded output values, even for t → ∞
(with t representing time) [5]. This means that a limited
set of changes, needed for maintenance or extension of the
system, results in a limited amount of code changes or
impacts to the system, even for t → ∞. This includes the
absence of side-effects in modules which are not changed,
independent of the size of the system.

Stability demands that the impact of a change only de-
pends on the nature of the change itself. Conversely, changes
causing impacts that increase with the size of the system can
be termed combinatorial effects and should be eliminated
from the system in order to attain stability. Stability can
be seen as the requirement of a linear relation between
the cumulative changes and the growing size of the system
over time. Combinatorial effects or instabilities cause this
relation to become exponential (Figure 1). Systems that
exhibit stability are defined as Normalized Systems [3].

”Normalized systems are systems that are sta-
ble with respect to a defined set of anticipated
changes, which requires that a bounded set of
those changes results in a bounded amount of
impacts to system primitives.”

The challenge to control the impact of changes starts with
identifying the changes systematically. Here, it is interesting
to know the source or cause of a change. In terms of
modularity, it is useful to know which parts of a module
are changing independently. We should limit the size of a

module to a cohesive part of content, which is changing
independently of every other part. A cause or source of
a change, which can be considered independently, to a
software primitive can be called a ‘change driver’.

B. Design theorems for Normalized Systems

Derived from the postulate that a system needs to
be stable with respect to a defined set of anticipated
changes, four design theorems or principles for the
development of Normalized Systems are defined. They
are briefly summarized in the following. A more detailed
discussion can be found in the paper by Mannaert et al. [12].

1) Separation of Concerns: An Action Entity shall only
contain a single task.

The identification of a task is to some extent arbitrary.
The concept of change drivers brings clarity here,
because every Action Entity should only evolve
because of a single change driver. Every task can
evolve independently. If two or more aspects of a
functionality are considered to evolve independently,
they should be separated. It is proven that if one
action contains more than one task, an update of one
of the tasks requires updating all the others, too.

2) Data Version Transparency: Data Entities that are
received as input or produced as output by Action
Entities shall exhibit Version Transparency.

We now concentrate on the interaction between Data
Entities and Action Entities, more precisely, whether
the passing of parameters or arguments affects the
functionality of a module. Data Version Transparency
implies that Data Entities can have multiple versions
without affecting the actions that consume or produce
them. In more practical terms, merely adding a field
to a set of parameters that is not used in a specific
Action Entity should not affect that Action Entity.

3) Action Version Transparency: Action Entities that are
called by other Action Entities shall exhibit Version
Transparency.

In this theorem we concentrate on the interaction of
Actions Entities with other Action Entities. Action
Version Transparency implies that an Action Entity
can have multiple versions, without affecting the
actions that call the Action Entity. In other words,
the mere introduction of a new version of an Action
Entity or task should not affect the Action Entities
calling the Action Entity containing the task.

136

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4) Separation of States: The calling of an Action Entity
by another Action Entity shall exhibit State Keeping.

We continue to concentrate on the interaction of
Action Entities with other Action Entities, more
specifically on the aggregation or propagation
of Action Entities. Every Action Entity itself is
responsible for remembering the calling of other
Action Entities, and consequently the corresponding
state. To comply with this theorem, a chain of
actions calling other actions should always be
asynchronous. Besides, asynchronous processing is
usually associated with high reliability, and even
performance. The latter is a result of avoiding locking
resources related to one task during the execution of
(an)other task(s).

C. Encapsulation of Software Entities

On the level of individual Action Entities, Theorems 2 and
3 (Data and Action Version Transparency) avoid instabilities
caused by different versions of data and tasks. On the level
of aggregations and propagations, Theorems 1 and 4 (Sep-
aration of Concerns and States) avoid unstable interactions
between software constructs. Since software entities comply-
ing with Theorem 1 are very small, their application results
in a highly granular structure. On the application oriented
level, there is a need for larger building blocks, which are
not focused on actions with only one small task, but on
higher-level elements. The Normalized Systems Elements
are manifestations of encapsulations, which represent each
a typical building component in a software system:

• Data Encapsulation: This is a composition of software
constructs to encapsulate Data Entities into a Data El-
ement. Such a Data Element can also contain methods
to access the data in a Version Transparent way, or can
contain cross-cutting concerns – in separate constructs.

• Action Encapsulation: This is a composition of software
constructs to encapsulate Action Entities into an Action
Element. There can be only one construct for the core
task (core Action Entity), which is typically surrounded
by supporting tasks (supporting Action Entities). Argu-
ments or parameters of the individual Action Entities
need to be encapsulated as a Data Element for use in
the entire Action Element.

• Connection Encapsulation: This is a composition of
software constructs to encapsulate Connection Entities
into a Connection Element. Connection Elements can
ensure that external systems can interact with Data
Elements, but can never call an Action Element in a
stateless way. The concept of Connection Encapsulation
allows the representation of external systems in several
co-existing versions, or even alternative technologies,
without affecting the Normalized System.

• Flow Encapsulation: This is a composition of software
constructs to create an encapsulated Flow Element.
Flow Elements cannot contain other functional tasks
but the flow control itself, and they have to be stateful.

• Trigger Encapsulation: This is a composition of
software constructs to create an encapsulated Trigger
Element. Trigger Elements control the separated –
both error and non-error – states, and decide whether
an Action Element has to be triggered.

III. INDUSTRIAL STANDARDS

A. PLC coding with IEC 61131-3

Since their introduction in the late 1960s, PLCs (Pro-
grammable Logic Controllers) have found broad accep-
tance across the industry. Because they are programmable,
they provided a higher flexibility than the previous control
equipment based on hardwired relay circuits. PLCs were
produced and sold all over the world with a large diversity
of vendors. The programming languages used to program
PLCs of various brands were more or less similar, but due
to a lot of implementation details, intensive trainings were
needed if an engineer wanted to move from one vendor’s
system to another.

To unify the way PLCs are programmed, the IEC (Inter-
national Electrotechnical Commission) introduced the IEC
61131 standard, which is a general framework that es-
tablishes rules all PLCs should adhere to, encompassing
mechanical, electrical, and logical aspects, and consist of
several parts. The third part (IEC 61131-3) deals with
programming of industrial controllers and defines the pro-
gramming model. It defines data types, variables, POUs
(Program Organization Units), and programming languages.
A POU contains code; it can be a Function, Function Block,
or a Program.

Functions have similar semantics to those in traditional
procedural languages and directly return a single output
value. However, besides one or more input values, the
Function may also have parameters used as outputs, or
as input and output simultaneously. They cannot contain
internal state information. Consequently, they can call other
Functions, but no Function Blocks.

Function Blocks are similar to classes in object oriented
languages, with the limitation of having a single, public,
member function. Function Blocks are instantiated as vari-
ables, each with their own copy of the Function Block state.
The unique member function of a Function Block does not
directly return any value, but has parameters to pass data
as input, output or bidirectionally. Since Function Blocks
have internal memory, they can call both Functions and other
Function Blocks.

Programs can contain all the programming language ele-
ments and constructs and are instantiated by the PLC system.
They are cyclically triggered by the PLC system based on

137

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a configurable cycle time, or triggered by a system event.
Typically they organize the progress of the PLC functionality
during runtime, by calling Functions and Function Blocks.

All three types of POUs may be programmed in one
of two textual languages (IL: Instruction Language; ST:
Structured Text), or two graphical languages (LD: Ladder
Diagram; FBD: Function Block Diagram). The standard also
defines a graphical language for specifying state machines
(SFC: Sequential Function Chart), that may also be used
in Function Blocks or Programs. It should be noted that
typically one of the other languages are used to code the
SFC transition conditions and steps.

Programming in LD is similar to designing a relay based
electrical circuit. It can be said that LD is a historical artifact.
The very first PLCs were competing with existing control
equipment based on hardwired relay circuits and therefore
adopted a language similar to the design schematics of these
electrical circuits in order to ease platform acceptance by the
existing technicians.

The FBD language may be considered as a graphical
incarnation of boolean algebra, where boolean OR, AND
and more complex boxes are simply placed in the GUI. The
inputs and outputs of the boxes are connected by drawing
lines between them.

The IL language is similar to assembly. It is definitively
a low level programming language, because it contains a
jump instruction, which should be abolished from all “higher
level” programming languages [14].

The ST language has a syntax similar to Pascal, and can
be considered as a higher level language. Indeed, as proven
by Dijkstra [14], there is no need for a jump instruction in
ST because all processing algorithms can be implemented
through three primitive types of control: selection, sequenc-
ing, and iteration.

B. Modeling with ISA88 (IEC 61512)

Manufacturing operations can be generally classified as
one of three different processes: discrete, continuous, or
batch. In October 1995, the SP88 committee released the
ANSI/ISA-S88.01-1995 standard [7] (its international equiv-
alent is IEC 61512) to guideline the design, control and
operation of batch manufacturing plants.

The demand for production systems with a high flexibility,
with regard to setting up the system for making product
variants, became important. Process engineers focus on how
to handle the material flow to meet the specifications of the
end-product. Control system experts focus on how to control
equipment. To optimize the cooperation of both groups,
the SP88 committee wanted to separate product definition
information from production equipment capabilities.
Product definition information is contained in recipes, and
the production equipment capability is described using a
hierarchical equipment model. This provides the possibility
for process engineers to make process changes directly,

Figure 2: The relation between procedural, physical and
process models [16]

without the help of a control system expert (reducing the
setup costs). Moreover, the ability of producing many
product variants with the same installation is achieved,
increasing the target market. Expensive equipment can
be shared by different production units (reducing the
production costs). The utilization of ISA88 data models
simplifies the design process considerably [15].

1) Challenges:
Despite the usefulness of ISA88 terminology and models

to structure flexible manufacturing, different interpretations
are possible. The standard does not specify how the abstract
models should be applied in real applications. Implementers
sometimes develop recipes and procedures which are far
more complex than necessary. Since 1995 there have been
many applications and a commonly accepted method for
implementing the standard has emerged. The S88 design
patterns [15] of Dennis Brandl (2007) address this. These
patterns can reduce the tendency of implementers to make
their recipes and procedures more complex than necessary.

When automated control was introduced to manufac-
turing, it was accompanied by the problem that control
system programming became a critical activity in both initial
startup and upgrades. Often the physical equipment can be
reconfigured in days, if not minutes, if manually controlled
and maintained. In contrast, the automatic control system,
unless it was designed for reconfiguration, may take weeks
or months to reconfigure and reprogram [15].

Turning the ISA88 models into well structured code is
not straightforward [1]. Again, different interpretations are
possible. On the macro level they provide a clear structure,
but there is a need for prescriptive specifications to convert
these models into code, or even to divide them into smaller
sub-modules at the micro level.

2) Important ISA88 models for automation control:
During the development of ISA88, the SP88 committee

was focusing on batch control, but made the models univer-

138

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sal enough to make them suitable for other process types
[16]. However, to implement these models, different design
patterns are recommended for the different process types
[15].

The most important key-point of ISA88 is the separation
of (end) product definition information from production
equipment capability. This separation allows the same
equipment to be used in different ways to make multiple
products, or different equipment to be used to produce the
same product. Recipes are used to describe the product
definition information, and a hierarchical equipment
model is introduced to describe the production equipment
capability. A consequence of this approach is a separation
of expertise. Experts in different domains, who have to
cooperate to achieve the production goals, are educated
differently and think in different ways. Process engineers
focus on how to handle the material flow to meet the
specifications of the end-product. Control system experts
focus on how to control equipment. Recipes are to be
developed by process engineers, and control system
experts will have to make the equipment run, based on
information contained in the parameters and procedures
of the recipes. ISA88 provides a physical model hierarchy
to deal with equipment oriented control, and a procedural
model hierarchy to deal with process oriented control. For
researchers, the process model is provided (Figure 2). In
this paper, we focus on the lowest level equipment oriented
element: the ISA88 Control Module.

3) ISA88 Control Modules:
The lowest level of the ISA88 physical model is the

Control Module, but not all parts are necessarily physi-
cal. In an automated system, Control Modules are partly
(PLC) software. In their simplest form, Control Modules
are device drivers, but they can provide robust methods of
device control too, including functions such as automatic and
manual modes, simulation mode, Interlocks and Permissives
(ISA88 terminology), alarming. Control Modules execute
basic control and minimal coordination control. They per-
form no procedural control functions. The most common
method of programming basic control are any of the IEC
61131-3 programming languages, such as LD, FBD, IL, ST.
Control Modules usually make up the majority of control
system code, but they are also the mechanism for defining
significant amounts of reusable code [15].

Typically, at least two state machines are introduced for a
Control Module, one for the state of the device itself (e.g.,
on, off, fail), and a second for the mode (e.g., manual and
automatic). Normal operation of the Control Module should
be commanded from an equipment module (the equipment
oriented element right above Control Module in the ISA88
physical model); however, a Control Module may also be
controlled manually. Thus, the Control Module may be in
one of two modes – automatic or manual.

The ISA88 standards provide the models, but do not
prescribe how these models should be coded. After the
standard was released, many engineers applied the standards
in ways that the original authors had not considered. To
address this problem, the ISA88 models have been extended
with the so-called S88 design patterns [15]. These patterns
are not normative, but they are effectively applied in multiple
industries. The design patterns have been applied in almost
every kind of batch, discrete, and continuous manufacturing
applications.

C. OPC Unified Architecture (IEC 62541)

Reusable software components made their entry in au-
tomation technology and replaced monolithic, customized
software applications. These components are preferably con-
nected by standardized interfaces. In the mid-1990s, the
OPC Foundation was established with the goal to develop
a standard for accessing real-time data under Windows
operating systems, based on Microsoft’s DCOM technology.

OPC has become the de facto standard for industrial inte-
gration and process information sharing [17]. By now, over
20,000 products are offered by more than 3,500 vendors.
Millions of OPC based products are used in production
and process industry, in building automation, and many
other industries around the world [18]. However, in the
period when Internet based systems were introduced, the
DCOM technology resulted in limitations. To challenge
these limitations, and truly support Web-enabled automation
systems, a new standard family has recently been released:
The OPC Unified Architecture.

Web-based technology is the key to taking interoperability
to a new level. Web Services (WS), are totally platform inde-
pendent – they can be implemented using any programming
language and run on any hardware platform or operating
system. Components can be flexibly arranged into applica-
tions and collaborate over the Internet as well as corporate
intranets. OPC UA is considered one of the most promising
incarnations of WS technology for automation. Its design
takes into account that industrial communication differs from
regular IT communication: embedded automation devices
such as PLCs provide another environment for Web-based
communication than standard PCs.

The concepts of OPC UA include enabling Version Trans-
parency in a system with a high diversity of components.
OPC UA complements the existing OPC industrial standard
by adding two fundamental components: different transport
mechanisms and unified data modeling [19]. Scalability, high
availability, and Internet capability open up many possibil-
ities for new cost-saving automation concepts. Alternative
platforms, including typical embedded (systems) operating
systems, can be accessed directly, eliminating the need for
an intermediate Windows PC to run the OPC Server.

For this paper, the most important aspects of OPC UA
are the parts Address Space and Information Modeling

139

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3: Data Encapsulation

of the OPC UA specification [6]. Indeed, these models
include interesting concepts on converting our IEC 61131-3
based ISA88 Control Module to an evolvable black box
module, accessible by an OPC UA-based interface [20],
complying with the principles of Normalized Systems. This
enables the use of automation control building blocks over
a standardized network, even the Internet. As a result, PLC
projects, which are typically intra-process, can become
inter-process with a higher potential of production system
integration.

IV. EVOLVABLE CONTROL MODULES

A. Design concept

The Normalized Systems theory defines five
encapsulations of software entities. These encapsulations
are defined in a fundamental way, and further worked
out in the form of design patterns. These design patterns
are exemplified in the background technology of the Java
programming language [3]. We propose an interpretation
of the fundamental encapsulations for the IEC 61131-3
programming environment. When we base the design of
a Control Module on the Normalized Systems theory,
we propose 3 building components of a Control Module.
In this paper, we focus on Data Encapsulation, Action
Encapsulation, and Connection Encapsulation. The latter is
a special case of Action Encapsulation:

• Data Encapsulation: The composition of software
entities, i.e., encapsulating all tags of a larger building
block into a single data element, implies that only one
(complex) parameter shall be passed to and returned
from this building block. Note that in an IEC 61131-3
program, the use of structs can tackle the problem of

Figure 4: Action Encapsulation

adding extra parameters. By extending the struct, all
parts of the struct, old and new fields, remain visible
and accessible by every entity. We apply this concept
to the core module of this paper, an ISA88 Control
Module. Inside the borders of an IEC 61131-3 project,
this leads to a “struct” for the whole production control
device, containing smaller “substructs” for every action
or task in that device. There is no straightforward
concept of data hiding available in IEC 61131-3,
so we cannot hide the new fields in such a struct
for older entities. However, this is not causing data
type conflicts, because in IEC 61131-3 no runtime
construction of instances is supported, so all data
instances of this complex parameter have the same
type structure. On the inter-process level, different
type instances are possible, but we can use data hiding
based on OPC UA, where an interface is made for,
e.g., SCADA or MES software, which can run on
several technologies or platforms (inter-process). We
define the entire parameter, main struct and substructs
together, as a Data Element (Figure 3).

• Action Encapsulation: the composition of software
entities to encapsulate all Action Entities into a single
ISA88 Control Module implies that the core action
(state machine of the Control Module) shall only
contain a single functional task, not multiple tasks.
In concept, we consider one core task, surrounded by
supporting tasks (Figure 4). Arguments and parameters
of the larger building block (ISA88 Control Module)
should be an aggregation of all encapsulated Data
Entities: the single complex datastruct or Data Element
(Figure 3). We define the larger building block,

140

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5: Connection Encapsulation

encapsulating the core Action Entity together with
supporting Action Entities as an Action Element.

• Connection Encapsulation: Typically, three actors
are interacting with this Action Element as an
implementation of an ISA88 Control Module: An
Equipment Module (automatic mode, recipe based
control interface), the operator (manual mode, low
level HMI: Human Machine Interface) and the
process equipment hardware (e.g., a motor, valve
or instrumentation device). Each of these actors is
considered to represent an external technology, in
possible new versions or even alternative technologies
over time. The (supporting) Action Entities of
the Control Modules, which are handling the
connection of these actors with the core action, are
defined as Connection Entities. In case of multiple
versions of this special kind of Action Entities, every
connection is an encapsulation of several versions or
alternative technologies. We define such a Connection
Encapsulation as a Connection Element (Figure 5).
This encapsulation implies that the corresponding Data
Element has a subsubstruct for each Connection Entity
related to the substruct of the Connection Element.

The study of Flow Elements and Trigger Elements is
outside the scope of this paper. Remember that IEC 61131-3
Programs are triggered by the PLC system. Consequently,
Trigger Elements are integrated in the configuration part
of the IEC 61131-3 environment. Following the ISA88
modeling rules, Control Modules should not contain
procedures, so Flow Elements are not applicable in an
ISA88 Control Module.

B. Anticipated Changes

In the design of evolvable Control Modules, we want to
create a module which is stable with respect to a defined set
of anticipated changes. We distinguish high-level changes
and elementary changes. A lot of engineers know only
the high-level changes, which are either real-life changes
or changes with respect to implementation related aspects.
These changes reflect additional functional requirements,
which can typically be found in requirements documents
or new customer requests. The elementary changes are
related to software primitives, and formulated in terms of
software constructs. One additional functional requirement
corresponds to at least one elementary change, but, more
probably, several elementary changes. First, we discuss the
elementary anticipated changes of software primitives, and
second, we discuss how real-life changes can be translated
into these elementary changes. The elementary anticipated
changes are:

• A new version of a data entity
• An additional data entity
• A new version of an action entity
• An additional action entity
Remember we make an aggregation of several data tags

into an IEC 61131-3 struct, with a substruct for every Data
Entity corresponding with an Action Entity. Extending a
substruct with one or more tags corresponds with the change
“A new version of a data entity”; adding a new substruct
corresponds to the change “An additional data entity”. The
core task of a Control Module is a hardware device driver.
This core task is surrounded by supporting tasks, like
manual/automatic control, simulation, Permissives, alarm.
The introduction of a new surrounding task corresponds with
the change “An additional Action Entity”. A change of the
functionality of a task corresponds with the change “A new
version of an Action Entity”.

An experienced programmer should be able to trans-
form real-life changes into changes of software primitives.
However, in a team where inexperienced engineers do the
coding, a “change architect” should fulfill this task. The
systematic translation of high-level requirements into the
more elementary form is outside the scope of this paper,
but we do provide some examples in Section V.

C. Managing action versions

To comply with the third theorem of Normalized Systems,
Action Version Transparency, we distinguish three cases:
Transparent Coding, Wrapping Functionality and Wrapping
External Technologies. Each of them is another approach,
but provides a similar result to ‘the outside’.

1) Transparent Coding: Since Normalized Systems
require a high granularity, it is not unexpected that
the individual (small and straightforward) modules or

141

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

subroutines end up to be a simple piece of code, on
which the programmer has a clear overview. In such cases,
the programmer can preview the effect of a functional
change on the previous version(s). If the change is not
contradictory with one of the previous versions, it might
be possible to apply Transparent Coding. This means the
new functionality can just remain in the module without
affecting the original code, even if a calling entity is not
aware of the new functionality. We provide some examples
in Section V.

2) Wrapping Functionality: There will be lots of cases
where Transparent Coding is not possible, because the code
is too complex for the programmer to have a reliable
overview, or if the new functionality is contradictory with
one or more of the previous versions. To exhibit Action
Version Transparency, the different versions can be wrapped.
The calling action has to inform the called action which
version should be used, by way of a version tag. In addition,
following the ‘Separation of States’ principle, the called
action has to inform the calling action whether the (type
version of the) instance of the called action is recent enough
to perform the requested action version.

An Action Entity which is designed according to the
concept of Wrapping Functionality is aggregating all the
versions as separate Action Entities, and is therefore called
an Action Element. Each of the nested Action Entities
contains a version of the core functionality. Following the
‘Separation of Concerns’ principle, the wrapping Action
Entity (Action Element) should not contain any core
functionality, but is limited to wrapping the versions as a
kind of supporting task.

3) Wrapping External Technologies: It is very unlikely
that an external technology complies with the Normalized
Systems theorems. On the contrary, Lehman’s Law of in-
creasing complexity probably applies in this external tech-
nology. Consequently, we assume that lots of combinatorial
effects and unbounded impacts are generated in case of any
change in this external technology. We do not want to allow
these effects and impacts to penetrate into our stable system.
To isolate these effects, we use the concept of Connection
Encapsulation. A Connection Entity is an Action Entity
dedicated to doing nothing but mapping requests from an
internal action to an external technology, and mapping the
responses of the external technology to the calling internal
action.

When there is a change in the external technology, this
change might have effect on our Connection Entity. If it
is a small update or hot fix, the Connection Entity could
handle this change by way of Transparent Coding, but in
general, the Connection Entity will remain dedicated to the
version of the external technology that it was developed
for. A new version of the external technology leads to

Figure 6: Actors on the Control Module [20]

the introduction of a new Connection Entity. An Action
Entity, which is representing the core functionality of the
external technology, has the task to wrap the different
Connection Entities. This wrapping Action Entity is defined
as a Connection Element. Again, following the ‘Separation
of Concerns’ principle, the functionality of the wrapping
entity should be limited to mapping requests from an internal
action to a specific Connection Entity, and mapping the
responses of the specific Connection Entity to the calling
internal action. Every Connection Entity, which is part of
the wrapped versions, should have a version tag of the
instance of the external technology it is connected to. The
calling internal action should inform the Connection Element
(wrapping action) about which Connection Entity or external
technology version is desired by way of a version tag.
The Connection Element should inform the calling action
whether the requested version is available.

With the concept of Wrapping External Technologies,
the separation of versions is done by wrapping Connection
Entities, each representing a version of the external
technology. This concept can be easily extended with the
introduction of Connection Entities, representing alternative
external technologies. Every new version of an alternative
external technology leads to the introduction of a new
Connection Entity.

D. Evolvable Control Module

In this section we introduce a Control Module for a motor.
We aim at making this motor control software module as
generic as possible. Instead of introducing new formalisms,
we based our proof of principle on existing standards. For
the modeling, we used concepts of ISA88 (IEC 61512),
for interfacing, we used OPC UA (IEC 62541), and for
coding we used IEC 61131-3. More specifically, we rely on
the S88 design patterns [15] (derived from ISA88) because

142

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7: Example of a motor state model [1]

these patterns can be used not only in batch control, but
also for discrete and continuous manufacturing. None of
these standards contains prescriptive suggestions on how
the internal code of a Control Module should be structured.
We introduce a granular structure following the theorems
of Normalized Systems. Every task (action), which must be
executed by the Control Module, is coded in a separated
Function Block.

In the most elementary form Control Modules are device
drivers, but they provide extra functions. In our proof of
principle we integrated the functionality manual/automatic
mode and alarming. We kept the functionalities ‘Interlock-
ing’ and ‘simulation’ as possible ‘future changes’, since it
should be able to add them without causing combinatorial
effects.

The proposed design of an evolvable Control Module
contains one Data Element and one Action Element, which
can include several Connection Elements. These Elements
are implementations of Data, Action and Connection
Encapsulation.

1) (One) Data Element: To make sure the interface
of an action will not be affected in case of adding an
additional tag or Data Entity, we work with one single
struct and define this struct as a Data Element (Figure 3).
The Data Element is a struct, which contains a substruct
for every Data Entity.

2) (One) Action Element: The Action Element is a
Function Block, which contains other Function Blocks,
one for each Action Entity. The Action Element contains
one core Action Entity, surrounded by supporting Action
Entities. The tags controlled by each Action Entity belong to
the corresponding substruct of the Data Element (Figure 4).
An Action Entity can read all tags of the other substructs,
but can only write in its own substruct (Data Entity).

3) Connection Elements: A Connection Element
corresponds with a special kind of Action Entity in the
sense that the change driver is an external technology,

Figure 8: The Data Element

or, more generally, the change driver is coming from the
outside of the Control Module. Typically, we have three
actors on the Control Modules: the operator (low level
HMI), the Equipment Module, which owns the Control
Module, and a Process Hardware Device (Figure 6).
Following the ‘Separation of Concerns’ principle, each
connection has to be handled with a separate software
module. If the device hardware has several versions, a
Connection Entity is needed for every version (Figure 5).

In the following, we specify the software entities which
represent the content of the Elements. We used the design
pattern shown in Figure 7. This state machine is very
simple. When the control system powers on, the motor
enters in the ‘OFF’ state. It can be started and stopped via
the ‘On’ and ‘Off’ commands. Hardware failures can cause
the motor to go to the ‘FAILED’ state, from where a ‘Reset’
command is required to return to the ‘OFF’ state. The
concept of this ‘FAILED’ state brings us a very important
benefit: process safety. Besides, it forms the base for failure
notification [15]. This functionality is implemented in a
Function Block we call ‘CoreStateAction’. This Function
Block has only one parameter we call ‘Device’. The
datatype of this parameter is called ‘DeviceDataType’.

4) Data Entities:

The ‘DeviceDataType’ is a struct containing 6 substructs
(Figure 8). Four of them include information coming from
‘the outside’:

• Man: Manual commands. Contains the tags ‘On’ and
‘Off’, which allow the operator to start and stop the
motor. Additionally, this substruct contains the tag
‘Reset’ to allow the operator to bring the status of the
Control Module back to the initial state after a failure.

• Auto: Automatic commands. Contains the tags ‘On’
and ‘Off’, which allow an ISA88 Equipment Phase to
start and stop the motor in automatic mode. In this

143

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9: The Action Entity ”ModeAction”

version, we choose that in Automatic Mode the reset
functionality can not be accessed.

• Mode: The mode of the Control Module. Contains
the tags ‘ManMode’ and ‘AutoMode’, which indicate
the mode of the Control Module. Additionally, this
substruct contains the tags ‘ToMan’ and ‘ToAuto’ to
allow an entity from ‘the outside’ to switch the Mode
between Manual and Automatic.

• Hardware: The Hardware tags. First, this substruct
contains the tag ‘Qout’, which can be linked with a
PLC output address to electrically control starting and
stopping of the motor. Second, this substruct contains
the tag ‘FeedBack’, which can be linked with a PLC
input address to check whether the motor is physically
running or not. Third, this substruct contains a tag
‘Fault’, which assumes the value ‘TRUE’ if the output
is not corresponding with the feedback of the motor.

A fifth substruct ‘State’ contains the state data of the
core state machine: ‘On’, ‘Off’ and ‘Failed’. The transition
tags ‘ToOn’, ‘ToOff’ and ‘Reset’ are placed in the sixth
substruct ‘Transitions’. These tags contain the results
(output) of an Action Entity, which decides whether the
operator or the Equipment Module has control (based on
the mode).

5) Action Entities:

Our evolvable Control Module contains four Action
Entities:

• ModeAction: Mode action (Figure 9). This is a state
machine, which maintains the mode. Mode commands
switch between manual mode and automatic mode. The
inputs of this action are the mode commands of the
substruct ‘Mode’. The outputs of this action are both
mode states of the same substruct.

• TransAction: Transition action (Figure 10). The inputs

Figure 10: The Action Entity ”TransAction”

of this action are all requests of both automatic control
and manual control entities, available in the substructs
‘Auto’ and ‘Man’, respectively. The outputs of this
action are the tags in the substruct ‘Transitions’.

• StateAction: Core state machine action (Figure 7).
This is the state machine, which maintains the state
of the Control Module. The inputs of this action are
the transitions tags of the substruct ‘Transitions’. The
outputs of this action are the state tags of the substruct
‘State’.

• HardwareAction: The hardware action (Figure 11). The
inputs of this action are the states of the substruct
‘State’, and the input ‘FeedBack’ of the substruct
‘Hardware’. The outputs are the tags of the substruct
‘Hardware’.

Please note that the entity which is performing manual
commands (typically the low level HMI), must check
the tags of the mode state machine to check whether the
manual commands will be accepted. In automatic mode,
the manual commands will be ignored. Similarly, the
ISA88 Equipment Module (automatic mode entity) must
check that automatic mode is active before sending requests.

6) Connection Entities:

In fact, the action ‘HardwareAction’ is a Connection
Entity, which connects the control software (with the core
state machine as its central task) of the Control Module
to physical production process hardware. Remember that
a Connection Entity is a special case of an Action Entity.
Indeed, in the first version of our proof of principle it maps
the ‘On’ state of the core state machine to the hardware
output ‘Qout’. In addition, it checks if the value of ‘Qout’
corresponds with the input value ‘FeedBack’. If there is
a discrepancy, it sets the tag ‘Fault’ to inform the core
state machine action that the hardware is not responding as
expected.

In a second version, we connected a bidirectional motor
to the Control Module. Consequently, we added a tag

144

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11: The Action Entity “HardwareAction”

‘Qreverse’ to the substruct ‘Hardware’. The Connection
Entity sets this ‘Qreverse’ tag in case the core state machine
action requests to run the motor in reverse direction. As a
result, when the core state action requests the motor to run
in the original direction, only the tag ‘Qout’ is set. When
the core state action requests the motor to run in the reverse
direction, both the tags ‘Qout’ and ‘Qreverse’ are set. Since
the way of setting the tag ‘Qout’ is not changed, we could
apply Transparent Coding. Instances of the Control Module
which are connected to a unidirectional motor will just start
and stop the motor and neglect the tag ‘Qreverse’ (which
is initialized to the value ‘FALSE’).

In a third version, we have a bidirectional motor, but
it is controlled differently. Instead of having a tag which
controls whether the motor should run or not and another
tag indicating the direction, we have two tags controlling
a direction each. If one of them is TRUE, the other must
be FALSE to provide an unambiguous command to the
device. Obviously, since the interface to the device is
changed, Transparent Coding is not possible. So for this
third version, we used the wrapping concept. We added
a tag ‘Version’ to the substruct ‘Hardware’. The code of
the action ‘HardwareAction’ is moved to a new module
called ‘HardwareActionV0’. The newly introduced code
in the action ‘HardwareAction’ is a selection, associated
with the version tag. If the version tag has the value ‘0’,
the request to the action ‘HardwareAction’ is forwarded
to the action ‘HardwareActionV0’. Besides, the Action
Entity ‘HardwareAction’ could more appropriately be
called ‘Connection Element’ now, because it is only
selecting versions and mapping. Another new Function
Block ‘HardwareActionV1’ contains the newly introduced
functionality of the new motor. HardwareActionV0 and
HardwareActionV1 are called Connection Entities.

To connect the automatic procedure (typically an ISA88
Equipment Phase) to our Control Module, no code is
needed. Indeed, such a Phase (Figure 2) is typically coded
in an ISA88 Equipment Module by way of the IEC 61131-3
language SFC. Since the Equipment Module, which has
control over our Control Module, is coded into the same
PLC as the Control Modules it owns, it only needs access
to the instance of the Data Element ‘Device’.

Besides, even for manual control no IEC 61131-3
connection code is needed. Similarly, the low level
HMI just needs access to the Data Element ‘Device’.
However, since the low level HMI is located in an external
technology, it would lead to the coding of a Connection
Entity or Element. Thanks to the OPC UA IEC 61131-3
companion specification [21], it is expected that we will
not need to code, but only configure the Connection Entity.
Based on this OPC UA companion specification, software
constructs of IEC 61131-3 can be mapped to OPC UA.
Unfortunately, this companion specification is rather recent,
and we could not find any commercial products supporting
this standard at the moment of submitting this paper.

V. CHANGES AND EVALUATION

A way to test evolvability is adding changes and
evaluating the impact of these changes. In general, we start
with a first version. Then we maintain one or more running
instances of the Control Module with the initially expected
behavior. Second, we consider the addition of a change,
and consequently a possible update of the datatype, existing
actions or introduction of a new action. Finally, we make
a new instance, check the new functionality and the initial
expected behavior of the older instances as well.

We provide some examples for the transformation of
high-level changes to the anticipated changes of software
primitives.

• We consider the situation that manual operations could
harm automatic procedures. For instance, stopping a
motor manually could confuse an algorithm if it is
happening during a dosing procedure. To prevent this,
we add the feature “manual lock”. This means, we still
support manual mode, but we disable manual mode dur-
ing the period a software entity such as an equipment
module requires the non-interruptible (exclusive) use of
the Control Module.
In terms of elementary changes, this requires an addi-
tional version of a Data Entity, more specifically the
addition of a tag ‘ManLock’ in the substruct (Data
Entity) dedicated to receiving automatic commands.
Additionally, a new version of an Action Entity is
introduced. The action dedicated to select manual or
automatic mode adds the ‘ManLock’ tag as a constraint
to switch over to manual mode.

• We consider the situation of a motor instance where the
motor must be able to run in two directions (while the
functionality of earlier unidirectional motor instances
should remain).
In terms of elementary changes, this requires an ad-
ditional version of three Data Entities. First, the addi-
tion of a tag ‘Reverse’ in the substruct (Data Entity)
dedicated to hardware control. Second, the addition

145

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of a tag ‘ManReverseCmd’ in the substruct dedicated
to receiving manual commands. Third, the addition
of a tag ‘AutoReverseCmd’ in the substruct (Data
Entity) dedicated to receiving automatic commands.
Moreover, the action which is processing the result
(aggregation) of the requests of both manual and au-
tomatic commands needs a new version to provide a
command ‘ReverseCmd’ for the core state machine
action. Finally, the core state machine Action Entity
needs a new version to add the new state ‘ReverseState’,
accompanied by transitions from and to this new state.

• We consider the situation where one wants to introduce
a simulation mode (for testing purposes), to neglect
the Fault transition if no hardware is connected.
In terms of elementary changes we need three changes.
First, an additional Data Entity or substruct which
can be used to store the state of the simulation
mode. Second, an additional Action Entity to process
the newly introduced state machine, and third, a
new version of the core state machine Action Entity
to neglect the Fault transition when in simulation mode.

Remember that manual operations could affect automatic
procedures. In terms of elementary anticipated changes, this
requires the addition of the tag ‘ManLock’ in the substruct
‘Mode’. The action ‘ModeAction’ adds the ’ManLock’ tag
as a constraint to switch over to manual mode. We applied
the concept of Transparent Coding. In the IEC 61131-3 data
type declaration part of this additional tag in the substruct,
we explicitly declared the initial value to be FALSE. We
did not remove or change the calls of instances which do
not need this feature. For older calls the behaviour did not
change, and for the new instances we can indeed prevent
the mode going to automatic.

We consider again the situation of a motor instance
(as above) which must be able to run in two directions.
In the previous section we discussed new versions of
the Connection Entity ‘HardwareAction’, updated to the
Connection Element ‘HardwareAction’, which is containing
the two Connection Entities ‘HardwareActionV0’ and
‘HardwareActionV1’. The elementary changes with
regard to this Connection Element can be done without
affecting the other actions or Data Entities. However,
this does not mean that the related high-level changes
or real-life requirements are met. Remember that one
additional functional requirement corresponds typically to
more elementary changes. For our two directions motor
instance, a change of the core state machine was necessary,
in addition to the elementary changes needed for the
Connection Element. First, in the Data Entity (substruct)
‘State’, an additional state ‘Reverse’ was introduced.
Second, in the data entity (substruct) ‘Transitions’, the tag

Figure 12: Core state machine bidirectional motor

‘Reverse’ was added. Third, the functionality of the Action
Entity ‘StateAction’ was extended by way of Transparent
Coding. Transparent Coding for a state machine means that
no states can be removed, no states can be changed, and no
transitions can be changed or removed. In other words, the
allowed changes are only additions of states and transitions
(Version Transparency principles). We end up with the new
version of the state machine depicted in Figure 12.

We provide two more examples of Transparent Coding.
Remember the manual lock feature. We can code the initial-
ization of the new tag ‘ManLock’ to FALSE. By assuming
this default value, the code of the change can be made in
a way that this default value guarantees the behavior of the
previous version. More precisely, if the value is FALSE,
the manual lock functionality will not apply until a newer
version instance is setting it to TRUE, which is not going to
happen if an older version is used on this specific instance.

Remember the motor instance, where a new version can
let the motor run in the reverse direction. Similarly, if the
default version of the tag ‘Reverse’ is initialized to FALSE,
the motor will run in the original direction until a newer
version instance is setting the reverse tag to TRUE, which
again is not going to happen if an older version is used on
this specific instance.

VI. CONCLUSION AND FUTURE WORK

Evolvability of software systems is important for IT
systems, but also a relevant quality for industrial automation
systems. IEC 61131 Function Blocks of automation systems

146

International Journal on Advances in Internet Technology, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/internet_technology/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are programmed close to the processor capabilities. For
example, there is a similarity between the IEC 61131-3
language Instruction List (IL) and assembly. The key point
of Normalized Systems is a high granularity of software
modules with a structure which is strictly disciplined to
the related theorems. As a consequence, making a proof
of principle close to the processor is a very informative
exercise to concretize the Normalized Systems theory. In
addition, this approach can be of great value for improving
the quality of industrial automation software projects.

It must be stated that implementing these concepts was
highly facilitated by the use of existing industrial standards.
They provide us with methods to develop the macro-design
of software modules, while the Normalized Systems theory
provides guidelines for the micro-design of the actions
and data structures encapsulated in these modules. Adding
functionality or even adding an action to a (macro) building
block, in our case the Control Module, can be done with
a limited impact (micro manageable) towards other (macro)
entities (bounded impact). To define the most basic actions
(tasks) and data structures, the identification of the change
drivers of the concerned entity is essential. This confirms the
first theorem for software stability, Separation of Concerns.

Our future work will be focused on other (macro) ele-
ments of ISA88, which contain different types of control. A
Control Module contains mainly basic control, together with
limited coordination control (the mode). We will extend this
study to elements with more advanced coordination control
code and procedural control, again designed to comply with
the Normalized Systems theory.

Moreover, future work will also be focused on interfaces.
Since OPC UA is very generic, we wonder if constraints
must be added to the standard to let data communication
be compliant with the second theorem of software stability,
Data Version Transparency. It will be interesting to inves-
tigate whether both currently existing OPC UA transport
types, UA binary and UA XML, can be handled in a Data
Transparent way.

REFERENCES

[1] van der Linden D., Mannaert H., and de Laet J., “Towards
evolvable Control Modules in an industrial production pro-
cess”, ICIW 2011, 6th International Conference on Internet
and Web Applications and Services, pp. 112-117, 2011.

[2] International Electrotechnical Commission, “Programmable
controllers - part 3: Programming languages”, IEC 61131-3,
2003.

[3] Mannaert H. and Verelst J., “Normalized Systems Re-creating
Information Technology Based on Laws for Software Evolv-
ability”, Koppa, 2009.

[4] McIlroy M.D., “Mass produced software components”, NATO
Conference on Software Engineering, Scientific Affairs Divi-
sion, 1968.

[5] van Nuffel D., Mannaert H., de Backer C., and Verelst J.,
“Towards a deterministic business process modelling method
based on normalized theory”, International Journal on Ad-
vances in Software, 3:1/2, pp. 54-69, 2010.

[6] OPC Foundation. “OPC Unified Architecture”,
www.opcfoundation.org.

[7] The Internation Society of Automation, “Batch Control Part
1: ”Models and Terminology”, ANSI/ISA-88.01, 1995.

[8] Mannaert H., Verelst J., and Ven K., “Towards evolvable
software architectures based on systems theoretic stability”,
Software, Practice and Experience, vol. 41, 2011.

[9] Kuhl I. and Fay A., “A Middleware for Software Evolution
of Automation Software”, IEEE Conference on Emerging
Technologies and Factory Automation, 2011.

[10] Eick S.G., Graves T.L., Karr A.F., Marron J., and Mockus A.,
“Does code decay? Assessing the evidence from change man-
agement data”, IEEE Transactions on Software Engineering,
vol 32(5), pp. 315-329, 2006.

[11] Lehman M.M., “Programs, life cycles, and laws of software
evolution”, Proceedings of the IEEE, vol 68, pp. 1060-1076,
1980.

[12] Mannaert H., Verelst J., and Ven K., “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability”, Science of Computer
Programming, 2010.

[13] van der Linden D. and Mannaert H., “In Search of Rules for
Evolvable and Stateful run-time Deployment of Controllers in
Industrial Automation Systems”, ICONS 2012, 7th Interna-
tional Conference on Systems, accepted for publication, 2012.

[14] Dijkstra E., “Go to statement considered harmful”, Commu-
nications of the ACM 11(3), pp 147-148, 1968.

[15] Brandl D., “Design patterns for flexible manufacturing”, ISA,
2007.

[16] van der Linden D., “Implementing ISA S88 for a discrete
process with the Bottom-Up approach”, AGH - Automatyka
12/1, pp. 67-76, 2008.

[17] Hannelius T., Salmenpera M., and Kuikka S., “Roadmap to
adopting OPC UA”, 6thIEEE International Conference on
Industrial Informatics, pp. 756-761, 2008.

[18] Lange J., Iwanitz F., and Burke T.J., “OPC: von Data Access
bis Unified Architecture”, VDE-Verlag, 2010.

[19] Mahnke W., Leitner S., and Damm M., “OPC Unified Archi-
tecture”, Springer, 2009.

[20] van der Linden D., Mannaert H., Kastner W., Vanderputten
V., Peremans H., and Verelst J., “An OPC UA Interface for
an Evolvable ISA88 Control Module”, IEEE Conference on
Emerging Technologies and Factory Automation, 2011.

[21] PLCopen & OPC Foundation, “OPC UA Information Model
for IEC 61131-3 1.00 Companion Specification”, 2010.

www.iariajournals.org

International Journal On Advances in Intelligent Systems

ICAS, ACHI, ICCGI, UBICOMM, ADVCOMP, CENTRIC, GEOProcessing, SEMAPRO,
BIOSYSCOM, BIOINFO, BIOTECHNO, FUTURE COMPUTING, SERVICE COMPUTATION,
COGNITIVE, ADAPTIVE, CONTENT, PATTERNS, CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2679

International Journal On Advances in Internet Technology

ICDS, ICIW, CTRQ, UBICOMM, ICSNC, AFIN, INTERNET, AP2PS, EMERGING

issn: 1942-2652

International Journal On Advances in Life Sciences

eTELEMED, eKNOW, eL&mL, BIODIV, BIOENVIRONMENT, BIOGREEN, BIOSYSCOM,
BIOINFO, BIOTECHNO

issn: 1942-2660

International Journal On Advances in Networks and Services

ICN, ICNS, ICIW, ICWMC, SENSORCOMM, MESH, CENTRIC, MMEDIA, SERVICE
COMPUTATION

issn: 1942-2644

International Journal On Advances in Security

ICQNM, SECURWARE, MESH, DEPEND, INTERNET, CYBERLAWS

issn: 1942-2636

International Journal On Advances in Software

ICSEA, ICCGI, ADVCOMP, GEOProcessing, DBKDA, INTENSIVE, VALID, SIMUL, FUTURE
COMPUTING, SERVICE COMPUTATION, COGNITIVE, ADAPTIVE, CONTENT, PATTERNS,
CLOUD COMPUTING, COMPUTATION TOOLS

issn: 1942-2628

International Journal On Advances in Systems and Measurements

ICQNM, ICONS, ICIMP, SENSORCOMM, CENICS, VALID, SIMUL

issn: 1942-261x

International Journal On Advances in Telecommunications

AICT, ICDT, ICWMC, ICSNC, CTRQ, SPACOMM, MMEDIA

issn: 1942-2601

