

The International Journal on Advances in Internet Technology is published by IARIA.

ISSN: 1942-2652

journals site: http://www.iariajournals.org

contact: petre@iaria.org

Responsibility for the contents rests upon the authors and not upon IARIA, nor on IARIA volunteers,

staff, or contractors.

IARIA is the owner of the publication and of editorial aspects. IARIA reserves the right to update the

content for quality improvements.

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy or print,

providing the reference is mentioned and that the resulting material is made available at no cost.

Reference should mention:

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 12, no. 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

The copyright for each included paper belongs to the authors. Republishing of same material, by authors

or persons or organizations, is not allowed. Reprint rights can be granted by IARIA or by the authors, and

must include proper reference.

Reference to an article in the journal is as follows:

<Author list>, “<Article title>”

International Journal on Advances in Internet Technology, issn 1942-2652

vol. 12, no. 1 & 2, year 2019, <start page>:<end page> , http://www.iariajournals.org/internet_technology/

IARIA journals are made available for free, proving the appropriate references are made when their

content is used.

Sponsored by IARIA

www.iaria.org

Copyright © 2019 IARIA

International Journal on Advances in Internet Technology

Volume 12, Number 1 & 2, 2019

Editors-in-Chief

Mariusz Głąbowski, Poznan University of Technology, Poland

Editorial Advisory Board

Eugen Borcoci, University "Politehnica"of Bucharest, Romania
Lasse Berntzen, University College of Southeast, Norway
Michael D. Logothetis, University of Patras, Greece
Sébastien Salva, University of Auvergne, France
Sathiamoorthy Manoharan, University of Auckland, New Zealand

Editorial Board

Jemal Abawajy, Deakin University, Australia
Chang-Jun Ahn, School of Engineering, Chiba University, Japan
Sultan Aljahdali, Taif University, Saudi Arabia
Shadi Aljawarneh, Isra University, Jordan
Giner Alor Hernández, Instituto Tecnológico de Orizaba, Mexico
Onur Alparslan, Osaka University, Japan
Feda Alshahwan, The University of Surrey, UK
Ioannis Anagnostopoulos, University of Central Greece - Lamia, Greece
M.Ali Aydin, Istanbul University, Turkey
Gilbert Babin, HEC Montréal, Canada
Faouzi Bader, CTTC, Spain
Kambiz Badie, Research Institute for ICT & University of Tehran, Iran
Ataul Bari, University of Western Ontario, Canada
Javier Barria, Imperial College London, UK
Shlomo Berkovsky, NICTA, Australia
Lasse Berntzen, University College of Southeast, Norway
Marco Block-Berlitz, Freie Universität Berlin, Germany
Christophe Bobda, University of Arkansas, USA
Alessandro Bogliolo, DiSBeF-STI University of Urbino, Italy
Thomas Michael Bohnert, Zurich University of Applied Sciences, Switzerland
Eugen Borcoci, University "Politehnica"of Bucharest, Romania
Luis Borges Gouveia, University Fernando Pessoa, Portugal
Fernando Boronat Seguí, Universidad Politecnica de Valencia, Spain
Mahmoud Boufaida, Mentouri University - Constantine, Algeria
Christos Bouras, University of Patras, Greece
Agnieszka Brachman, Institute of Informatics, Silesian University of Technology, Gliwice, Poland
Thierry Brouard, Université François Rabelais de Tours, France
Carlos T. Calafate, Universitat Politècnica de València, Spain
Christian Callegari, University of Pisa, Italy
Juan-Vicente Capella-Hernández, Universitat Politècnica de València, Spain
Miriam A. M. Capretz, The University of Western Ontario, Canada
Ajay Chakravarthy, University of Southampton IT Innovation Centre, UK
Chin-Chen Chang, Feng Chia University, Taiwan
Ruay-Shiung Chang, National Dong Hwa University, Taiwan
Tzung-Shi Chen, National University of Tainan, Taiwan

Xi Chen, University of Washington, USA
IlKwon Cho, National Information Society Agency, South Korea
Andrzej Chydzinski, Silesian University of Technology, Poland
Noël Crespi, Telecom SudParis, France
Antonio Cuadra-Sanchez, Indra, Spain
Javier Cubo, University of Malaga, Spain
Sagarmay Deb, Central Queensland University, Australia
Javier Del Ser, Tecnalia Research & Innovation, Spain
Philipe Devienne, LIFL - Université Lille 1 - CNRS, France
Kamil Dimililer, Near East Universiy, Cyprus

Martin Dobler, Vorarlberg University of Applied Sciences, Austria
Jean-Michel Dricot, Université Libre de Bruxelles, Belgium
Matthias Ehmann, Universität Bayreuth, Germany
Tarek El-Bawab, Jackson State University, USA
Nashwa Mamdouh El-Bendary, Arab Academy for Science, Technology, and Maritime Transport, Egypt
Mohamed Dafir El Kettani, ENSIAS - Université Mohammed V-Souissi, Morocco
Armando Ferro, University of the Basque Country (UPV/EHU), Spain
Anders Fongen, Norwegian Defence Research Establishment, Norway
Giancarlo Fortino, University of Calabria, Italy
Kary Främling, Aalto University, Finland
Steffen Fries, Siemens AG, Corporate Technology - Munich, Germany
Ivan Ganchev, University of Limerick, Ireland / University of Plovdiv “Paisii Hilendarski”, Bulgaria
Shang Gao, Zhongnan University of Economics and Law, China
Emiliano Garcia-Palacios, ECIT Institute at Queens University Belfast - Belfast, UK
Kamini Garg, University of Applied Sciences Southern Switzerland, Lugano, Switzerland
Rosario Giuseppe Garroppo, Dipartimento Ingegneria dell'informazione - Università di Pisa, Italy
Thierry Gayraud, LAAS-CNRS / Université de Toulouse / Université Paul Sabatier, France
Christos K. Georgiadis, University of Macedonia, Greece
Katja Gilly, Universidad Miguel Hernandez, Spain
Mariusz Głąbowski, Poznan University of Technology, Poland
Feliz Gouveia, Universidade Fernando Pessoa - Porto, Portugal
Kannan Govindan, Crash Avoidance Metrics Partnership (CAMP), USA
Bill Grosky, University of Michigan-Dearborn, USA
Jason Gu, Singapore University of Technology and Design, Singapore
Christophe Guéret, Vrije Universiteit Amsterdam, Nederlands
Frederic Guidec, IRISA-UBS, Université de Bretagne-Sud, France
Bin Guo, Northwestern Polytechnical University, China
Gerhard Hancke, Royal Holloway / University of London, UK
Arthur Herzog, Technische Universität Darmstadt, Germany
Rattikorn Hewett, Whitacre College of Engineering, Texas Tech University, USA
Quang Hieu Vu, EBTIC, Khalifa University, Arab Emirates
Hiroaki Higaki, Tokyo Denki University, Japan
Dong Ho Cho, Korea Advanced Institute of Science and Technology (KAIST), Korea
Anna Hristoskova, Ghent University - IBBT, Belgium
Ching-Hsien (Robert) Hsu, Chung Hua University, Taiwan
Chi Hung, Tsinghua University, China
Edward Hung, Hong Kong Polytechnic University, Hong Kong
Raj Jain, Washington University in St. Louis , USA
Edward Jaser, Princess Sumaya University for Technology - Amman, Jordan
Terje Jensen, Telenor Group Industrial Development / Norwegian University of Science and Technology, Norway
Yasushi Kambayashi, Nippon Institute of Technology, Japan
Georgios Kambourakis, University of the Aegean, Greece
Atsushi Kanai, Hosei University, Japan

Henrik Karstoft , Aarhus University, Denmark
Dimitrios Katsaros, University of Thessaly, Greece
Ayad ali Keshlaf, Newcastle University, UK
Reinhard Klemm, Avaya Labs Research, USA
Samad Kolahi, Unitec Institute Of Technology, New Zealand
Dmitry Korzun, Petrozavodsk State University, Russia / Aalto University, Finland
Slawomir Kuklinski, Warsaw University of Technology, Poland
Andrew Kusiak, The University of Iowa, USA
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Frédéric Le Mouël, University of Lyon, INSA Lyon / INRIA, France
Juong-Sik Lee, Nokia Research Center, USA
Wolfgang Leister, Norsk Regnesentral (Norwegian Computing Center), Norway
Clement Leung, Hong Kong Baptist University, Hong Kong
Longzhuang Li, Texas A&M University-Corpus Christi, USA
Yaohang Li, Old Dominion University, USA
Jong Chern Lim, University College Dublin, Ireland
Lu Liu, University of Derby, UK
Damon Shing-Min Liu, National Chung Cheng University, Taiwan
Michael D. Logothetis, University of Patras, Greece
Malamati Louta, University of Western Macedonia, Greece
Maode Ma, Nanyang Technological University, Singapore
Elsa María Macías López, University of Las Palmas de Gran Canaria, Spain
Olaf Maennel, Loughborough University, UK
Zoubir Mammeri, IRIT - Paul Sabatier University - Toulouse, France
Yong Man, KAIST (Korea advanced Institute of Science and Technology), South Korea
Sathiamoorthy Manoharan, University of Auckland, New Zealand
Chengying Mao, Jiangxi University of Finance and Economics, China
Brandeis H. Marshall, Purdue University, USA
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Shawn McKee, University of Michigan, USA
Stephanie Meerkamm, Siemens AG in Erlangen, Germany
Kalogiannakis Michail, University of Crete, Greece
Peter Mikulecky, University of Hradec Kralove, Czech Republic
Moeiz Miraoui, Université du Québec/École de Technologie Supérieure - Montréal, Canada
Shahab Mokarizadeh, Royal Institute of Technology (KTH) - Stockholm, Sweden
Mario Montagud Climent, Polytechnic University of Valencia (UPV), Spain
Stefano Montanelli, Università degli Studi di Milano, Italy
Julius Müller, TU- Berlin, Germany
Juan Pedro Muñoz-Gea, Universidad Politécnica de Cartagena, Spain
Krishna Murthy, Global IT Solutions at Quintiles - Raleigh, USA
Alex Ng, University of Ballarat, Australia
Christopher Nguyen, Intel Corp, USA
Petros Nicopolitidis, Aristotle University of Thessaloniki, Greece
Carlo Nocentini, Università degli Studi di Firenze, Italy
Federica Paganelli, CNIT - Unit of Research at the University of Florence, Italy
Carlos E. Palau, Universidad Politecnica de Valencia, Spain
Matteo Palmonari, University of Milan-Bicocca, Italy
Ignazio Passero, University of Salerno, Italy
Serena Pastore, INAF - Astronomical Observatory of Padova, Italy
Fredrik Paulsson, Umeå University, Sweden
Rubem Pereira, Liverpool John Moores University, UK
Yulia Ponomarchuk, Far Eastern State Transport University, Russia
Jari Porras, Lappeenranta University of Technology, Finland

Neeli R. Prasad, Aalborg University, Denmark
Drogkaris Prokopios, University of the Aegean, Greece
Emanuel Puschita, Technical University of Cluj-Napoca, Romania
Lucia Rapanotti, The Open University, UK
Gianluca Reali, Università degli Studi di Perugia, Italy
Jelena Revzina, Transport and Telecommunication Institute, Latvia
Karim Mohammed Rezaul, Glyndwr University, UK
Leon Reznik, Rochester Institute of Technology, USA
Simon Pietro Romano, University of Napoli Federico II, Italy
Michele Ruta, Technical University of Bari, Italy
Jorge Sá Silva, University of Coimbra, Portugal
Sébastien Salva, University of Auvergne, France
Ahmad Tajuddin Samsudin, Telekom Malaysia Research & Development, Malaysia
Josemaria Malgosa Sanahuja, Polytechnic University of Cartagena, Spain
Luis Enrique Sánchez Crespo, Sicaman Nuevas Tecnologías / University of Castilla-La Mancha, Spain
Paul Sant, University of Bedfordshire, UK
Brahmananda Sapkota, University of Twente, The Netherlands
Alberto Schaeffer-Filho, Lancaster University, UK
Peter Schartner, Klagenfurt University, System Security Group, Austria
Rainer Schmidt, Aalen University, Germany
Thomas C. Schmidt, HAW Hamburg, Germany
Zary Segall, Chair Professor, Royal Institute of Technology, Sweden
Dimitrios Serpanos, University of Patras and ISI/RC ATHENA, Greece
Jawwad A. Shamsi, FAST-National University of Computer and Emerging Sciences, Karachi, Pakistan
Michael Sheng, The University of Adelaide, Australia
Kazuhiko Shibuya, The Institute of Statistical Mathematics, Japan
Roman Y. Shtykh, Rakuten, Inc., Japan
Patrick Siarry, Université Paris 12 (LiSSi), France
Jose-Luis Sierra-Rodriguez, Complutense University of Madrid, Spain
Simone Silvestri, Sapienza University of Rome, Italy
Vasco N. G. J. Soares, Instituto de Telecomunicações / University of Beira Interior / Polytechnic Institute of Castelo
Branco, Portugal
Radosveta Sokullu, Ege University, Turkey
José Soler, Technical University of Denmark, Denmark
Victor J. Sosa-Sosa, CINVESTAV-Tamaulipas, Mexico
Dora Souliou, National Technical University of Athens, Greece
João Paulo Sousa, Instituto Politécnico de Bragança, Portugal
Kostas Stamos, Computer Technology Institute & Press "Diophantus" / Technological Educational Institute of
Patras, Greece
Cristian Stanciu, University Politehnica of Bucharest, Romania
Vladimir Stantchev, SRH University Berlin, Germany
Tim Strayer, Raytheon BBN Technologies, USA
Masashi Sugano, School of Knowledge and Information Systems, Osaka Prefecture University, Japan
Tae-Eung Sung, Korea Institute of Science and Technology Information (KISTI), Korea
Sayed Gholam Hassan Tabatabaei, Isfahan University of Technology, Iran
Yutaka Takahashi, Kyoto University, Japan
Yoshiaki Taniguchi, Kindai University, Japan
Nazif Cihan Tas, Siemens Corporation, Corporate Research and Technology, USA

Alessandro Testa, University of Naples "Federico II" / Institute of High Performance Computing and Networking
(ICAR) of National Research Council (CNR), Italy
Stephanie Teufel, University of Fribourg, Switzerland
Parimala Thulasiraman, University of Manitoba, Canada
Pierre Tiako, Langston University, USA

Orazio Tomarchio, Universita' di Catania, Italy
Dominique Vaufreydaz, INRIA and Pierre Mendès-France University, France
Krzysztof Walkowiak, Wroclaw University of Technology, Poland
MingXue Wang, Ericsson Ireland Research Lab, Ireland
Wenjing Wang, Blue Coat Systems, Inc., USA
Zhi-Hui Wang, School of Softeware, Dalian University of Technology, China
Matthias Wieland, Universität Stuttgart, Institute of Architecture of Application Systems (IAAS),Germany
Bernd E. Wolfinger, University of Hamburg, Germany
Chai Kiat Yeo, Nanyang Technological University, Singapore
Abdulrahman Yarali, Murray State University, USA
Mehmet Erkan Yüksel, Istanbul University, Turkey

International Journal on Advances in Internet Technology

Volume 12, Numbers 1 & 2, 2019

CONTENTS

pages: 1 - 11
Towards Service Level Guarantee within IoT Sensing Layer
Ahmad Khalil, LIB, University of Bourgogne Franche-Comté, France
Nader Mbarek, LIB, University of Bourgogne Franche-Comté, France
Olivier Togni, LIB, University of Bourgogne Franche-Comté, France

pages: 12 - 27
Improving the Effectiveness of Web Application Vulnerability Scanning
Marc Rennhard, ZHAW School of Engineering, Switzerland
Damiano Esposito, Consecom AG, Switzerland
Lukas Ruf, Consecom AG, Switzerland
Arno Wagner, Consecom AG, Switzerland

pages: 28 - 36
Applying Quality Requirements Framework to an IoT System and its Evaluation
Tsuyoshi Nakajima, Shibaura Institute of Technology, Japan
Toshihiro Komiyama, NEC Corporation, Japan

pages: 37 - 49
Comparative Evaluation of Database Read and Write Performance in an Internet of Things Context
Denis Arnst, University of Passau, Germany
Thomas Herpich, Institute of Information Systems at Hof University, Germany
Valentin Plenk, Institute of Information Systems at Hof University, Germany
Adrian Wöltche, Institute of Information Systems at Hof University, Germany

pages: 50 - 60
A Reliable IoT-Based Embedded Health Care System for Diabetic Patients
Zeyad A. Al-Odat, North Dakota State University, United States
Sudarshan K. Srinivasan, North Dakota State University, United States
Eman M. Al-Qtiemat, North Dakota State University, United States
Sana Shuja, COMSATS Institute of Information Technology, Pakistan

Towards Service Level Guarantee within IoT Sensing Layer

Ahmad Khalil, Nader Mbarek, Olivier Togni
LIB, University of Bourgogne Franche-Comté

Dijon – France

emails: Ahmad.Khalil@u-bourgogne.fr, Nader.Mbarek@u-bourgogne.fr, Olivier.Togni@u-bourgogne.fr

Abstract — Enabling service level guarantee within IoT

(Internet of Things) environments is an important and a

challenging task in order to enhance user experience while using

IoT applications. The corresponding user service level

expectations could be specified in a Service Level Agreement

(SLA) that we have to conclude with the IoT Service Provider

for each IoT service. As a consequence, several QoS (Quality of

Service) mechanisms must be deployed within the IoT

architecture layers (Sensing, Network, Cloud) to guarantee the

agreed on IoT service level. We present in this paper a new QoS

mechanism concerning the IoT Sensing layer. It is an adaptation

of the slotted Carrier-Sense Multiple Access with Collision

Avoidance (CSMA/CA) method used in the Media Access

Control (MAC) layer of the IEEE 802.15.4 standard. This

adaptation provides IoT smart objects with a differentiated

wireless access according to the QoS class of their generated

traffic in order to respect the requirements of the corresponding

IoT SLA. The proposed method ensures a service level

guarantee for a Low Rate Wireless Personal Area Network (LR-

WPAN) in an IoT environment. Our adaptation offers a

minimal delay for real time traffic along with higher Packet

Delivery Ratio (PDR) for all traffics comparing to the standard

slotted CSMA/CA. It consists in creating different Contention

Access Periods (CAP); each will be specific for a traffic type and

so for a specific QoS class. To do so, we propose firstly a QoS

based wireless access method to be used by the coordinator,

known as the gateway. Secondly, we propose an algorithm used

by the IoT smart objects. This method, called QBAIoT (QoS

Based Access for IoT environments), enables the coordinator to

configure different contention periods with a specific number of

slots. Consequently, the IoT objects of the same QoS class will

access the channel only during their respective contention

periods without collision with nodes belonging to other classes.

Keywords - IoT; Service Level; QoS; QBAIoT; Slotted

CSMA/CA; IoT Gateway; IoT objects.

I. INTRODUCTION

The Internet of Things (IoT) is currently an evidence in

our daily lives. This paper extends the work conducted in [1]
to show the importance of QoS guarantee in the IoT
environment. In fact, by 2020, more than 20 billion digital
and electronic devices will be connected resulting in an
average of 2 devices per human being on Earth [2]. Thus, the
impact of the IoT on human life will be important and should
improve the quality of life by changing how people interact
with connected objects and use IoT applications. The future
growth of IoT environments will lead to an advanced
technology usage enabling to facilitate the daily tasks of

humans. Therefore, the improvement of the corresponding
services is a major challenge within the IoT. In order to
expand the usage of the IoT environment, a better user
experience is expected. Consequently, QoS mechanisms
should be implemented within the IoT environment [3] and
especially the communication technologies used in the
sensing layer of the IoT architecture such as the IEEE
802.15.4 standard [4]. The latter specifies the physical (PHY)
and the Media Access Control (MAC) layers and provides an
important foundation for other standards. Indeed, IEEE
802.15.4 standard is used by 6LowPAN [5] and ZigBee [6]
for their lower layers implementation.

In this context, we specify QBAIoT as a novel QoS based
wireless access method for IoT environments. It is an
enhancement of the slotted Carrier-Sense Multiple Access
with Collision Avoidance (CSMA/CA) technique, used by
the IEEE 802.15.4 standard. The objective of QBAIoT is to
ensure a differentiation between traffics while using the
wireless channel of the IoT sensing layer. Thus, QBAIoT
allows serving different IoT generated traffics while
respecting the requirements of each traffic type (i.e., reduced
delay for Real Time traffic). In this paper, we aim to present
the design details of our proposed QoS based access method,
as well as the corresponding simulation results. The reminder
of the paper is organized as follows. We present in Section II
the state of the art concerning the IoT environment, as well
as the related technologies and we introduce the important
characteristics of the IEEE 802.15.4 standard. Section III
presents QoS motivations in the IoT, some related research
works along with a description of an IoT Service Level
Agreement (iSLA) achieved between an IoT Service
Provider (IoT-SP) and an IoT Client (IoT-C). Then, we
specify in Section IV our proposed method enabling QoS
based access for IoT environments. Section V presents a
detailed performance evaluation of our access method as well
as a comparison with the standard access method. Finally, we
conclude the paper in Section VI and present future works.

II. STATE OF THE ART

A. IoT environment

The important impact of the IoT on our society has led the
international organizations to present several definitions and
architectures and to create specific working and study groups
focusing on IoT environments. The International
Telecommunication Union - Telecommunication sector
(ITU-T) presented different recommendations for the IoT
such as Y.2060 [7] and Y.2066 [3] documents. Furthermore,

1

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the International Organization for standardization /
International Electrotechnical Commission (ISO/IEC)
presented a preliminary report about IoT in 2014 [8].
Moreover, the Internet Engineering Task Force (IETF) took
an interest in the IoT environment by presenting different
drafts concerning the emerging challenges for the IoT [9]
[10]. Based on definitions and concepts presented by the
different standardization organizations and international
research projects, we can propose the following IoT
definition: IoT is a system of systems interconnected via
standard and interoperable communication technologies.
This interconnection allows creating a considerable network
of communicating objects, each addressed uniquely, in order
to offer new services for improving the quality of human life.
Also, self-management capabilities are essential within IoT
environment in order to offer autonomous self-managed
objects. In the context of the IoT, we use external resources
such as cloud computing and fog computing for the
processing and the storage of huge amount of data. Indeed,
cloud computing functionalities enhance reliability and
efficiency of IoT service provision [11]. On the other hand,
fog computing decentralizes the computing capacities and
distributes the operations on network extremities [12].

Different application domains with a variety of services
are provided in the IoT environment. These application
domains cover a wide variety of everyday services like health
services, industry services, transportation services, city
management services, etc. They had drawn the attention of
several international organizations in order to work on
standards used in the mentioned domains. For example, the
ISO/IEC focuses on the standardization of underlying
technologies useful in different IoT application areas. Thus,
the Working Group 9 of ISO/IEC Technical Committee 1
(JTC 1/WG9) focuses on the standardization of Big Data
technologies in the areas of IoT [13]. In addition, each IoT
application domain attracts specific international
organizations. For the e-health services, the World Health
Organization (WHO) and the Program for Appropriate
Technology in Health (PATH) have signed a partnership to
accelerate the evolution of digital health worldwide [14]. As
for the smart city domain, ISO/IEC through the technical
subcommittee JTC1/SC25, standardizes microprocessor
systems and interconnection mediums associated with
equipment for commercial and residential environments. IoT
services has attracted also, the attention of a large number of
manufacturers and industrial companies like Ericsson and its
partners that had offered portable prototypes for the e-health
domain with long battery life [15]. In addition, Nokia offered
several services and technologies on the market to manage
video surveillance, sensors’ networks, smart parking, etc
[16].

In order to offer the IoT services, various communication
technologies interconnect IoT objects and gateways within
IoT environments. Each technology is suitable for a specific
scenario based on different criteria such as energy
consumption, CPU utilization, range of the technology, etc.
IoT communication technologies correspond to an adaptation
of an existing technology or to a new specifically specified
technology. IoT can use wireless cellular technologies [17]

(LTE, 4G, NB-IoT, 5G, etc.) or wireless non-cellular
technologies (IEEE802.15.4 [4], LoRaWAN [18], ZigBee
[6], 6LoWPAN [5], etc.). We describe in the following
section the IEEE 802.15.4 wireless non-cellular technology,
which is the foundation of our proposed QoS based access
method.

B. IEEE 802.15.4

The IEEE 802.15.4 standard is an IEEE proposed
standard for Low Rate Wireless Personal Area Networks
(LR-WPAN). It defines the physical and the MAC layers to
provide a basic format. This format will be used by other
technologies and protocols by adding their own specificities
through the specification of the higher layers. The IEEE
802.15.4 physical layer specifies different essential
parameters: 250 Kbit/s of data rate for a 2.4 GHz band,
control functions like the activation or deactivation of the
radio module, the test of the channel occupation and the
choice of the transmission channel. On the other hand, the
MAC layer defines the data management format and specifies
the usage of different access methods for the wireless shared
channel (i.e., Unslotted CSMA/CA, Slotted CSMA/CA,
TSCH CCA, TSCH CSMA/CA, CSMA/CA with PCA,
DSME, etc.). As for data encryption, the IEEE 802.15.4
standard uses AES-128 (Advanced Encryption Standard) to
ensure data confidentiality [4]. Different standards use IEEE
802.15.4 as a foundation for their lower layers. We can
mention as an example the 6LowPAN standard that combines
IPv6 with low power WPAN networks. Another example is
ZigBee, a specification for a series of high-level, low-power
communication.

IEEE 802.15.4 supports a beacon-enabled mode using a
superframe structure, which is the base of our contribution.
The superframe (see Fig. 1) consists of an active part known
as the Superframe Duration (SD) and can be followed by an
inactive period. The active part is formed by 16 equally sized
time slots partitioned into a Contention Access Period (CAP)
where nodes compete to gain the access to the channel; and
an optional Contention Free Period (CFP) where nodes are
allocated guaranteed time slots.

Figure 1. IEEE 802.15.4 beacon enabled mode superframe structure

In beacon-enabled mode, the coordinator sends
periodically a beacon frame on the network including all the
superframe specifications. The beacon, sent at the Beacon
Interval (BI) time, allows the coordinator to identify its
WPAN and ensures that all the objects are synchronized. The
Beacon Order (BO) and Superframe Order (SO) parameters
determine the Beacon Interval (BI) and SD, respectively as
mentioned in (1) and (2). The Base Superframe Duration
(BSFD) corresponds to the minimum duration of the
superframe (SO = 0).

2

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 BI = BSFD * 2BO (1)

 SD = BSFD * 2SO (2)

BSFD is fixed to 960 symbols of 4 bits or 15.36 ms
assuming the data rate of 250 Kbit/s for the 2.4 GHz band. In
addition, BO and SO should respect the inequality 0 ≤ SO ≤
BO ≤ 14 [4].

 Three variable are used in the slotted CSMA/CA
algorithm (see Fig. 2): the Backoff Exponent (BE), the
Contention Window (CW) and the Number of Backoffs (NB).
To compute the backoff delay, that an object has to observe
before performing the Clear Channel Assessment (CCA), the
algorithm chooses a random value for the backoff delay
between 0 and (2BE −1). CW is the number of backoff periods
during which the channel must be idle before accessing the
channel. By default, the value of CW is fixed to 2. NB is the
number of backoff executed for channel access. This value is
initialized to 0 and is compared to a maximum value,
macMaxCSMABackoffs by default equal to 5. In case the NB
value is greater than this maximum value, a failure occurs.

Figure 2. Slotted CSMA/CA Algorithm

The slotted CSMA/CA algorithm is activated for each
transmission of a new packet and is executed during the CAP
as follows [4]:

 NB and CW are initialized

 If the battery life extension is true, BE is initialized
to the minimum between 2 and macMinBE (by
default 3). If the battery life extension parameter is
fixed to false, BE is initialized to 2

 The node using the algorithm waits the backoff
delay, and then performs CCA

 If the channel is busy, CW is re-initialized to 2, NB
and BE are incremented. BE must not exceed
aMaxBE (by default 5). If macMaxCSMABackoffs is
reached, the algorithm reports a failure to the higher
layer. If NB < macMaxCSMABackoffs, the backoff
operation is restarted and the CCA should be
performed again

 If the channel is sensed idle and CW > 0, the CCA is
repeated and CW decremented. Otherwise, the node
attempts to transmit if the remaining time in the
current CAP is sufficient to transmit the frame and
receive the acknowledgement. If not, the process is
deferred to the next superframe.

III. QOS GUARANTEE IN THE IOT

A. Motivations and challenges for QoS guarantee in the IoT

The ITU-T E.800 [19] has defined QoS as the totality of
the characteristics of a telecommunication service to satisfy
in order to meet the user requirements. In this context, a QoS
requirement is expressed in terms of QoS parameters (Delay,
Jitter, Packet Delivery Ratio, Effective Data Rate, etc.). QoS
guarantee in the IoT environment requires an effective and
optimized management of the corresponding resources to
improve users’ experience. In order to provide predictable
services, QoS mechanisms in the IoT environment handle
delays, jitter, bandwidth and packet loss ratio by classifying
traffic. As the IoT environment is made of different
technologies and heterogeneous networks, different types of
data and streams exist on a single system. Hence, it is
important to provide the IoT environment with QoS
guarantee mechanisms to meet the requirements of each type
of traffic [9]. QoS guarantee is a critical challenge in the IoT,
as the number of connected objects increases considerably
leading to a greater amount of created and transported data
with different characteristics. Consequently, the performance
of the IoT system will be affected and especially QoS
constrained data traffic due to congestion periods. Deploying
QoS mechanisms within IoT environment will enhance the
performance by identifying and differentiating traffic in order
to allow a reduced cost and a better scalability [10].

The importance of the QoS guarantee in the IoT has been
put forward by various international organizations The ITU-
T describes the importance of QoS integration in the IoT
through various documents such as Y.2066 [3] where it was
mentioned that service priority is an important requirement.
In addition, Y.2066 indicates that the prioritization
functionality satisfies different service requirements of IoT
users. On the other hand, LinkLabs, an American company
developing technologies for computer networks, indicates
that integrating QoS into IoT allows a better management of
the corresponding capabilities and resources in order to
provide a reliable and optimized infrastructure for connecting
objects. According to LinkLabs, QoS mechanisms enables
predictable IoT services thanks to better delay, jitter,
bandwidth and Packet Delivery Ratio (PDR) by classifying
traffic and offering services according to systems’ resources
[22].

3

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to provide QoS within an IoT architecture, the
requirements of each layer (Sensing layer, Network layer and
Cloud Layer) should be addressed through one or several
mechanisms. The Sensing layer includes all the IoT objects
along with the gateways allowing their interconnection and
management. Thus, the QoS provision at this layer should
meet the IoT objects and gateways requirements. An essential
challenge for this layer is traffic differentiation and
prioritization. It can be offered by classifying the different
flows according to their criticality and applying prioritization
through different adapted QoS mechanisms. Thus, it is
important to classify IoT applications according to specific
criteria in order to propose an appropriate QoS mechanism
while respecting their traffics characteristics. Each set of
applications will have mechanisms well adapted to their
requirements. In addition, at this layer the optimization of the
systems resources usage should be applied in order to offer
the best performances. The network layer of the IoT
architecture includes all network features such as routing,
handoff, and path management (path selection and recovery)
through a multi-path infrastructure. This layer acts as a
network infrastructure interconnecting the Sensing layer to
the Cloud layer. The integration of QoS mechanisms in this
layer should consider the large number of requests and data
transiting from the Sensing layer to the Cloud layer of the IoT
architecture. The data processing must be differentiated in the
Network layer. It must prioritize requests according to their
importance. As a result, the QoS requirements of the IoT
Network layer correspond to the traditional QoS
requirements of a network infrastructure while adapting these
needs to the characteristics of the IoT environment. Finally,
the IoT Cloud layer includes computing and storage
capabilities. In addition, this layer hosts IoT applications
enabling processing data for useful purposes. The QoS
guarantee in the Cloud layer is an emerging discipline with
several research challenges. This is due to the lack of
standardized end-to-end approaches for QoS assurance and
the existence of various constraints and QoS parameters
specific to each cloud service. Indeed, QoS requirements in
the Cloud layer depend on the provided service
(Infrastructure as a Service - IaaS, Software as a Service -
SaaS, Platform as a Service - PaaS) by the Cloud Service
Provider (CSP). Finally, it is necessary to specify the needs
and mechanisms ensuring end-to-end QoS guarantee across
the different layers of the IoT architecture. This end-to-end
QoS provision allows customers to perceive the requested
service level without distinguishing the declination of this
QoS according to the IoT architecture several layers.

In the next sections, we present related research work
concerning QoS offer in IoT environments and we describe
the IoT Service Level Agreement.

B. Related research work

Different international projects and research works had
studied the Quality of Service in the IoT environment and its
impact on the service provision. The European project
OpenIoT [23] specified different QoS parameters and metrics
for the IoT. These metrics include utility metrics related to
sensors and other metrics related to the network and
application. As an example of utility metrics, OpenIoT

indicated the Quality of sensors that determines the accuracy
of measurement, the energy consumption, data volume, and
bandwidth. For the other metrics, system lifetime is taken into
consideration. In addition, traditional QoS parameters are
used such as latency, jitter, delay, throughput, etc. On the
other hand, this project presented a high level architecture
based on a QoS Manager that keeps track of the following
parameters: quality of sensors, energy consumption,
trustworthiness, bandwidth and data volume.

The research work carried out in [24], concerning the
guarantee of QoS in IoT, proposes to classify various IoT
applications according to 3 service models (i.e., Open Service
Model, Supple Service Model, Complete Service Model).. It
maps each class to a physical topology for sensors’
implementation. Open Service Model corresponds to
interactive, non-real-time and non-critical applications.
Supple Service Model corresponds to interactive, Soft Real
Time and critical applications. Complete Service Model
corresponds to interactive, Hard Real time and critical
applications. Thus, the authors classified the IoT applications
belonging to different domains according to these 3 models.
In addition, this work has matched the proposed service
models with physical topologies (star topology and random
topology) at the device layer to meet the needs of each model.
Indeed, the applications belonging to the Complete model
must be provided through a physical star topology to obtain
better delays. On the other hand, applications belonging to
the Open model must be provided through a random physical
topology for better energy consumption.

Furthermore, other research works had focused on the
QoS in the lower layer of the IoT architecture (sensor layer).
For example, the research work conducted in [25], tried to
use different queues and a scheduler to ensure a certain
priority for QoS constrained flows. Moreover, different
research work tried to adapt the slotted CSMA/CA algorithm
to ensure QoS guarantee. Thus, the authors present in [26] a
contribution that allows the delivery of critical data with a
highest priority during the CFP. In [27], the authors describe
the usage of different values for CW, minBE and maxBE to
differentiate services thanks to three different priority levels.
However, these research works did not take into
consideration the existence of real time applications in the
IoT environment requiring a reduced delay that does not
exceed milliseconds range. For this matter, our proposed QoS
based access method aims to provide a differentiation
between IoT objects’ flows based on different QoS classes’
characteristics.

C. IoT Service Level Agreement

In this research work we consider four types of traffics
corresponding to four QoS classes as specified in a previous
work [28]: Real Time Mission Critical (RTMC), Real Time
Non Mission Critical (RTNMC), Streaming and Non Real
Time (NRT). Each QoS class corresponds to several
requirements regarding performance parameters such as
delay, jitter, etc. For example, our specified Real Time QoS
classes are more sensitive to delay and jitter variation. The
Streaming class is more sensitive to jitter variation while the
Non Real Time class is a non-constrained QoS traffic class.

4

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In order to specify the concrete requirements of each QoS
class (IoT-C’s expected value of each performance
parameter), we had presented in our previous work [28] a
specific Service Level Agreement (SLA) for IoT
environments, called iSLA, in order to allow an IoT-SP and
an IoT-C to negotiate and agree on the expected service level.
The expectations are described through different measurable
parameters according to the IoT type of service (i.e., QoS
class). We specify for each QoS class a set of measurable
parameters that are critical for the type of data concerned by
that QoS class. In addition, the IoT-SP uses a cloud
infrastructure, a network infrastructure and a sensing
infrastructure to provide the IoT service. In this context, our
proposed iSLA considers the characteristics of each sub-
infrastructure needed by the provided IoT service. Thus, the
corresponding sub-SLAs, forming the global iSLA, are
concluded with a CSP (i.e., cloud SLA: cSLA) and a Network
Service Provider (NSP) (i.e., network SLA: nSLA). For the
sensing infrastructure, the IoT- SP dispose of two kinds of
gateways; High Level Gateways (HL-Gws) used for self-
management provision and Low Level Gateways (LL-Gws)
used to collect data from IoT objects. The IoT-SP concludes
another internal sub-SLA called the gateway SLA (gSLA) to
specify the characteristics of the gateways for the
corresponding IoT Service. The gSLAs (stored on the HL-
Gw) allow the HL-Gw to have detailed information
concerning the characteristics of the underlying infrastructure
for self-management consideration. After concluding the
cSLA, nSLA and gSLA, the IoT-SP is able to conclude the
global iSLA with the IoT-C. In order to describe the iSLA
establishment process accomplished by the IoT-SP, we
specify a Finite State Machine (FSM) diagram with several
states illustrating the behavior of the IoT service Provider
(see Fig. 3).

S0 S1 S2 S3

S4 S5

S7 S6

IoT Service request
(Requirements) / -

- / Network, cloud and IoT
requirements specification

cSLA request to CSP
/ -

cSLA offer / CSP
offer rejected

cSLA offer / CSP
offer accepted

New IoT Service request
(Requirements) / -

n
S

LA
 re

q
u

e
st to

N

S
P

 / -

n
S

LA
 o

ffe
r / N

S
P

o

ffe
r re

je
cte

d

n
S

LA
 o

ffe
r / N

S
P

o

ffe
r a

cce
p

te
d

-
/ A

ll C
S

P
 o

ffe
rs

re
je

cte
d

- / All NSP offers
rejected

- / iSLA proposal to
client

iS
LA

 re
je

cte
d

 b
y

clie

n
t / -

iSLA accepted by client /
iSLA, cSLA and nSLA

establishment

Figure 3. Finite State Machine of iSLA establishment

In state S0, the IoT-SP waits for the service requirements
from the client to start the process of iSLA establishment.
After receiving these requirements, the IoT-SP classifies the
requirements in state S1 and changes to state S2 when it sends
the cSLA request to the CSP in order to conclude a cloud
SLA. The CSP sends to the IoT-SP a cSLA offer. If the offer
is rejected, then the IoT-SP state changes again to state S1 but
if the offer is accepted, the IoT-SP reaches state S3. If all CSP
offers are rejected, the IoT-SP will be at state S1 after

reaching state S4 to wait for a new set of requirements as the
older set cannot be satisfied and the process restarts. The
same process is executed with the NSP. If the NSP offer is
accepted, the IoT-SP will be at the state S6. If all NSP offers
are rejected, the IoT-SP will be at state S1 after reaching state
S4 to wait for a new set of requirements as the older set
cannot be satisfied and the process restarts. After accepting
the nSLA, the IoT-SP at state S6 sends an iSLA proposal to
the client and reaches state S7. If the client rejects the iSLA,
the IoT-SP passes to state S4 and a new round of negotiation
with the service provider should be achieved in order to build
a new iSLA. If the iSLA proposal is accepted, the IoT-SP
concludes the sub-SLAs with the corresponding NSP and
CSP and concludes the iSLA with the IoT-C while reaching
the initial state S0.

We specify in the next section our proposed QoS
mechanism called QBAIoT. It is a wireless access method
based on the the four QoS classes mentioned above and
ensures a differentiation in traffic processing for QoS
integration within the sensing layer of the IoT architecture.

IV. QOS BASED ACCESS FOR IOT

We describe in the following our QoS based access

method for IoT environments called QBAIoT. The

specification of our novel access method is based on a new

superframe structure, as well as algorithms implemented

within the IoT Gateway and IoT objects enabling Class based

Contention Free Periods.

A. Class based Contention Free Period Access

Our proposed access method consists in using an IEEE
802.15.4 superframe that respects the requirements of the
four QoS classes. For achieving our QoS guarantee according
to the requirements of the different traffics, we adapt the
structure of the IEEE 802.15.4 superframe in order to include
a CAP (called QoS CAP) for each traffic corresponding to a
specific QoS class. Moreover, there are no CFP and inactive
periods in our adapted superframe.

We had removed the inactive period to reduce the delay
of Real Time generated data. In this context, we can find up
to four QoS CAPs in our superframe in case the IoT gateway
(Coordinator or LL-Gw) is configured with four QoS classes
(see Fig. 4).

Figure 4. QBAIoT superframe structure

During each QoS CAP, only objects belonging to the
corresponding QoS class can try to use the slots in order to
send their data. The slots configuration and the number of
QoS CAPs in the superframe is based on the number of QoS
classes available in the IoT gateway environment. Different
configurations for the superframe based on the existence of

5

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Real Time applications and the number of QoS classes in the
considered IoT environment are possible. If the network
includes one QoS class, a single CAP will exist in the
superframe and the normal IEEE 802.15.4 slotted CSMA/CA
algorithm is used. If there are multiple QoS classes with a
minimum of one Real Time class in the network, BO and SO
will be configured with the value 2 in order to minimize the
latency of Real Time traffic thanks to a reduced Superframe
Duration among others. Consequently, based on (1) and (2),
BI and SD correspond to 61.44 ms with a slot time of 3.84
ms. If multiple QoS classes exist with no Real Time classes,
BO and SO are set to 3 fixing BI and SD to 122.88 ms with a
slot time of 7.68 ms. We specify for each QoS CAP a fixed
number of slots. This configuration differs according to the
number of existing QoS classes in the IoT Gateway
environment. For example, in the case of 4 QoS classes the
superframe slot configuration is as follows: RTMC class QoS
CAP is allocated 6 slots, RTNMC class QoS CAP is allocated
5 slots, Streaming class QoS CAP is allocated 3 slots and
NRT class QoS CAP is allocated 2 slots. So, slots
configuration and the number of QoS CAP in the superframe
is based on the number of existing QoS classes.

B. IoT Gateway QoS based access method design

For the coordinator part (i.e., IoT Gateway) of our
proposed QBAIoT access method, we specify Algorithm 1
(see Fig. 5) among with the corresponding variables
described in Table I.

Algorithm 1 Gateway QBAIoT Access Method Algorithm

Input: Nb_QoS_Classes, RT_Classes

1: N ← 1

2: if (Nb_QoS_Classes = 1) then

3: BO, SO ← 14

4: MAC ← Slotted_CSMA

5: While true do

6: Send_Beacon (BO, SO, CAP)

7: Receive_Data ()

8: end while

9: else

10: if (RT_Classes = 0) then

11: BO, SO ← 3

12: MAC ← QBAIoT

13: Initial_Slots_Configuration ()

14: While true do

15: Send_Beacon (BO, SO, QoS

CAPs)

16: While(N<=Nb_QoS_Classes) do

17: Receive_Data (QoS CAP)

18: N ← N + 1 // Next QoS CAP

19: end while

20: end while

21: else

22: BO, SO ← 2

23: MAC ← QBAIoT

24: Initial_Slots_Configuration ()

25: While true do

26: Send_Beacon (BO, SO, QoS

CAPs)

27: While(N<=Nb_QoS_Classes) do

28: Receive_Data (QoS CAP)

29: N ← N + 1 // Next QoS CAP

30: end while

31: end while

32: end if

33: end if

Figure 5. Gateway QBAIoT Access Metthod Algorithm

TABLE I. VARIABLE SPECIFICATION OF ALGORITHM 1

Name of the variable Description

Nb_QoS_Classes Number of QoS classes

RT_Classes Number of Real Time

classes

N Index of QoS classes

MAC Channel access algorithm

QoS CAP; CAP Configuration of the CAP

(CAPStart and CAPEnd)

Initial_Slots_Configuration() Algorithm that computes

the slots configuration

based on the Number of

QoS classes and Number

of Real Time classes.

As shown in Fig. 6, the IoT Gateway using our QoS based
access method (i.e., QBAIoT gateway) will receive data from
objects during the corresponding QoS CAPs.

QoS Based Access Control for IoT (QBACIOT)

Send_Beacon (BO, SO, CAP) & N = 1

N =
Nb_QoS_Classes

N = N + 1

Receive_Data (CAP[N], Slotted_CSMA)

CAP[N]
CAP[N]

Receive_Data (CAP[N], Slotted_CSMA)
& Calculate_Slots_Usage (CAP[N])

No

Yes

Sots and BO/SO configuration

Figure 6. Gateway QBAIoT Access method

6

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

At each Beacon Interval, the gateway sends the beacon
including the information regarding the values of BO, SO and
the first and final slot for each QoS CAP. These values are
used by the IoT objects to calculate the slot time and to
determine during which time they are allowed to compete for
the channel. A QBAIoT gateway should include also self-
management capabilities.

A self-configuring capability enables the gateway to
adapt the superframe slots configuration according to the
existing number of QoS classes within its environment. A
self-optimizing capability is performed in case of unused
slots in a QoS CAP thanks to a slot reallocation mechanism
covering the entire superframe. The self-management
capabilities design is out of the scope of this paper.

C. Class based access for IoT objects

For the IoT object part of our proposed QBAIoT access
method, we specify Algorithm 2 (see Fig. 7) among with the
corresponding variables described in Table II.

Algorithm 2 Object QBAIoT Access Method Algorithm

1: Receive_Beacon (BO, SO, QoS CAPs)

2: Configuration (BO, SO, QoS CAPs)

3: while (Slot ∈ [CAPStart, CAPEnd] and Data = true) do

4: if (Slotted_CSMA (Slot) = Success) then

5: Send_Data (Success, PAN Coordinator)

// slotted CSMA/CA returns a success state

6: else

7: Send_Data (Failure, PAN Coordinator)

// slotted CSMA/CA returns a failure state

8: end if

9: end while

10: if (Slot < CAPStart) then

11: Wait_until (Slot ∈ [CAPStart, CAPEnd])

12: else

13: Wait_Until (Beacon) // Wait until next superframe

14: end if

Figure 7. Object QBAIoT Access Method Algorithm

TABLE II. VARIABLE SPECIFICATION OF ALGORITHM 2

Name of the variable Description

QoS CAP Configuration of the CAP

(CAPStart and CAPEnd)

CAP_Start_Slot The first slot for the

corresponding QoS CAP

assigned to the object

CAP_End_Slot The last slot for the

corresponding QoS CAP

assigned to the object

Any object in the IoT Gateway environment receives the
beacon. According to the QoS class it belongs to, the object
will determine during which QoS CAP it can compete to
access the shared medium. When an IoT object generates
data, it should test if it has the right to compete in order to
send its traffic. If the corresponding QoS CAP of the object
has not started, it waits until its CAP time and then competes
to send the data according to our adapted slotted CSMA/CA
algorithm. If the object QoS CAP had passed, it should wait
until the corresponding QoS CAP in the next SuperFrame.

Fig. 8 shows the adapted CSMA/CA algorithm adopted
by the IoT Objects that communicate using our QBAIoT
method.

Current Slot ∈ [CAP i _Start ,

CAP i _End] ? / i ∈ [1,4]

Receive_Beacon (BO, SO, CAP) & Slots and SuperFrame configuration (CW, NB, BE)

Wait untill current slot in

[CAP i _Start , CAP i _End]

Current Slot <

CAP i _Start ?

Wait_Untill end of current

superframe

Yes No

Yes No

Locate backoff period boundary

Sufficient

Remaining Time in

CAP i ?

Delay for random (2BE – 1) unit of backoff

period boundary

Perform CCA on backoff period

boundary

Channel idle ?

NB = NB +1 , CW = CW0 , BE =

min (BE+1, macMaxBE)

NB >

macMaxCSMABackoffs ?

CW = CW -1

CW = 0 ?

Send_packet (PAN Coordinator)

Wait_Untill end of current

superframe

YesNo

MLME status =

CHANNEL_ACCESS_FAILURE

Yes

No

No

Yes

Yes

No

Packet to send in current

Superframe ?

Yes

No

Figure 8. Object QBAIoT Access Method

V. PERFORMANCE EVALUATION AND RESULTS

A. Simulation environment

In order to evaluate our proposed QBAIoT access

method, we conduct a simulation study using OMNeT++

based on the IEEE 802.15.4 model [29] including all the

necessary features like the beacon, the superframe structure,

etc. We had adapted this model to take into consideration our

proposed QoS based access method thanks to a superframe

with no CFP and different QoS CAPs. In our simulation

scenario, we simulated four QoS classes (RTMC, RTNMC,

Streaming and NRT). We used a star topology with a single

coordinator (i.e., IoT Gateway) where all devices (i.e., IoT

objects) are in each other's radio range. Each device transmits

data to the coordinator. The data packets are generated

periodically but are transmitted during the corresponding

QoS CAP. Table III shows the used simulation parameters.

In the first simulation scenario, we fixed the Data

Generation Interval (DGI) to 0.25 seconds and we increased

the number of IoT objects from 4 (1 per QoS class) to 12 (3

per QoS class). The IoT objects are sending data

simultaneously as they start generating data at the same time

with the same interval of packet generation. As for the second

set of simulations, we used a DGI of 0.125s allowing

generating a double amount of packets comparing to the first

set of simulations.

7

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. SIMULATION PARAMETERS

Parameter Value

Carrier Frequency 2.4 GHz

Transmitter Power 1 mW

Bit rate 250 Kbps

Simulation Time 100 s

Max Frame Retries 3

Mac Payload Size 50 Bytes

 B. Performance evaluation

The evaluation of our proposed QoS based access method

is based on different performance parameters concerning the

traffic of our QoS classes. The importance of these

parameters depends on the characteristics of the

corresponding traffic. Indeed, the average delay is very

important and critical for the RTMC and RTNMC traffic

whereas it is less important for Streaming traffic and not

important for NRT traffic. In this context, we considered the

following performance parameters.

 Average Delay: It refers to the average time
experienced by a generated packet to be received by
the destination. It is computed by dividing the total
delay experienced for all the packets by the number
of packets as shown in equation (3).

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑙𝑎𝑦 =
 𝛴 𝐷𝑒𝑙𝑎𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 (3)

 PDR: It expresses the degree of reliability achieved
by the system for successful transmissions. It is
obtained by dividing the number of received packets
by the number of generated packets as shown in
equation (4). Non received packets are either lost due
to a collision or still in the sender buffer waiting for
channel access.

 𝑃𝐷𝑅 =
 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠
 (4)

 Mean Packet Delivery Ratio (MPDR): It expresses
the degree of reliability achieved by the system for
successful transmissions of all traffic types. It is
obtained by computing the mean value of the PDRs
of the different traffic types as shown in equation (5).

𝑀𝑃𝐷𝑅 =
 𝛴 𝑃𝐷𝑅

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑡𝑦𝑝𝑒𝑠
 (5)

 Effective data rate (EDR): It evaluates the link
bandwidth utilization. It is computed by multiplying
the number of received packets by their sizes to
obtain the total length of the frame, which is divided
by the simulation time as shown in equation (6).

𝐸𝐷𝑅 =
Number of received packets∗Packet Size

Simulation Time
 (6)

 Table IV presents the delay evaluation for 4 QoS classes

traffic while using our proposed QBAIoT access method and

the traditional IEEE 802.15.4 slotted CSMA/CA method for

the first set of simulations (using the 0.25s DGI). The Delay

QoS parameter is very sensitive for RTMC and RTNMC

traffic. The obtained results in Table IV shows that for 4

objects (1 object per QoS CAP), our proposed method

enables better delay for the RTMC traffic (10 ms less than the

standard) and the RTNMC traffic (7 ms less than the

standard). This difference becomes greater while increasing

the number of objects. For 8 objects in the IoT environment

(2 objects per QoS CAP), we can observe a 35 ms better delay

for RTMC traffic and 26 ms better delay for RTNMC traffic.

The better delays that we obtain for Real Time traffic with

our proposed method are owing to the fact of giving the Real

Time classes a more important number of slots in which they

can send their data without any collision with other objects

belonging to other non-real time QoS classes. Consequently,

data packets do not need to wait in buffer for a long time.

They are served faster than other traffic types.

Although it is not critical for NRT traffic, we notice

important delays for this traffic when the total number of

objects is equal to 12 (3 objects per QoS CAP). This delay

comes from the fact that this traffic is served during 2 slots in

each superframe and that each traffic class generates the same

number of packets in our scenario at the same time; all

packets of the different QoS classes are generated at the same

time. So, when the number of objects in the NRT class

increases, the delay will increase because the generated

traffic is greater than the allocated capacity of 2 slots

resulting in a great number of packets in the sending buffer.

TABLE IV. AVERAGE DELAY EVALUATION FOR DIFFERENT TRAFFIC TYPES

USING QBAIOT AND IEEE 802.15.4 STANDARD

Table V shows the Packet Delivery Ratio for 4 QoS

classes traffic while using our proposed QoS based access

method and the IEEE 802.15.4 standard for the first set of

simulations. Our QBAIoT access method is giving, for all

QoS classes three times better PDR with one object by class,

four times better PDR with two objects by class and 6 times

better PDR (except NRT class 1,5 times) with 3 objects by

class than IEEE 802.15.4 standard method. We obtain a better

PDR with our approach thanks to an optimized channel

access per class avoiding collisions between different QoS

classes. Indeed, for each QoS CAP, only objects of the

corresponding QoS class can compete to access the channel.

For example, with 1 object per QoS class, there is no

competition between objects to gain access to the channel

8

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

during each slot with QBAIoT comparing to a competition

between 4 objects while using IEEE 802.15.4. Consequently,

with QBAIoT a lower number of objects are competing for

accessing the channel for a given slot. Packets will not run

the slotted CSMA/CA algorithm for several times and there

is no need to drop packets after several attempts when

macMaxCSMABackoffs is reached.

TABLE V. PDR EVALUATION FOR DIFFERENT TRAFFIC TYPES USING QBAIOT

AND IEEE 802.15.4 STANDARD

As for the effective data rate, Table VI compares the
obtained results using our proposed QBAIoT method and the
traditional slotted CSMA/CA of the IEEE 802.15.4. The
obtained results show that QBAIoT allows always better
effective data rate than the traditional approach, as the PDR
of QBAIoT is always higher. A lower number of collisions
offer a higher number of received packets. Consequently, the
number of bits served is higher during the simulation time
allowing a greater EDR with QBAIoT. We can note an
average of 4 times better EDR with QBAIoT comparing to
IEEE 802.15.4 for all QoS classes with 4, 8 and 12 objects in
the IoT environment (except for the NRT traffic with 3
objects per QoS class in the environment where the EDR with
QBAIoT is only 1.7 time better).

TABLE VI. EDR EVALUATION FOR DIFFERENT TRAFFIC TYPES USING

QBAIOT AND IEEE 802.15.4 STANDARD

In the second set of simulations, we used the same

environment as for the first set but with a Data Generation

Interval of 0.125s allowing generating 800 packets per

objects during the simulation time.

Fig. 9 presents the comparison of the different average

delay results concerning RTMC traffics while using QBAIoT

and IEEE 802.15.4 standard with a DGI of 0.125s, as well as

with 1, 2 and 3 objects per QoS class. We can note that with

QBAIoT, better average delays are observed in all cases. By

incrementing the number of objects, the results of average

delay turn into greater values as more important number of

packets should be served during the same QoS CAP.

Comparing to Table IV, the observed average delay by

RTMC traffic becomes more important by decreasing the

DGI. Indeed, lower DGI values correspond to a more

important number of generated packets each second.

Figure 9. Average delay evaluation for RTMC traffic using QBAIoT and

IEEE 802.15.4 for a DGI of 0.125s

Fig. 10 presents a comparison of QBAIoT RTMC traffic

average delay for a DGI of 0.125s and 0.25s for 1, 2 and 3

objects per QoS class. We can note that the generation of the

same number of packets by a single object allows observing

a lower average delay comparing to the same number of

packets generated by two or more objects. For instance, the

generation of 800 RTMC packets by a single object (1 object

per QoS class with a DGI of 0.125s) induces a 0.052 ms

average delay for RTMC traffic. Whereas, the generation of

800 RTMC packets by two objects (2 objects per QoS class

with a DGI of 0.25s) induces an average delay of 0.065 ms

for RTMC traffic. The 13 ms higher average delay with two

objects generating the 800 packets is due to the collisions that

can occur between the two objects of the same QoS class

during the contention for accessing the channel.

Figure 10. Average delay evaluation for QBAIoT RTMC traffic with

different DGI

Fig. 11 presents the comparison of the different average

delay results of RTNMC traffics while using QBAIoT and

IEEE 802.15.4 standard with a DGI of 0.125s, as well as 1, 2

and 3 objects per QoS class. We can note that with QBAIoT

a better dealy is observed by RTNMC traffic in all cases

thanks to the fact of minimizing the collisions and organizing

the time during which each object can compete to gain access

to the shared medium.

9

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Average delay evaluation for RTMC traffic using QBAIoT and

IEEE 802.15.4 for a DGI of 0.125s

Fig. 12 presents the comparison between the different

MPDR values of the different traffics with the DGIs of 0.25s

and 0.125s while using QBAIoT. We can observe that with 1

object per QoS class, as there is no collisions between packets

of different objects and the maximum capacity of the medium

has not been reached yet for each QoS CAP, the PDR mean

value is equal to the maximum value of 1. As for the case

with 2 and 3 objects per QoS class, the MPDR value is lower

with a DGI of 0.125s as the number of competition executed

to access the channel is higher than the case with a DGI of

0.25s. Consequently, the probability of having a collision is

higher resulting in lower MPDR values.

Figure 12. Mean Packet Delivery ration for different DGIs

VI. CONCLUSION

To ensure better user experience in the IoT environment,
researchers try to optimize the delivered services while
guaranteeing the QoS. Different access technologies could be
used in the sensing layer of the IoT architecture. Several of
these technologies are based on the IEEE 802.15.4 standard
but the latter does not provide any QoS guarantee for the
traffic generated by objects using this standard to access the
IoT infrastructure. Therefore, we proposed the QBAIoT
access method as an enhancement of the IEEE 802.15.4
slotted CSMA/CA mechanism in order to take into
consideration QoS requirements of 4 different kinds of QoS
traffic classes generated in the IoT environment. QBAIoT
allows to respect the service level negotiated between the
IoT-C and the IoT-SP during the establishment of the iSLA.

In particular, QBAIoT QoS provision within the lower layer
of the IoT architecture (Sensing Layer). We compared our
proposed access method to the IEEE 802.15.4 standard and
we showed that we obtain better results while using our QoS
based access method to guarantee a reduced delay for Real
Time traffic, as well as a greater PDR and effective data rate
for all QoS classes with different DGIs.

As ongoing work, we aim to provide the IoT environment
with a self-configuring capability allowing activating the
minimum needed number of objects per QoS class in an
autonomic manner while optimizing energy consumption. To
do so, we will use the Fuzzy Logic theory in order to let the
system choose autonomously the best objects in order to
minimize the number of communications and so to expand
the system lifetime by conserving the energy of non-activated
objects.

ACKNOWLEDGMENT

This research was funded by the Conseil Régional de
Bourgogne-Franche Comté through the “plan d’actions
regional pour l’innovation (PARI)” and the European Union
through the “PO FEDER-FSE Bourgogne 2014/2020
programs”.

REFERENCES

[1] A. Khalil, N. Mbarek, and O. Togni, “QBAIoT: QoS Based
Access for IoT Environments,” The Fourteenth Advanced
International Conference on Telecommunications (AICT
2018), 2018, pp. 38–43, ISBN: 978-1-61208-650-7.

[2] A. Nordrum, “Popular IoT Forecast of 50 Billion Devices by
2020 Is Outdated”, IEEE Spectrum, August 2016.

[3] ITU-T Y.2066, “Next Generation Networks – Frameworks and
functional architecture models”, 32 pages, 2014.

[4] IEEE Standard for Local and metropolitan area networks, Low-
Rate Wireless Personal Area Networks, IEEE Computer
Society, 311 pages, September 2011.

[5] P. Thubert, C. Bormann, L. Toutain, and R. Cragie, “Pv6 over
Low-Power Wireless Personal Area Network (6LoWPAN)
Routing Header”, IETF RFC, 37 pages, April 2017.

[6] S. Nath, S. Aznabi, N. Islam, A. Faridi, and W. Qarony,
“Investigation and Performance Analysis of Some
Implemented Features of the ZigBee Protocol and IEEE
802.15.4 Mac Specification”, International Journal of Online
Engineering (iJOE), vol.13, pp. 14-32, Nov.2017, ISSN: 1861-
2121, doi:10.3991/ijoe.v13i01.5984

[7] ITU-T Y.2060, “Y.2060: Overview of the IoT, ITU-T”, 22
pages, 2012.

[8] ISO/IEC JTC 1, “IoT (IoT) Preliminary Report 2014”, 17 pages,
2015.

[9] J. Jimenez, H. Tschofenig and D. Thaler, “Report from the IoT
(IoT) Semantic Interoperability (IOTSI) Workshop 2016”,
Internet Draft, 17 pages, July 2018.

[10] O. Garcia-Morchon, S. Kumar and M. Sethi, “State of the Art
and Challenges for the IoT Security”, Internet Draft, 47 pages,
December 2018.

[11] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing”, NIST, 2 pages. version 15, July 2009.

[12] A. Banafa, “Definition of fog computing”, IBM, August 2014,
https://www.ibm.com/blogs/cloud-computing/2014/08/fog-
computing/, (Last access 17 March 2018).

[13] International Electrotechnical Commission, “IEC role in the
IoT”, 20 pages, 2017.

10

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[14] World Health Organization, “WHO and PATH partner to
globalize digital health”, September 2018,
https://www.who.int/ehealth/events/WHO-PATH-partnership
/en/, (Last Access 14 January 2019).

[15] Ericsson, “Ericsson and partners demonstrate battery life
improvements in Massive IoT e-health wearable prototype”,
September 2018, https://www.ericsson.com/
en/news/2018/8/connected-e-health-IoT, (Last Access 14
January 2019).

[16] Nokia, " Enabling the human possibilities of smart cities”,
https://networks.nokia.com/smart-city, (Last Access 14
January 2019).

[17] 4G Americas, “Cellular Technologies Enabling the IoT”, 2015,
http://www.5gamericas.org/files/
6014/4683/4670/4G_Americas_Cellular_Technologies_Enabl
ing_the_IoT_White_Paper_-_November_2015.pdf, (Last
Access 14 January 2019).

[18] Lora Alliance, “A Technical Overview of LoRa® and
LoRaWAN™”, https://www.tuv.com/media/corporate/
products_1/electronic_components_and_lasers/TUeV_Rheinl
and_Overview_LoRa_and_LoRaWANtmp.pdf (Last Access
14 January 2019).

[19] ITU-T E.800, “Definitions of terms related to quality of
service”, 30 pages, 2008.

[20] J.Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “IoT
(IoT): A vision, architectural elements, and future directions”,
Future Generation Computer Systems, vol. 29, pp. 1645-1660,
2013, doi: 10.1016/j.future.2013.01.010

[21] R. Bhaddurgatte and V. Kumar, “Review: QoS Architecture
and Implementations in IoT Environment”, Research &
Reviews: Journal of Engineering and Technology, ISSN: 2319-
9873, pp. 6-12, 2015.

[22] B. Ray, “Benefits of Quality of Service (QoS) in LPWAN for
IoT”, LinkLabs, December 2016

[23] M. Serrano, “OpenIoT D.4.6 Quality of Service (QoS) for IoT
services”, OpenIoT Consortium, Project Number 287305, 51
pages, 2014.

[24] M. A. Nef, L. Perleps, S. Karagiorgou, and G. I. Stamoulis,
“Enabling QoS in the IoT”, The Fifth International Conference
on Communication Theory, Reliability, and Quality of Service,
May 2012.

[25] S. Ezdiani, I. S. Acharyya, S. Sivakumar, and A. Al-Anbuky
“An IoT Environment for WSN Adaptive QoS”, 2015 IEEE
International Conference on Data Science and Data Intensive
Systems (DSDIS 2015), , 2015, pp. 586-593, ISBN: 978-1-
5090-0214-6, doi:10.1109/DSDIS.2015.28

[26] S. Sarode and J. Bakal, “A Slotted CSMA/CA of IEEE 802.15.4
Wireless Sensor Networks: A Priority Approach”,
International Journal of Computer Trends and Technology
(IJCTT), vol. 44, pp. 33-38, Feb. 2017, ISSN: 2231-2803, doi:
10.14445/22312803/IJCTT-V44P106

[27] F. Xia, J. Li, R. Hao, X. Kong, and R. Gao, “Service
Differentiated and Adaptive CSMA/CA over IEEE 802.15.4
for Cyber-Physical Systems”, The Scientific World Journal,
vol. 2013, Article ID 947808, 12 pages, 2013,
doi:10.1155/2013/947808

[28] A. Khalil, N. Mbarek, and O. Togni, “Service Level Guarantee
Framework for IoT environments”, International Conference
on IoT and Machine Learning (IML 2017), 2017, ISBN: 978-
1-4503-5243-7, doi: 10.1145/3109761.3158393

[29] M. Kirsche, IEEE 802.15.4-Standalone,
https://github.com/michaelkirsche/IEEE802154INET-
Standalone (Last Access 17 March 2018)

11

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Improving the Effectiveness of Web Application Vulnerability Scanning

Marc Rennhard

School of Engineering
Zurich University of Applied Sciences

Winterthur, Switzerland
Email: rema@zhaw.ch

Damiano Esposito, Lukas Ruf, Arno Wagner

Consecom AG
Zurich, Switzerland

Email: Damiano.Esposito,Lukas.Ruf,
Arno.Wagner@consecom.com

Abstract—Using web application vulnerability scanners is very
appealing as they promise to detect vulnerabilities with minimal
configuration effort. However, using them effectively in practice
is often difficult. Two of the main reasons for this are limitations
with respect to crawling capabilities and problems to perform
authenticated scans. In this paper, we present JARVIS, which
provides technical solutions that can be applied to a wide range
of vulnerability scanners to overcome these limitations and to
significantly improve their effectiveness. To evaluate JARVIS, we
applied it to five freely available vulnerability scanners and tested
the vulnerability detection performance in the context of seven
deliberately insecure web applications. A first general evaluation
showed that by using the scanners with JARVIS, the number
of detected vulnerabilities can be increased by more than 100%
on average compared to using the scanners without JARVIS.
A significant fraction of the additionally detected vulnerabilities
is security-critical, which means that JARVIS provides a true
security benefit. A second, more detailed evaluation focusing on
SQL injection and cross-site scripting vulnerabilities revealed that
JARVIS improves the vulnerability detection performance of the
scanners by 167% on average, without increasing the fraction
of reported false positives. This demonstrates that JARVIS not
only manages to greatly improve the vulnerability detection rate
of these two highly security-critical types of vulnerabilities, but
also that JARVIS is very usable in practice by keeping the
false positives reasonably low. Finally, as the configuration effort
to use JARVIS is small and as the configuration is scanner-
independent, JARVIS also supports using multiple scanners in
parallel in an efficient way. In an additional evaluation, we
therefore analyzed the potential and limitations of using multiple
scanners in parallel. This revealed that using multiple scanners
in a reasonable way is indeed beneficial as it further increases the
number of detected vulnerabilities without a significant negative
impact on the reported false positives.

Keywords–Web Application Security; Vulnerability Scanning;
Vulnerability Detection Performance; Authenticated Scanning;
Combining Multiple Scanners.

I. INTRODUCTION

This paper is an extended and revised version of our
conference paper [1] that was published at ICIMP 2018 (the
thirteenth International Conference on Internet Monitoring and
Protection). Compared to the original version, this paper con-
tains a much more elaborate evaluation to further demonstrate
the effectiveness and usefulness of the presented approach.

Security testing is of great importance to achieve security
and trustworthiness of software and systems. Security testing
can be performed in different ways, ranging from completely
manual methods (e.g., manual source code analysis), to semi-
automated methods (e.g., analyzing a web application using

an interceptor proxy), to completely automated ways (e.g.,
analyzing a web service using a vulnerability scanner).

Ideally, at least parts of security testing should be auto-
mated. One reason for this is that it increases the efficiency of
a security test and frees resources for those parts of a security
test that cannot be easily automated. This includes, e.g., access
control tests, which cannot really be automated as a testing
tool does not understand which users or roles are allowed
to perform what functions. Another reason is that automating
security tests enables performing continuous and reproducible
security tests, which is getting more and more important in
light of short software development cycles.

There are different options to perform automated security
testing. The most popular approaches include static and dy-
namic code analysis and vulnerability scanning. Vulnerability
scanners test a running system “from the outside” by send-
ing specifically crafted data to the system and by analyzing
the received response. Among vulnerability scanners, web
application vulnerability scanners are most popular, as web
applications are very prevalent, are often vulnerable, and are
frequently attacked [2]. Note also that web applications are
not only used to provide typical services such as information
portals, e-shops or access to social networks, but they are also
very prevalent to configure all kinds of devices attached to the
Internet, which includes, e.g., switches, routers and devices
in the Internet of Things (IoT). This further underlines the
importance of web application security testing.

At first glance, using web application vulnerability scanners
seems to be easy as they claim to uncover many vulnerabilities
with little configuration effort – as a minimum, they only
require the base URL of the application to test as an input.
However, the effective application of web application vulner-
ability scanners in practice is far from trivial. The following
list summarizes some of the limitations:

1) The detection capabilities of a scanner are directly
dependent on its crawling performance: If a scanner
cannot find a specific resource in a web application,
it cannot test it and will not find vulnerabilities
associated with this resource. Previous work shows
that the crawling performance of different scanners
varies significantly [3], [4].

2) To test areas of a web application that are only reach-
able after successful user authentication, the scanners
must authenticate themselves during crawling and
testing. While most scanners can be configured so
they can perform logins, they typically do not support

12

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

all authentication methods used by different web
applications. Also, scanners sometimes log out them-
selves (e.g., by following a logout link) during testing
and sometimes have problems to detect whether an
authenticated session has been invalidated. Overall,
this makes authenticated scans unreliable or even
impossible in some cases.

3) To cope with these limitations, scanners usually pro-
vide configuration options, which can increase the
number of detected vulnerabilities [5]. This includes,
e.g., specifying additional URLs that can be used by
the crawler as entry points, manually crawling the
application while using the scanner as a proxy so
it can learn the URLs, and specifying an authenti-
cated session ID that can be used by the scanner to
reach access-protected areas of the application if the
authentication method used by the web application
is not supported. However, using these options com-
plicate the usage of the scanners and still does not
always deliver the desired results.

4) With respect to the number and types of the re-
ported findings, different vulnerability scanners per-
form differently depending on the application under
test [6]–[10]. Therefore, when testing a specific web
application, it is reasonable to use multiple scanners
in parallel and combine their findings. However, the
limitations described above make this cumbersome
and difficult, as each scanner has to be configured
and optimized differently.

In this paper, we present JARVIS, which provides technical
solutions to overcome limitations 1 and 2 in the list above.
Using JARVIS requires only minimal configuration, which
overcomes limitation 3. And finally, JARVIS and its usage
are independent of specific vulnerability scanners and can be
applied to a wide range of scanners available today, which
overcomes limitation 4 and which provides an important basis
to use multiple scanners in parallel in an efficient way.

To demonstrate the effectiveness and usefulness of JARVIS,
to quantify how much it can improve the vulnerability detec-
tion performance of scanners, and to learn more about the
potential and limitations of combining multiple scanners, this
paper also includes a detailed evaluation. In this evaluation,
JARVIS was applied to the five freely available scanners listed
to Table I.

TABLE I. ANALYZED WEB APPLICATION VULNERABILITY SCANNERS

Scanner Version/Commit URL
Arachni 1.5-0.5.11 http://www.arachni-scanner.com
OWASP ZAP 2.5.0 https://www.owasp.org/index.php/

OWASP Zed Attack Proxy Project
Skipfish 2.10b https://code.google.com/archive/p/

skipfish/
Wapiti r365 http://wapiti.sourceforge.net
w3af cb8e91af9 https://github.com/andresriancho/w3af

The choice for using freely available scanners was mainly
driven by the desire to evaluate the performance of using
multiple scanners in parallel. This is a much more realistic
scenario with freely available scanners as commercial ones
often have a hefty price tag. Also, several previous works
concluded that freely available scanners do not perform worse
than commercial scanners [3], [4], [11], [12]. Arguments for

using the scanners in Table I instead of using others include our
previous experience with these scanners, that these scanners
are among the most popular used scanners in practice, and
that they perform well in general according to [4], [11], [12].

The main contributions of this paper are the following:

• Technical solutions to improve the crawling coverage
and the reliability of authenticated scans of web appli-
cation vulnerability scanners. In contrast to previous
work (see Section II), our solutions cover both aspects,
can easily be applied to a wide range of scanners
available today, and require only minimal, scanner-
independent configuration.

• A general evaluation that shows that by using these
technical solutions, the vulnerability detection perfor-
mance of the scanners included in the evaluation can
be improved by more than 100% on average. Many of
the additionally reported vulnerabilities are security-
critical, which means that JARVIS provides a true
security benefit.

• A more detailed evaluation focusing on SQL injection
and cross-site scripting vulnerabilities that demon-
strates that the vulnerability detection performance of
the scanners with respect to these two types of highly
relevant vulnerabilities can be increased by 167% on
average, without increasing the fraction of reported
false positives.

• A final evaluation that shows that using multiple
scanners in a reasonable way is beneficial as it fur-
ther increases the number of detected vulnerabilities
without a significant negative impact on the reported
false positives.

The remainder of this paper is organized as follows:
Section II covers relevant related work. Section III describes
the technical solutions to overcome the limitations of today’s
web application vulnerability scanners. Section IV contains
the general evaluation results and Section V provides a more
detailed evaluation focusing on SQL injection and cross-site
scripting vulnerabilities. The final part of the evaluation is
provided in Section VI, where the benefits and limitations of
using multiple scanners in parallel are analyzed. Section VII
concludes this work.

II. RELATED WORK

Several work has been published on the crawling coverage
and detection performance of web application vulnerability
scanners. In [3], more than ten scanners were compared, with
the main results that good crawling coverage is paramount to
detect many vulnerabilities and that freely available scanners
perform as well as commercial ones. The same is confirmed in
[4], which covers more than 50 free and commercial scanners.
The works by Chen [11], which covers about 20 scanners
and which is updated regularly, and by El Idrissi et al. [12],
which includes 11 scanners in its evaluation, also result in the
conclusion that free scanners perform as well as commercial
ones. In [5], Suto concludes that when carefully training or
configuring a scanner, detection performance is improved, but
this also significantly increases the complexity and time effort
needed to use a scanner. Furthermore, Bau et al. demonstrate
that the eight scanners they used in their analysis have different
strengths, i.e., they find different vulnerabilities [6]. The same

13

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is confirmed by Vega et al. [7], which in addition compare the
vulnerabilities detected by the four scanners in their evaluation
with alerts reported by the intrusion detection system (IDS)
Snort [13]. Qasaimeh et al. conclude that the five scanners used
in their evaluation not only perform differently with respect to
the number of findings detected, but also with respect to the
number of false positives [8]. Smaller studies by using two and
three scanners were done in [9] and [10], respectively, which
confirm that different scanners have different strengths with
respect to detection capabilities.

Other work specifically aimed at improving the coverage
of vulnerability scanning. In [14], it is demonstrated that by
considering the state changes of a web application when it
processes requests, crawling and therefore scanning perfor-
mance can be improved. In [15], van Deursen et al. present
a Selenium WebDriver-based crawler called Crawljax, which
improves crawling of Ajax-based web applications. The same
is achieved by Pellegrino et al. by dynamically analyzing
JavaScript code in web pages [16]. In [17], Zulla discusses
methods to improve web vulnerability scanning in general,
including approaches to automatically detect login forms on
web pages.

Our work presented in this paper builds upon this previous
work, in particular on the observations that freely available
scanners perform similarly as commercial ones, that different
scanners have different strengths with respect to detection
capabilities, and that good crawling coverage is paramount
to detect many vulnerabilities. Besides this, however, our
work goes significantly beyond existing work. First of all, the
presented solution – JARVIS – not only addresses crawling
coverage but also the reliability of authenticated scans, which
has a significant impact on the number of vulnerabilities that
can be detected. In addition, JARVIS is scanner-independent,
which means it can easily be applied to most vulnerability
scanners available today. Furthermore, we provide a detailed
evaluation using several scanners and several test applications
that truly demonstrates the benefits and practicability of our
technical solutions. And finally, to our knowledge, our work
is the first one to quantitatively evaluate the benefits and
limitations when combining multiple scanners.

III. TECHNICAL SOLUTIONS TO IMPROVE WEB
APPLICATION VULNERABILITY SCANNING

One way to improve the vulnerability detection perfor-
mance of web application vulnerability scanners is to directly
adapt one or more scanners that are available today. However,
the main disadvantage of this approach is that this would only
benefit one or a small set of scanners and would be restricted to
scanners that are provided as open source software. Therefore,
a proxy-based approach was chosen. The advantages of this
approach are that it is independent of any specific scanner,
that it does not require adaptation of any scanner, and that it
can be used with many scanners that are available today and
most likely also with scanners that will appear in the future.
The basic idea of this proxy-based approach is illustrated in
Figure 1.

A proxy-based approach means that JARVIS, which pro-
vides the technical solutions to overcome the limitations of
web application vulnerability scanners, acts as a proxy between
the scanner and the web application under test. This gives
JARVIS access to all HTTP requests and responses exchanged

JARVIS
(Proxy)

HTTP
Requests

HTTP
ResponsesComputer of Tester

Scanner
Web

Application
under Test

Figure 1. Proxy-based Approach of JARVIS.

between the scanner and the web application, which enables
JARVIS to control the entire crawling and scanning process
and to adapt requests or responses as needed. This proxy-
based approach is possible because most scanners are proxy-
aware, i.e., they support configuring a proxy through which
communication with the web application takes place. Note that
JARVIS can basically be located on any reachable host, but the
typical scenario is using JARVIS on the same computer as the
web application vulnerability scanner (e.g., on the computer
of the tester).

As a basis for JARVIS, the community edition version
1.7.19 of Burp Suite [18] is used. Burp Suite is a tool that
is intended to assist a tester during web application security
testing. It is usually used as a proxy between the browser of the
tester and the web application under test and supports record-
ing, intercepting, analyzing, modifying and replaying HTTP
requests and responses. Therefore, Burp Suite already provides
many basic functions that are required to implement JARVIS.
In addition, Burp Suite provides an application programming
interface (API) so it can be extended and JARVIS makes use
of this API.

JARVIS consist of two main components. The first is
described in Section III-A and aims at improving the test
coverage of scanners. This component should especially help
scanners that have a poor crawling performance. The second
component, described in Section III-B, aims at improving the
reliability of authenticated scans and should assist scanners
that have limitations in this area. Finally, Section III-C gives
a configuration example when using JARVIS to demonstrate
that the configuration effort is small.

A. Improving Test Coverage
Improving test coverage could be done by replacing the

existing crawler components of the scanners with a better one
(see, e.g., [14]–[16]). While this may be helpful for some
scanners, it may actually be harmful for others, in particular
if the integrated crawler works well. Therefore, an approach
was chosen that does not replace but that assists the crawling
components that are integrated in the different scanners. The
idea is to supplement the crawlers with additional URLs
(beyond the base URL) of the web application under test.
These additional URLs are named seeds as they are used to
seed the crawler components of the scanners. Intuitively, this
should significantly improve crawling coverage, in particular
if the integrated crawler is not very effective. To get the
additional URLs of a web application, two different approaches
are used: endpoint extraction from the source code of web
applications and using the detected URLs of the best available
crawler(s).

Endpoint extraction means searching the source code (in-
cluding configuration files) of the web application under test

14

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for URLs and parameters. The important benefits of this
approach are that it can detect URLs that are hard to find
by any crawler and that it can uncover hidden parameters of
requests (e.g., debugging parameters). To extract the endpoints,
ThreadFix endpoint CLI [19] was used, which supports many
common web application frameworks (e.g., JSP, Ruby on
Rails, Spring MVC, Struts, .NET MVC and ASP.NET Web
Forms). In addition, further potential endpoints are constructed
by appending all directories and files under the root directory
of the source code to the base URL that is used by the
web application under test. This is particularly effective when
scanning web applications based on PHP.

Obviously, endpoint extraction is only possible if the source
code of the application under test is available. If that is not the
case, the second approach comes into play. The idea here is
to use the best available crawler(s) to gather additional URLs.
As will be shown later, the scanner Arachni provides good
crawling performance in general, so Arachni is a good starting
point as a tool for this task. Of course, it is also possible to
combine both approaches to determine the seeds: extract the
endpoints from the source code (if available) and get URLs
with the best available crawler(s).

Once the seeds have been derived, they must be injected
into the crawler component of the scanners. To do this,
most scanners provide a configuration option. However, this
approach has its limitations as such an option is not always
available and usually only supports GET requests but no POST
requests. Therefore, the seeds are injected by JARVIS. To do
this, four different approaches were implemented based on
robots.txt, sitemap.xml, a landing page, and the index page.

Using robots.txt and sitemap.xml is straightforward. These
files are intended to provide search engine crawlers with infor-
mation about the target web site and are also evaluated by most
crawler components of scanners. When the crawler component
of a scanner requests such a file, JARVIS supplements the
original file received from the web application with the seeds
(or generates a new file with the seeds in case the web
application does not contain the file at all). Both approaches
work well but are limited to GET request.

The other two approaches are more powerful as they
also support POST request. The landing page-based approach
places all seeds as links or forms into a separate web page
(named landing.page) and the scanner is configured to use
this page as the base URL of the web application under test
(e.g., http://www.example.site/landing.page instead of http:
//www.example.site). When the crawler requests the page,
JARVIS delivers the landing page, from which the crawler
learns all the seeds and uses them during the remainder of the
crawling process. One limitation of this approach is that the
altered base URL is sometimes interpreted as a directory by the
crawler component of the scanners, which means the crawler
does not request the landing page itself but tries to fetch
resources below it. This is where the fourth approach comes
into play. The index page-based approach injects seeds directly
into the first page received from the web application (e.g.,
just before the </body> tag of the page index.html). Overall,
these four approaches made it possible to successfully seed all
scanners in Table I when used to test the web applications in
the test set (see Section IV-A).

As an example, the effectiveness of the landing page-based
approach is demonstrated. To do this, WIVET version 4 [20]

is used, which is a benchmarking project to assess crawling
coverage. Table II shows the crawling coverage that can be
achieved with OWASP ZAP (in headless mode) and Wapiti
when they are seeded with the crawling results of Arachni via
a landing page.

TABLE II. CRAWLING COVERAGE

Raw Coverage when Seeded with
Scanner Coverage the Crawling Results of Arachni
Arachni 92.86%
OWASP ZAP 14.29% 96.43%
Wapiti 48.21% 96.43%

Table II shows that the raw crawling coverage of Arachni
is already very good (92.86%), while Wapiti only finds about
half of all resources and OWASP ZAP only a small fraction.
By seeding OWASP ZAP and Wapiti with the crawling results
of Arachni, their coverage can be improved drastically to
96.43%. This demonstrates that seeding via a landing page
indeed works very well.

B. Improving Authenticated Scans
Performing authenticated scans in a reliable way is chal-

lenging for multiple reasons. This includes coping with various
authentication methods, prevention of logouts during the scans,
and performing re-authentication when this is needed (e.g.,
when a web application with integrated protection mechanisms
invalidates the authenticated session when being scanned) to
name a few. It is therefore not surprising that many scanners
have difficulties to perform authenticated scans reliably.

To deal with these challenges, several modules were im-
plemented in JARVIS. The first one serves to handle vari-
ous authentication methods, including modern methods based
on HTTP headers (e.g., OAuth 2.0). The module provides
a wizard to configure authentication requests, can submit
the corresponding requests, stores the authenticated cookies
received from the web applications, and injects them into
subsequent requests from the scanner to make sure the re-
quests are interpreted as authenticated requests by the web
application. The main advantages of this module are that it
enables authenticated scans even if a scanner does not support
the authentication method and that it provides a consistent way
to configure authentication independent of a particular scanner.

Furthermore, a logout prevention module was implemented
to make sure a scanner is not doing a logout by following
links or performing actions which most likely invalidate the
current session (e.g., change password or logout links). This
is configured by specifying a set of corresponding URLs
that should be avoided during the scan. When the proxy
detects such a request, it blocks the request and generates a
response with HTTP status code 200 and an empty message
body. In addition, a flexible re-authentication module was
developed. Re-authentication is triggered based on matches of
configurable literal strings or regular expressions with HTTP
response headers (e.g., the location header in a redirection
response) or with the message body of an HTTP response
(e.g., the occurrence of a keyword such as login).

C. Configuration Example
To give an impression of the configuration effort needed

when using JARVIS, Table III lists the parameters that must

15

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be configured when scanning the test application BodgeIt (see
Section IV-A). In this example, the seeds are extracted from
the source code.

TABLE III. EXAMPLE CONFIGURATION WHEN SCANNING BODGEIT

Parameter Value(s)
Base URL http://bodgeit/
Source code ∼/bodgeit/
Authentication mode POST
Authentication URL http://bodgeit/login.jsp
Authentication parameters username=test@test.test

password=password
Out of scope http://bodgeit/password.jsp

http://bodgeit/register.jsp
http://bodgeit/logout.jsp

Re-auth. search scope HTTP response body
Re-auth. keywords Login, Guest, user
Re-auth. keyword interpretation Literal string(s)
Re-auth. case-sensitive True
Re-auth. match indicates Invalid session
Seeding approach(es) Landing page, robots.txt,

sitemap.xml

The entries in Table III are self-explanatory and show
that the configuration effort is rather small. In particular,
the configuration is independent of the actual scanner, which
implies that when using multiple scanners in parallel (see
Section VI), this configuration must only be done once and
not once per scanner.

IV. GENERAL EVALUATION

This section starts with a description of the evaluation
setup. Then, it is analyzed how many vulnerabilities are
reported when the scanners are used with and without the
technical improvements described in Section III. Next, these
vulnerabilities are analyzed in more detail to check how many
unique vulnerabilities are detected and how severe they are.
Finally, it is analyzed whether all vulnerabilities that can be
detected by the scanners without using JARVIS are always also
detected when JARVIS is used.

A. Evaluation Setup
Table IV lists the web applications that were used to

evaluate the scanners (Cyclone Transfers and WackoPicko do
not use explicit versioning).

TABLE IV. WEB APPLICATIONS USED FOR THE EVALUATION

Application Version URL
BodgeIt 1.4.0 https://github.com/psiinon/bodgeit
Cyclone Transfers – https://github.com/thedeadrobots/bwa cyclone

transfers
InsecureWebApp 1.0 https://www.owasp.org/index.php/Category:

OWASP Insecure Web App Project
Juice Shop 2.17.0 https://github.com/bkimminich/juice-shop
NodeGoat 1.1 https://github.com/OWASP/NodeGoat
Peruggia 1.2 https://sourceforge.net/projects/peruggia/
WackoPicko – https://github.com/adamdoupe/WackoPicko

All these applications are deliberately insecure and well
suited for security training and to test vulnerability scanners.
The main reason why the applications in Table IV were chosen
is because they cover various technologies, including Java,
PHP, Node.js and Ruby on Rails.

The evaluation uses four different configurations that are
identified as -/-, S/-, -/A and S/A. Basically, S indicates that
seeding is used and A indicates that authenticated scans are

used. The four configurations are described in more detail in
Table V.

TABLE V. CONFIGURATIONS USED DURING THE EVALUATION

JARVIS
Config. is Used The Scans are Executed...
-/- No ...without seeding and non-authenticated

(i.e., using the basic configuration of the
scanners by setting only the base URL)

S/- Yes ...with seeding but non-authenticated
(i.e., using the technical solution described
in Section III-A)

-/A Yes ...authenticated but without seeding
(i.e., using the technical solution described
in Section III-B)

S/A Yes ...with seeding and authenticated
(i.e., using both technical solutions described
in Sections III-A and III-B)

As the source code of all the test applications is available,
the endpoint extraction approach described in Section III-A is
used for seeding in configurations S/- and S/A.

The test applications were run in a virtual environment that
was reset to its initial state before each test run to make sure
that every run is done under the same conditions and is not
influenced by any of the other scans.

B. Total Number of Reported Vulnerabilities
The first evaluation analyzes the total number of vulner-

abilities that are reported by the scanners when using the
four different configurations described in Table V. Figure 2
illustrates the evaluation results. The height of the bars rep-
resents the number of vulnerabilities reported over all seven
test applications and the different colors of the bars represent
the number of reported vulnerabilities per test application. The
table in the lower part of the figure also contains the number
of vulnerabilities reported per test application.

The first observation when looking at Figure 2 is that some
scanners identify many more vulnerabilities than others. For
example, Skipfish reports about ten times as many findings as
Arachni or w3af. However, this does not mean that Skipfish is
the best scanner, because Figure 2 depicts the “raw number of
vulnerabilities” reported by the scanners and does not consider
whether the vulnerabilities include false positives or duplicate
findings, or how severe the findings are. For instance, as will
be seen in Section IV-C, about 75% of the vulnerabilities
reported by Skipfish are rated as info or low (meaning they
have only little security impact in practice), while the other
scanners report a much smaller fraction of such findings.

More importantly, Figure 2 allows to do a first assessment
about the impact of using JARVIS. By comparing the total
number reported vulnerabilities in configuration S/- with the
one in configuration -/-, it can easily be seen that the technical
solution to improve test coverage works well with all scanners:
With every scanner, the number is always higher when seeding
is used. For instance, when adding up the reported vulnera-
bilities of all test applications, Arachni reports 254 findings
in configuration S/- compared to only 162 in configuration
-/-. The same behavior can also be observed with the other
four scanners. In addition, the benefit of seeding is not only
obvious when looking at the combined results of all test appli-
cations, but also when looking at individual test applications:
The number of vulnerabilities reported when seeding is used

16

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
Arachni OWASP ZAP Skipfish Wapiti w3af

WackoPicko 39 50 36 54 101 137 79 117 313 484 526 617 14 21 14 20 28 55 26 34
Peruggia 4 20 4 20 79 98 62 78 25 81 27 69 1 17 2 18 2 14 2 7
NodeGoat 22 24 44 42 83 84 79 80 235 327 262 293 3 32 23 49 9 14 19 25
Juice Shop 47 64 47 60 29 29 49 49 20 229 33 104 19 19 19 19 4 7 4 8
InsecureWebApp 11 24 7 26 59 102 58 75 66 128 130 183 9 36 8 31 19 30 15 22
Cyclone Transfers 20 23 28 32 58 85 90 103 154 359 183 886 62 102 119 158 11 25 12 31
BodgeIt 19 49 12 39 126 149 102 125 51 145 90 252 70 89 134 110 74 94 70 92

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400
Re

po
rt

ed
 V

ul
ne

ra
bi

lit
ie

s

Figure 2. Total Number of Reported Vulnerabilities per Scanner and Test Application.

is nearly always higher than without seeding. For instance,
Arachni reports 64 vulnerabilities in Juice Shop in configu-
ration S/- compared to 47 in configuration -/-. Among all 35
combinations of the five scanners and seven test applications,
there is an improvement in 33 cases and overall, there are just
two exceptions where the number of reported vulnerabilities
is not increased and remains unchanged (OWASP ZAP and
Wapiti when scanning Juice Shop).

The benefit of the technical solution to improve authenti-
cated scans is less obvious from the results in Figure 2. Using
again Arachni as an example, the 178 vulnerabilities reported
over all test applications in configuration -/A are only a small
improvement compared to the 162 vulnerabilities reported in
configuration -/-. With Wapiti, the results are much better with
an improvement from 178 to 319 reported vulnerabilities. But
in the case of OWASP ZAP, the numbers even get slightly
lower when authenticated scans are used, from 535 to 519.
When looking at individual test applications, the results vary
as well. For instance, when scanning Cyclone Transfer, Wapiti
reports 62 findings in configuration -/- and 119 findings in
configuration -/A, which is significant improvement. But when
scanning Peruggia with OWASP ZAP, 79 findings are reported
in configuration -/-, which drops to 62 in configuration -/A. In
general, more analysis is required to assess the impact of the
technical solution to improve authenticated scans, which will
follow in Sections IV-C and IV-D.

Furthermore, Figure 2 provides insights into the benefit of
using both technical solutions at the same time (configuration
S/A). Intuitively, one would expect this configuration to deliver
clearly the highest number of vulnerabilities with all scanners,
but this is not the case. With OWASP ZAP and w3af, the

number of reported vulnerabilities over all test applications
is slightly lower than in configuration S/-, with Arachni it is
almost the same as in configuration S/-, and only Skipfish and
Wapiti report clearly the highest number of vulnerabilities in
configuration S/A. So just like when using only the solution to
improve authenticates scans (see above), this result is currently
non-conclusive and more analysis is required.

Note that to make sure that authenticated scans were carried
out reliably, the involved requests and responses were analyzed
after each scan. This showed that it was indeed possible to
maintain authentication during all these scans, which confirms
that the technical solution to improve authenticated scans is
sound and works well in practice.

C. Reported Unique Vulnerabilities and Severity of Vulnera-
bilities

The previous evaluation in Section IV-B demonstrates that
when considering just the raw number of reported vulnera-
bilities, JARVIS works well, in particular with respect to the
technical solution to improve test coverage. However, it is not
clear whether there is a true benefit in practice because it
may be that the additionally found vulnerabilities are mainly
duplicates of vulnerabilities that are already found in the
basic configuration -/-, or are mainly non-critical issues. For
instance, it could be that the increased number of reported
vulnerabilities is mainly because the scanners report a higher
number of issues related to missing HTTP response headers
(e.g., missing X-Frame-Options headers), which are sometimes
reported once for every requested URL (which implies many
duplicate findings) and which are usually not very security-
relevant.

17

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A

Arachni OWASP ZAP Skipfish w3af

Critical 33 47 36 65 0 0 0 0 23 70 25 58 0 0 0 0

High 19 27 16 25 13 20 16 30 58 88 92 118 14 19 11 27

Medium 0 0 0 0 138 169 162 188 27 78 38 60 33 94 31 63

Low 25 21 20 21 155 181 146 157 299 575 427 529 21 30 24 29

Info 64 99 65 103 0 0 0 0 75 113 80 99 75 84 79 87

0

100

200

300

400

500

600

700

800

900
R

ep
or

te
d

V
ul

ne
ra

bi
lit

ie
s

Figure 3. Reported Unique Vulnerabilities per Scanner over all Test Applications, according to Severity.

To analyze this in more detail, the reports of the scanners
were processed with ThreadFix [21]. ThreadFix provides the
functionality to normalize reports of different scanners, to
eliminate duplicate findings, and to compare the results of
different scanners or different runs by the same scanner. Elim-
inating duplicate findings means that if a specific vulnerability
such as a missing HTTP response header is reported, e.g.,
ten times by a scanner, then it will be only included as
one vulnerability in the output generated by ThreadFix. In
addition, ThreadFix maps the severity levels of vulnerabilities
reported by different scanners to five standard severity levels:
critical, high, medium, low and info. The results of this
processing with ThreadFix are illustrated in Figure 3. For each
scanner, it shows the number of reported unique vulnerabilities
(i.e., without duplicates) over all test applications when using
the four different configurations. In addition, the number of
vulnerabilities is separated according to the standard severity
levels.

Note that Figure 3 and also the remainder of Section IV do
not include the scanner Wapiti, because at the time of writing,
Wapiti was not supported by ThreadFix. In addition, not every
scanner uses all five standard severity levels from critical to
info, as this depends on the scanner-specific severity mappings
done by ThreadFix. Specifically, ThreadFix maps the severity
levels of Arachni to the standard severity levels critical, high,
low and info (without using medium), in the case of OWASP
ZAP, only three levels high, medium and low are used (so
critical and info are not used), and in the case of w3af, level
critical is not used. The only scanner in Figure 3 that uses all
five standard levels is Skipfish.

When comparing Figure 3 with Figure 2, one can see
that the absolute heights of the bars, i.e., the total number of
reported vulnerabilities, are lower in Figure 3. For instance,

in the case of OWASP ZAP, the total number of reported
vulnerabilities went down from 535 to 306 in the basic
configuration -/- and from 684 to 370 in configuration S/-.
This is not surprising as duplicate findings (in this case 229
and 314, respectively) were eliminated by ThreadFix. As all the
bars got lower, this also shows that all scanners tend towards
reporting duplicate vulnerabilities, no matter whether JARVIS
is used or not. However, the more important result that can
be seen from Figure 3 is that for each scanner, the relative
heights of the bars when using different configurations are
still very similar as in Figure 2, which means that many of
the additional vulnerabilities that are reported when JARVIS
is used are indeed new vulnerabilities, and not just duplicates
of vulnerabilities detected in the basic configuration -/-. As a
side note, Figure 3 also puts the high number of vulnerabilities
reported by Skipfish into perspective, as a significant portion
of them have severity low and info and which are therefore
typically not very security-critical.

To quantify the benefit of JARVIS in more detail, Table VI
contains the numbers of reported unique vulnerabilities and
the relative improvements when using JARVIS.

First, the improvement that can be achieved with the
technical solution to increase test coverage is analyzed. For
instance, Table VI shows that when using Arachni, 141
unique vulnerabilities are reported in configuration -/-, which
is increased to 194 vulnerabilities in configuration S/-. This
corresponds to an improvement of reported vulnerabilities of
38%. With the other three scanners, the improvements are
21%, 92% and 59%. In the last row of Table VI, the reported
vulnerabilities of the four scanners are added up. This shows
that on average, the number of reported unique vulnerabilities
is increased by 60% when moving from configuration -/- to
S/-, which demonstrates that the technical solution to increase

18

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. REPORTED UNIQUE VULNERABILITIES PER SCANNER, AND
IMPROVEMENT BY USING JARVIS

Reported Unique Improvement
Scanner Config. Vulnerabilities by using JARVIS
Arachni -/- 141

S/- 194 38%
-/A 137 -3%
S/A 214 52%

OWASP -/- 306
ZAP S/- 370 21%

-/A 324 6%
S/A 375 23%

Skipfish -/- 482
S/- 924 92%
-/A 662 37%
S/A 864 79%

w3af -/- 143
S/- 227 59%
-/A 145 1%
S/A 206 42%

All four -/- 1’072
Scanners S/- 1’715 60%

-/A 1’268 18%
S/A 1’659 55%

test coverage works very well.
Next, the improvement of the technical solution to im-

prove authenticated scans is analyzed. As already seen in
Section IV-B, the improvement is much smaller. For instance,
Table VI shows that when using Arachni and when using
configuration -/A instead of configuration -/-, the number of
reported unique vulnerabilities actually goes down, from 141
to 137, which is a reduction of 3%. With the other scanners,
the improvements are 6%, 37% and 1%, and adding up
the reported vulnerabilities of the four scanners shows that
on average, the number of reported unique vulnerabilities is
improved by 18% when moving from configuration -/- to -/A.
It therefore can be concluded that the solution to improve
authenticated scans results in a significantly smaller improve-
ment with respect to the absolute number of reported unique
vulnerabilities than the solution to increase test coverage,
which confirms the observation made in Section IV-B.

Finally, the combined effect of using both technical solu-
tions is analyzed, i.e., configuration S/A. For the four scanners,
this results in improvements between 23% and 79% and on
average, an improvement of 55% can be achieved compared
to configuration -/-. As these numbers are quite similar as the
numbers that can be achieved in configuration S/-, i.e., when
using only the technical solution to increase test coverage, and
as the improvement that can be achieved in configuration -/A
(see above) is relatively small, this further underlines that the
effect of the technical solution to improve authenticated scans
only has a relatively small effect on the absolute number of
reported unique vulnerabilities.

Another important result that can be seen by looking at
Figure 3 is that the increased number of vulnerabilities when
using JARVIS is not just because several additional non-
security-critical issues were detected (i.e., severity levels low
and info). Instead, for each of the four scanners in Figure 3,
the distribution of the different severity levels appears to be
more or less constant, independent of the configuration that is
used. To quantify this in more detail, Table VII contains the
numbers of reported unique vulnerabilities and the absolute
and relative number of security-critical vulnerabilities among
them. For simplicity, we assume that severity levels critical,

high and medium are considered security-critical, while levels
low and info are considered non-security-critical.

TABLE VII. REPORTED UNIQUE VULNERABILITIES PER SCANNER AND
CONFIGURATION, AND FRACTION OF SECURITY-CRITICAL

VULNERABILITIES

Number of Fraction of
Reported Unique Security-critical Security-critical

Scanner Config. Vulnerabilities Vulnerabilities Vulnerabilities
Arachni -/- 141 52 37%

S/- 194 74 38%
-/A 137 52 38%
S/A 214 90 42%

OWASP -/- 306 151 49%
ZAP S/- 370 189 51%

-/A 324 178 55%
S/A 375 218 58%

Skipfish -/- 482 108 22%
S/- 924 236 26%
-/A 662 155 23%
S/A 864 236 27%

w3af -/- 143 47 33%
S/- 227 113 50%
-/A 145 42 29%
S/A 206 90 44%

All four -/- 1’072 358 33%
Scanners S/- 1’715 612 36%

-/A 1’268 427 34%
S/A 1’659 634 38%

To explain Table VII, the numbers of scanner Arachni
are discussed in detail. For instance, in configuration -/-,
Arachni reports 141 unique vulnerabilities, 52 of them are
security-critical (i.e., severity levels critical, high or medium).
This corresponds to a fraction of 37%. In configuration S/-,
74 of the 194 reported vulnerabilities are security-critical,
which corresponds to 38%. In the other two configurations
-/A and S/A, these fractions are 38% and 42%, respectively.
This shows that in the case of Arachni, the fraction of
security-critical vulnerabilities is approximately the same for
all four configurations. The same can be observed for the other
scanners in Table VII, with the exception of w3af, where the
fractions vary a bit more. The last row in the table contains
the added up numbers of all four scanners, which shows a
fraction of 33% security-critical vulnerabilities in configuration
-/- and slightly higher fractions of 36%, 34% and 38% in
the other three configurations, i.e., when using JARVIS. This
demonstrates that on average, JARVIS not only increases the
number of reported unique vulnerabilities, but that many of the
additionally reported vulnerabilities are security-critical, which
means that JARVIS provides a true security benefit.

To summarize this subsection, the following can be con-
cluded:

• The technical solution to increase test coverage sig-
nificantly increases the absolute number of reported
unique vulnerabilities. On average, the number of
reported vulnerabilities is improved by 60% when
moving from configuration -/- to S/-.

• The technical solution to improve authenticated scans
only has a small positive impact on the absolute
number of reported unique vulnerabilities. On average,
the number of reported vulnerabilities is improved by
18% when moving from configuration -/- to -/A.

• Using both technical solutions at the same time also
significantly increases the absolute number of reported
unique vulnerabilities. On average, the number of

19

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reported vulnerabilities is improved by 55% when
moving from configuration -/- to S/A. As this number
is similar to what is achieved in configuration S/-, i.e.,
when using only the technical solution to increase test
coverage, this further underlines that the effect of the
technical solution to improve authenticated scans only
has a relatively small effect on the absolute number
of reported unique vulnerabilities.

• JARVIS slightly improves the fraction of security-
critical vulnerabilities among all reported vulnerabil-
ities. This means the practical benefit of JARVIS is
even slightly better than the figures above. So, for
instance, when the number of reported vulnerabilities
can be improved by 60% when moving from config-
uration -/- to S/- (see above), then the improvement
of security-critical vulnerabilities is even a bit higher
than 60%.

For completeness, Figure 4 shows the number of unique
vulnerabilities reported per scanner and test application when
using the four different configurations, again separated ac-
cording to the severity levels. Without going into the details,
Figure 4 confirms that the conclusions of this subsection are
also valid when considering the test applications individually:
Using JARVIS results in a higher number of detected unique
vulnerabilities and the distribution of the different severity
levels per scanner and test application is more or less constant,
independent of the configuration that is used.

D. Re-Detection of Vulnerabilities in Advanced Configurations

Intuitively, additionally seeding a scanner and/or perform-
ing authenticated scans (i.e., using configurations S/-, -/A and
S/A) should always also report all vulnerabilities that are
detected when scanning without additional seeding and without
using authentication (i.e., in configuration -/-). However, this
is not the case. To demonstrate this, Figure 5 illustrates how
many of the vulnerabilities reported in the basic configuration
are also found when scanning in the other three configurations.
Just like in Section IV-C, this analysis is also based on the
vulnerabilities after they have been processed with ThreadFix,
which means that the scanner Wapiti is again not included and
which implies that the heights of the bars (i.e., the total number
of reported unique vulnerabilities) are exactly the same as in
Figure 3.

Once more, the results of scanner Arachni are used to
explain Figure 5 in details. The leftmost bar shows that in
configuration -/-, Arachni reports 141 unique vulnerabilities.
When using configuration S/-, then 194 findings are reported in
total. Of these 194 findings, 128 are “new” findings compared
to configuration -/- (indicated by the green part of the bar), and
66 are “old” findings compared to configuration -/- (indicated
by the gray part of the bar), i.e., findings that were already
detected in configuration -/-. This means that only 66 of the
141 vulnerabilities reported in configuration -/- are detected
again in configuration S/- while 75 of the 141 vulnerabilities
are missing, i.e., are not detected in configuration S/-. The same
can be observed with all scanners and with all configurations:
Whenever configurations S/-, -/A or S/A are used, a significant
portion of the vulnerabilities detected in the basic configuration
-/- are no longer detected. This means that in general, using
JARVIS delivers a significant number of new findings, but also

misses several of the findings that are reported when JARVIS
is not used.

The direct consequence of this observation is that the in-
crease of newly detected vulnerabilities is significantly higher
than the increase of the absolute number of detected vulnera-
bilities as discussed in Section IV-C. To analyze this in detail,
the relevant numbers are included in Table VIII.

TABLE VIII. REPORTED UNIQUE NEW VULNERABILITIES PER SCANNER,
AND IMPROVEMENT BY USING JARVIS

Reported Unique Improvement
Scanner Config. New Vulnerabilities by using JARVIS
Arachni -/- 141

S/- 128 91%
-/A 59 42%
S/A 161 114%

OWASP -/- 306
ZAP S/- 116 38%

-/A 126 41%
S/A 183 60%

Skipfish -/- 482
S/- 611 127%
-/A 419 87%
S/A 606 126%

w3af -/- 143
S/- 153 107%
-/A 85 59%
S/A 144 101%

All four -/- 1’072
Scanners S/- 1’008 94%

-/A 689 64%
S/A 1’094 102%

The third column in Table VIII contains the number of
reported new vulnerabilities per scanner and configuration and
directly correspond to the “New Vulnerabilities” numbers in
Figure 5. Looking at the numbers of Arachni, one can see
that in configuration S/-, 128 new vulnerabilities are detected.
Compared to the 141 vulnerabilities detected in configura-
tion -/-, this corresponds to an increase of newly detected
vulnerabilities of 91%. Likewise, 59 new vulnerabilities are
detected in configuration -/A, an increase of 42% compared
to configuration -/-. And finally, configuration S/A yields an
increase of 114% compared to the basic configuration -/-.
Similar results can be observed for the other three scanners.
Adding up the numbers of all four scanners result in an
increase of 94% in configuration S/-, 64% in configuration
-/A, and 102% in configuration S/A.

This analysis clearly shows that the effective benefit of
JARVIS, i.e., the increase of new vulnerabilities that can be
detected by using JARVIS, is significantly higher than the
increase of the absolute number of detected vulnerabilities
that was discussed in Section IV-C and listed in Table VI.
For instance, in configuration S/-, there is an improvement
of 60% on average with respect to the absolute number of
vulnerabilities (see Table VI), but there is an improvement of
94% on average with respect to newly detected vulnerabilities.
In addition, this analysis puts into perspective the previous
conclusion that the technical solution to improve authenticated
scans has only a relatively small positive impact. While the
increase of the absolute number of vulnerabilities is indeed
relatively small (18% on average, see Table VI), the increase
of newly detected vulnerabilities is 64% on average, which
is significantly higher. And in configuration S/A, the newly
detected vulnerabilities can be increased by 102% on average,
whereas the absolute increase according to Table VI is only

20

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

Critical 5 6 5 6 2 3 2 1 4 7 2 9 5 16 6 14 5 4 11 22 0 3 0 3 12 8 10 10
High 3 5 1 4 4 4 5 5 1 2 0 2 5 8 6 7 2 3 1 2 0 3 0 3 4 2 3 2
Medium 0
Low 4 3 1 2 5 6 8 9 2 1 1 1 5 5 4 5 3 2 1 0 1 2 1 2 5 2 4 2
Info 4 7 4 7 6 7 9 13 4 9 4 9 26 28 26 28 9 9 6 6 3 9 3 9 12 30 13 31

0
10
20
30
40
50
60

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 A

ra
ch

ni

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

Critical 0
High 2 4 1 3 0 0 0 2 3 6 1 8 0 0 0 0 3 3 11 11 0 2 0 2 5 5 3 4
Medium 51 42 41 39 17 20 37 36 16 22 19 19 1 1 1 1 22 24 30 30 4 13 4 12 27 47 30 51
Low 13 16 11 14 22 24 29 27 17 25 15 15 22 22 42 42 39 38 21 21 6 17 5 12 36 39 23 26
Info 0

0
10
20
30
40
50
60
70
80
90

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 O

W
AS

P
ZA

P

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

Critical 1 1 0 7 6 8 8 2 0 0 1 0 2 41 3 31 13 14 12 6 0 0 0 0 1 6 1 12
High 4 6 2 16 17 27 19 29 2 3 1 2 0 0 2 1 29 39 45 43 1 3 1 2 5 10 22 25
Medium 2 3 4 3 2 3 3 7 1 5 3 6 2 37 4 20 18 23 18 20 1 4 1 2 1 3 5 2
Low 20 57 37 43 12 41 31 49 33 64 51 64 3 37 4 16 62 108 67 76 11 31 11 28 158 237 226 253
Info 0 2 3 1 5 10 8 14 3 5 8 6 2 21 4 10 23 17 14 11 3 4 4 5 39 54 39 52

0
50

100
150
200
250
300
350

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 S

ki
pf

is
h

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

Critical 0
High 6 11 2 13 1 1 1 3 2 3 1 3 0 0 0 1 2 2 5 4 0 0 0 0 3 2 2 3
Medium 11 22 11 20 6 16 6 20 6 13 1 6 0 1 0 2 4 4 10 10 0 8 0 2 6 30 3 3
Low 2 2 2 0 1 3 1 1 2 2 2 1 1 2 1 2 0 0 1 1 0 2 0 2 15 19 17 22
Info 54 55 54 55 3 3 5 5 9 13 11 13 2 3 2 3 2 3 2 3 2 4 2 4 3 3 3 4

0
10
20
30
40
50
60
70
80
90

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 w

3a
f

Figure 4. Reported Unique Vulnerabilities per Scanner and Test Application, according to Severity.

21

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A

Arachni OWASP ZAP Skipfish w3af

New Vulnerabilities 141 128 59 161 306 116 126 183 482 611 419 606 143 153 85 144

Old Vulnerabilities 0 66 78 53 0 254 198 192 0 313 243 258 0 74 60 62

0

100

200

300

400

500

600

700

800

900
R

ep
or

te
d

V
ul

ne
ra

bi
lit

ie
s

Figure 5. Reported Unique Vulnerabilities per Scanner, according to New and Old Vulnerabilities.

55% on average. To summarize, this analysis demonstrates
that not only the technical solution to increase test coverage,
but also the technical solution to improve authenticated scans
significantly helps to uncover vulnerabilities that would not
be found otherwise and therefore, it can be concluded that
both technical solutions integrated in JARVIS provide a major
benefit to increase the number of detected vulnerabilities.

Determining the exact reasons why several of the vulnera-
bilities found in configuration -/- are no longer detected when
using the advanced configurations would require a detailed
analysis of the crawling components of the scanners, of
the specific behavior of the scanners when carrying out the
vulnerability tests, and of the web applications in the test set,
which is beyond the scope of this work. Nevertheless, it is
certainly possible to give some arguments that explain that the
observed behavior is reasonable:

• Providing the crawler component of a scanner with
additional seeds has a direct impact on the order
in which the pages are requested. A different order
implies different internal state changes within the web
application under test [14], which typically leads to a
different behavior of the web application both during
crawling and during testing, and therefore to different
findings.

• When doing authenticated scans, some of the re-
sources that do not require authentication are often
no longer reachable, e.g., registration, login and for-
gotten password pages. As deliberately insecure web
applications often use such resources to place common
vulnerabilities and as the evaluation of JARVIS is
based on deliberately insecure applications (see Sec-
tion IV-A), this most likely has a noticeable impact
on the evaluation results.

An important consequence of the observation that not all
vulnerabilities found in the basic configuration -/- are also
found when using the three advanced configurations is that
when testing a web application, a scanner should be used in all

four configurations to maximize the total number of reported
unique vulnerabilities (this will be analyzed in more detail in
Section V). And obviously, although this was not analyzed in
detail, an application that provides different protected areas for
different roles should be scanned with users of all roles, i.e.,
configurations -/A and S/A should be used once per role.

For completeness, Figure 6 shows how many of the vul-
nerabilities reported in the basic configuration are also found
when scanning in other configurations, this time separated
per scanner and per test application. Without going into the
details, Figure 6 confirms that the conclusions made above
are also valid when considering the test applications individ-
ually: When using the advanced configurations, several new
vulnerabilities are reported and at the same time, several of
the findings detected in the basic configuration are no longer
reported.

V. DETAILED EVALUATION FOCUSING ON SQL
INJECTION AND CROSS-SITE SCRIPTING VULNERABILITIES

The evaluations done in Section IV demonstrate that
JARVIS works very well to increase the number of detected
vulnerabilities in the sense that in the advanced configurations,
many additional vulnerabilities are detected and a significant
fraction of them are security-critical. Two questions are still
open, however. The first one is whether the additionally
detected vulnerabilities are true vulnerabilities or merely false
positives. In the context of a web application vulnerability
scanner, a false positive is a vulnerability that is reported by
the scanner, but that does not actually exist in the application
under test. Conversely, a true positive is a vulnerability that is
correctly identified by the scanner, i.e., one that is truly present
in the tested application. The second question is whether it
is indeed true that a scanner should always be used in all
four configurations to maximize the total number of reported
unique vulnerabilities. Based on the observations made in
Section IV-D, this is most likely the case, but it should
nevertheless be verified and quantified.

22

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A

BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko
New Vulnerabilities 16 10 3 10 17 11 9 18 11 15 5 15 41 35 15 37 19 8 16 29 4 15 1 16 33 34 10 36
Old Vulnerabilities 0 11 8 9 0 9 15 10 0 4 2 6 0 22 27 17 0 10 3 1 0 2 3 1 0 8 20 9

0

10

20

30

40

50

60

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 A

ra
ch

ni

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A

BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko
New Vulnerabilities 66 18 5 17 39 9 31 33 36 29 16 28 23 0 20 20 64 4 43 43 10 16 0 7 68 40 10 34
Old Vulnerabilities 0 44 48 39 0 35 35 32 0 24 19 14 0 23 23 23 0 61 19 19 0 16 9 19 0 51 46 47

0
10
20
30
40
50
60
70
80
90

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 O

W
AS

P
ZA

P

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

New Vulnerabilities 27 48 31 55 42 49 45 64 39 54 42 54 9 130 8 68 145 93 102 105 16 32 8 27 204 210 182 234
Old Vulnerabilities 0 21 15 15 0 40 24 37 0 23 22 24 0 6 9 10 0 108 54 51 0 10 9 10 0 100 111 110

0

50
100
150

200
250
300
350

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 S

ki
pf

is
h

-/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A -/- S/- -/A S/A
BodgeIt Cyclone Transfers InsecureWebApp Juice Shop NodeGoat Peruggia WackoPicko

New Vulnerabilities 73 71 51 70 11 13 2 19 19 21 12 16 3 4 0 6 8 2 16 16 2 12 0 6 27 30 4 11
Old Vulnerabilities 0 19 18 18 0 10 11 10 0 10 3 7 0 2 3 2 0 7 2 2 0 2 2 2 0 24 21 21

0
10
20
30
40
50
60
70
80
90

Re
po

rt
ed

 V
ul

ne
ra

bi
lit

ie
s

by
 w

3a
f

Figure 6. Reported Unique Vulnerabilities per Scanner and Test Application, according to New and Old Vulnerabilities.

23

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-/- S/- -/A S,A All -/- S/- -/A S/A All -/- S/- -/A S/A All -/- S/- -/A S/A All -/- S/- -/A S/A All

Arachni OWASP ZAP Skipfish Wapiti w3af
False Positives 0 0 0 0 0 0 0 3 5 5 9 24 15 24 60 0 0 0 0 0 4 8 1 11 21
True Positives 17 23 20 36 41 12 18 11 22 27 0 3 7 10 13 7 20 12 18 22 12 17 13 20 25

0

10

20

30

40

50

60

70

80
Re

po
rt

ed
 S

Q
Li

 a
nd

 X
SS

 V
ul

ne
ra

bi
lit

ie
s

Figure 7. Reported Unique SQLi and XSS Vulnerabilities per Scanner, over all Test Applications, according to True and False Positives.

To answer these final two questions, a more detailed anal-
ysis focusing on SQL injection (SQLi) and cross-site scripting
(XSS) vulnerabilities was done. To do this, all vulnerabilities
of these types were first extracted from the original reports of
the scanners. Then, the vulnerabilities were manually verified
to identify them as either true or false positives. This required
a lot of effort, which is the main reason why the focus was set
on these two types. Nevertheless, this serves well to answer the
two open questions and also to evaluate the true potential of
JARVIS in general as both vulnerabilities are highly relevant
in practice and highly security-critical. In addition, the test
applications contain several of them, which means SQLi and
XSS vulnerabilities represent a meaningful sample size. The
results are illustrated in Figure 7, for each scanner and over all
test applications. The green parts of the bars correspond to true
positives (true vulnerabilities) and the red parts correspond to
false positives (incorrectly reported vulnerabilities). Duplicates
were manually removed, so the bars represent the number of
unique vulnerabilities that were reported. In addition, Figure 7
not only shows the number of reported unique vulnerabilities
per configuration, but also the total number of reported unique
vulnerabilities when the findings of all four configurations are
combined (this is identified as configuration All).

The first observation when analyzing Figure 7 is that the
conclusions made in Section IV-C are still valid in the sense
that for each scanner, the number of reported unique SQLi and
XSS vulnerabilities is significantly increased when using the
advanced configurations compared to the basic configuration
-/- . This is not very surprising based on the analyses that were
done so far, but it demonstrates that JARVIS not only improves
the vulnerability detection performance when considering all
reported vulnerabilities, but also when focusing on specific and
highly relevant SQLi and XSS vulnerabilities.

In addition, Figure 7 delivers the answer to the first of
the final two questions. Looking at the bars in the figure, it
can be seen that using JARVIS does not have a significant
impact on the number of false positives that are reported. For
instance, Arachni, OWASP ZAP and Wapiti all produce no
false positives when used in the basic configuration -/-. When
using the advanced configurations, Arachni and Wapiti still do
not report any false positives, while OWASP ZAP produces

a relatively small fraction of false positives in configurations
-/A and S/A. On the other hand, scanners that report false
positives in the basic configurations (w3af and especially
Skipfish, which does not report a single true positive in the
basic configuration) also do so in the advanced configurations,
but overall, the fraction of false positives reported in the
advanced configurations remains in a similar order as in the
basic configuration and is not significantly increased. As an
example, the fractions of false positives reported by w3af
are 25% in configuration -/-, 32% in configuration S/-, 7%
in configuration -/A, and 35% in configuration S/A, so the
fraction of false positives reported in any of the advanced
configurations is not significantly higher than the 25% reported
in configuration -/-. The same is true in the case of Skipfish,
with the difference that the fraction of reported false positives
is very high in general. Overall, the conclusion therefore is
that JARVIS does not have a negative impact on the fraction
of reported false positives. This is a very important finding
because if using JARVIS resulted in a significantly increased
fraction of reported false positives, then the value in practice
would be very limited, even if the absolute number of true
positives were also increased.

Furthermore, Figure 7 also answers the second open ques-
tion and confirms what was already stated in Section IV-D: It
is important to perform scans in all four configurations and to
combine the detected vulnerabilities to maximize the number
of reported unique vulnerabilities. This can easily be seen by
comparing the heights of the bars: For each scanner, the height
of the bar labeled with All is always greater than any of the
other four bars, which means that the sum of the vulnerabilities
detected in the four configuration (i.e., configuration All) is
always higher than the number of vulnerabilities detected in
any of the individual configurations (i.e., configurations -/-,
S/-, -/A and S/A). For instance, in the case of OWASP ZAP,
the four individual configurations report 12, 18, 14 and 27
unique vulnerabilities, and combining all these vulnerabilities
results in 32 unique vulnerabilities, which is more than what
was detected in any of the individual configurations. This is
not only true when considering all vulnerabilities, i.e., true and
false positives combined, but also when just considering the
true positives. To analyze this in more detail, Table IX is used,
which is based on the numbers in Figure 7, but which only

24

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

considers the true positive vulnerabilities.

TABLE IX. REPORTED UNIQUE TRUE POSITIVE SQLI AND XSS
VULNERABILITIES PER SCANNER, AND IMPROVEMENT BY USING JARVIS

Reported SQLi and XSS Improvement
Scanner Config. Vulnerabilities by using JARVIS
Arachni -/- 17

S/- 23 35%
-/A 20 18%
S/A 36 112%
All 41 141%

OWASP -/- 12
ZAP S/- 18 50%

-/A 11 -8%
S/A 22 83%
All 27 125%

Skipfish -/- 0
S/- 3 –%
-/A 7 –%
S/A 10 –%
All 13 –%

Wapiti -/- 7
S/- 20 186%
-/A 12 71%
S/A 18 157%
All 22 214%

w3af -/- 12
S/- 17 42%
-/A 13 8%
S/A 20 67%
All 25 108%

All five -/- 48
Scanners S/- 81 69%

-/A 63 31%
S/A 106 121%
All 128 167%

From Table IX, it can be seen that for each of the five
scanners, combining the results of all configurations deliv-
ers more true positives than are reported in any individual
configuration. With Arachni, for instance, the best individual
configuration (S/A) reports 36 findings, but when combining
all four configurations, 41 findings are detected. The same
observation can be made for the other scanners, which demon-
strates that combining the vulnerabilities reported in all four
configurations always results in the highest number of unique
true positive vulnerabilities.

Compared to the basic configuration -/-, using configuration
All more than doubles the number of reported unique true
positive SQLi and XSS with every scanner. The smallest
improvement is achieved with w3af, where the number of
vulnerabilities is increased from 12 to 25 (a plus of 108%),
followed by OWASP ZAP (125%), then Arachni (141%), then
Wapiti (214%), and in the case of Skipfish, where not a single
vulnerability (true positive) could be detected in the basic
configuration, using JARVIS manages to detect 13 vulnera-
bilities (no %-benefit is included in Table IX with Skipfish
as configuration -/- reports 0 true positives). Combining the
numbers of all five scanners (see final row of Table IX)
shows that on average and by combining the vulnerabilities
reported in any of the four configurations, JARVIS manages
to increase the number of reported true positive SQLi and
XSS vulnerabilities by 167% compared to using the scanners
without JARVIS.

Finally, Figure 7 and Table IX also make it possible
to compare the scanners. In particular, based on the test
applications used in the evaluation and focusing on SQLi and
XSS vulnerabilities, it shows that Arachni performs best as it
finds the highest number of vulnerabilities without producing

a single false positive, followed by OWASP ZAP and Wapiti.
OWASP ZAP finds more true vulnerabilities than Wapiti, but
also reports a few false positives. Next, there is w3af, which
already reports a considerable fraction of false positives and
finally, there is Skipfish, which performs quite poorly, not only
with respect to true positives but especially also with respect
to false positives. This once more puts into perspective the
results of the first evaluation (see Figure 2), where Skipfish
reported many more vulnerabilities than the other scanners.

VI. EVALUATION OF COMBINING MULTIPLE SCANNERS

As the configuration effort to use JARVIS is small and
the configurations are scanner-independent (see Section III-C),
JARVIS makes it possible to use multiple scanners in parallel
in an efficient way. Therefore, in a final evaluation, the benefits
and limitations of using multiple scanners in parallel are
analyzed. To do this, the same vulnerabilities as in the previous
subsection are used, i.e., only SQLi and XSS vulnerabilities are
considered, which makes it possible to precisely analyze the
impact of using multiple scanners on the reported true and false
positives. Figure 8 shows the reported unique true and false
positive vulnerabilities when using individual scanners and
different combinations of multiple scanners and when using
the scanners in the basic configuration -/- and when combining
the results of all four configurations (i.e., configuration All).
The results are ranked from left to right in ascending order
according to the number of true positives that are identified in
configuration All.

Looking at the results in configuration All, the rightmost
bar combines the results of all five scanners, which obviously
delivers most true positives (51), but which also delivers most
false positives (86). The results also show that in this test
setting, Arachni performs very well on its own, as it finds 41
true positives (without a single false positive), which means
that the other four scanners combined can only detect 10
true positives that are not found by Arachni. Looking at
combinations of scanners, then the combination of Arachni
& Wapiti (Ar/Wa) performs well and manages to identify 45
of the 51 true positives without any false positives. Combining
Arachni, OWASP ZAP & Wapiti (Ar/OZ/Wa) is also a good
choice as it finds 47 true positives with only a few false
positives. This demonstrates that combining multiple scanners
is indeed beneficial to increase the number of detected true
positives without a significant negative impact on the number
of reported false positives. However, blindly combining as
many scanners as possible (e.g., all five scanners used here) is
not a good idea in general because although this results in most
true positives, it also maximizes the number of reported false
positives. Finally, comparing the results in configuration All
with the ones in configuration -/- demonstrates that even when
combining multiple scanners, configuration All increases the
number of detected true positives by more than 100% in every
single case, which again underlines the benefits of JARVIS.

Note that since seven test web applications that cover sev-
eral technologies were used in this evaluation, the results are at
least an indication that the suitable combinations of scanners
identified above (Arachni & Wapiti and Arachni, OWASP ZAP
& Wapiti) should perform well in many scenarios. However,
this is certainly no proof and it may be that other combinations
of scanners are better suited depending on the web application
under test. This means that in practice, one has to experiment

25

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All -/- All

Skipfish Wapiti w3af OW. ZAP Arachni Ar/OZ Ar/Wa Ar/w3 Ar/OZ/Wa A/O/W/w All
False Positives 9 60 0 0 4 21 0 5 0 0 0 5 0 0 4 21 0 5 4 26 13 86
True Positives 0 13 7 22 12 25 12 27 17 41 19 43 17 45 21 46 19 47 22 49 22 51

0

20

40

60

80

100

120

140
Re

po
rt

ed
 S

Q
Li

 a
nd

 X
SS

 V
ul

ne
ra

bi
lit

ie
s

Figure 8. Reported Unique SQLi and XSS Vulnerabilities using different Scanner Combinations, over all Test Applications.

with different scanner combinations to determine the one that
is best suited in a specific scenario.

VII. CONCLUSION

In this paper, we presented JARVIS, which provides tech-
nical solutions to overcome some of the limitations – notably
crawling coverage and reliability of authenticated scans – of
web application vulnerability scanners. As JARVIS is inde-
pendent of specific scanners and implemented as a proxy,
it can be applied to a wide range of existing vulnerability
scanners. The evaluation based on five freely available scanners
and seven test web applications covering various technologies
demonstrates that JARVIS works well in practice. In particular,
JARVIS manages to significantly improve the number of
reported vulnerabilities without increasing the fraction of false
positives, and many of the additionally found vulnerabilities
are security-critical. The most relevant evaluation results are
summarized in the following list:

• The technical solution to increase test coverage has
a major positive impact on the number of detected
vulnerabilities. Compared to using the scanners with-
out JARVIS (i.e., in the basic configuration -/-), the
absolute number of reported unique vulnerabilities can
be increased by 60% on average in configuration S/-.
When only considering newly detected vulnerabilities,
i.e., vulnerabilities that are not detected in the basic
configuration -/-, the increase is 94% on average.

• The technical solution to improve authenticated scans
has a relatively small impact on the absolute number
of reported unique vulnerabilities. On average, the ab-
solute number of reported vulnerabilities is increased
by 18% when moving from configuration -/- to -/A.
However, when considering the newly detected vulner-
abilities, the improvement is 64% on average, which
means the technical solution to improve authenticated
scans also has a significant positive impact on the
number of detected vulnerabilities.

• Using both technical solutions, i.e., when using con-
figuration S/A instead of configuration -/-, the absolute
number of reported vulnerabilities is increased by 55%
and the number of newly detected vulnerabilities is

increased by 102% on average. This means that on
average, using JARVIS with both technical solutions
more than doubles the newly detected vulnerabilities
compared to scanning without using JARVIS.

• JARVIS slightly improves the fraction of security-
critical vulnerabilities among all reported vulnerabil-
ities. This underlines the practical benefit of JARVIS
as it does not just report many additional irrelevant
findings, but truly increases the number of security-
critical issues that can be found

• A significant portion of the vulnerabilities that are
detected when a scanner is used without JARVIS (i.e.,
in the basic configuration -/-) are not detected again
when the scanner is used with JARVIS (i.e., in the
advanced configurations S/-, -/A and S/A). A direct
consequence of this observation is that the scanners
should always be used in all four configurations, i.e.,
in configuration -/- without using JARVIS and in
configurations S/-, -/A and S/A with using JARVIS to
maximize the total number of detected vulnerabilities.

• A detailed analysis using SQLi and XSS vulnerabil-
ities showed that JARVIS does not have a negative
impact on the fraction of false positives that are
reported. Scanners that report no false positives in
configuration -/- deliver no or only very few vul-
nerabilities when using JARVIS. And scanners that
report some false positives in the basic configuration
also do so in the advanced configurations, but overall,
the fraction of false positives remains more or less
constant, independent of the configuration. This result
is highly relevant for the applicability of JARVIS in
practice, as otherwise, the practical benefit would be
very limited.

• The same analysis demonstrated that it is indeed
important to perform scans in all four configurations
and to combine the detected vulnerabilities, as the
sum of the vulnerabilities that are detected in the
four different configurations is always greater than
the number of vulnerabilities detected in any of the
individual configurations. Also, this analysis showed
that by using JARVIS, the effectiveness of each of the

26

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

five scanners used in the evaluation could be more
than doubled and on average, the number of detected
true positive SQLi and XSS vulnerabilities could be
increased by 167%. This underlines that JARVIS is
both an effective and truly scanner-independent so-
lution to increase the number of detected security-
critical vulnerabilities.

The configuration effort to use JARVIS is small and the
configurations are scanner-independent. Therefore, JARVIS
also provides an important basis to use multiple scanners
in parallel in an efficient way. The provided analysis shows
that combining multiple scanners is indeed beneficial as it
increases the number of true positives, which is not surprising
as different scanners detect different vulnerabilities. However,
it was also demonstrated that blindly combining as many
scanners as possible is not a good idea in general because
although this results in most true positives, it also delivers
the sum of all false positives reported by the scanners. In the
evaluation, the combination of Arachni & Wapiti or Arachni,
OWASP ZAP & Wapiti yielded the best compromise between a
high rate of true positives and a low rate of false positives. As a
representative set of web application technologies was used in
the evaluation, it can be expected that these combinations work
well in many scenarios, but this is no proof and in practice, one
has to experiment with different combinations to determine the
one that is best suited in a specific scenario.

ACKNOWLEDGMENT

This work was partly funded by the Swiss Confederation’s
innovation promotion agency CTI (project 18876.1 PFES-ES).

REFERENCES

[1] D. Esposito, M. Rennhard, L. Ruf, and A. Wagner, “Exploiting the
Potential of Web Application Vulnerability Scanning,” in Proceedings of
the 13th International Conference on Internet Monitoring and Protection
(ICIMP). Barcelona, Spain: IARIA, 2018, pp. 22–29.

[2] WhiteHat Security, “2018 Application Security Statistics Report,” Tech.
Rep., 2018, URL: https://www.whitehatsec.com/blog/2018-whitehat-
app-sec-statistics-report/ [accessed: 2019-05-03].

[3] A. Doupé, M. Cova, and G. Vigna, “Why Johnny can’t Pentest: An
Analysis of Black-Box Web Vulnerability Scanners,” in Proceedings
of the 7th International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, ser. DIMVA’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 111–131.

[4] S. Chen, “SECTOOL Market,” 2016, URL: http://
www.sectoolmarket.com/price-and-feature-comparison-of-web-
application-scanners-unified-list.html [accessed: 2019-05-03].

[5] L. Suto, “Analyzing the Accuracy and Time Costs of Web Application
Security Scanners,” Tech. Rep., 2010, URL: http://www.think-
secure.nl/pdf/Accuracy and Time Costs of Web App Scanners.pdf
[accessed: 2019-05-03].

[6] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the Art:
Automated Black-Box Web Application Vulnerability Testing,” in Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, 2010,
pp. 332–345.

[7] E. A. A. Vega, A. L. S. Orozco, and L. J. G. Villalba, “Benchmarking
of Pentesting Tools,” International Journal of Computer, Electrical,
Automation, Control and Information Engineering, vol. 11, no. 5, 2017,
pp. 602–605.

[8] M. Qasaimeh, A. Shamlawi, and T. Khairallah, “Black Box Evaluation
of Web Application Scanners: Standards Mapping Approach,” Journal
of Theoretical and Applied Information Technology, vol. 96, no. 14,
2018, pp. 4584–4596.

[9] Y. Makino and V. Klyuev, “Evaluation of Web Vulnerability Scanners,”
in Proceedings of the IEEE 8th International Conference on Intelligent
Data Acquisition and Advanced Computing Systems: Technology and
Applications (IDAACS), vol. 1, Warsaw, Poland, 2015, pp. 399–402.

[10] N. I. Daud, K. A. A. Bakar, and M. S. M. Hasan, “A Case Study on
Web Application Vulnerability Scanning Tools,” in 2014 Science and
Information Conference, London, UK, 2014, pp. 595–600.

[11] S. Chen, “Security Tools Benchmarking: WAVSEP 2017/2018
- Evaluating DAST against PT/SDL Challenges,” 2017, URL:
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-
dast-against.html [accessed: 2019-05-03].

[12] S. El Idrissi, N. Berbiche, F. Guerouate, and S. Mohamed, “Performance
Evaluation of Web Application Security Scanners for Prevention and
Protection against Vulnerabilities,” International Journal of Applied
Engineering Research, vol. 12, no. 21, 2017, pp. 11 068–11 076.

[13] SNORT, “Network Intrusion and Prevention System,” URL: https:
//www.snort.org [accessed: 2019-05-03].

[14] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the State:
A State-aware Black-Box Web Vulnerability Scanner,” in Proceedings
of the 21st USENIX Security Symposium (USENIX Security 12).
Bellevue, WA: USENIX, 2012, pp. 523–538.

[15] A. v. Deursen, A. Mesbah, and A. Nederlof, “Crawl-based Analysis
of Web Applications: Prospects and Challenges,” Science of Computer
Programming, vol. 97, 2015, pp. 173–180.

[16] G. Pellegrino, C. Tschürtz, E. Bodden, and C. Rossow, “jäk: Using
Dynamic Analysis to Crawl and Test Modern Web Applications,” in
Research in Attacks, Intrusions, and Defenses, H. Bos, F. Monrose,
and G. Blanc, Eds. Cham: Springer International Publishing, 2015,
pp. 295–316.

[17] D. Zulla, “Improving Web Vulnerability Scanning,” DEF CON, 2012,
URL: https://www.defcon.org/images/defcon-20/dc-20-presentations/
Zulla/DEFCON-20-Zulla-Improving-Web-Vulnerability-Scanning.pdf
[accessed: 2019-05-03].

[18] PortSwigger, “Burp Suite,” URL: https://portswigger.net/burp [ac-
cessed: 2019-05-03].

[19] ThreadFix, “ThreadFix Endpoint CLI,” URL: https://github.com/
denimgroup/threadfix/tree/master/archived/threadfix-cli-endpoints [ac-
cessed: 2019-05-03].

[20] B. Urgun, “WIVET: Web Input Vector Extractor Teaser,” URL: https:
//github.com/bedirhan/wivet [accessed: 2019-05-03].

[21] ThreadFix, “Application Vulnerability Correlation with ThreadFix,”
URL: https://threadfix.it [accessed: 2019-05-03].

27

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Applying Quality Requirements Framework to an IoT System and its Evaluation

Tsuyoshi Nakajima
Department of Computer Science and Engineering

Shibaura Institute of Technology
Tokyo, Japan

e-mail: tsnaka@shibaura-it.ac.jp

Toshihiro Komiyama
Software Engineering Division

NEC Corporation
Tokyo, Japan

e-mail: t-komiyama@bk.jp.nec.com

Abstract—Modern information and communication technology
systems are more focused on their quality requirements since
they have been increasing their complexity. This paper shows
how the quality requirements framework of the ISO/IEC 25030
can be applied to an Internet of things application. The results
of this application are qualitatively evaluated to show the
usefulness of the framework for defining quality requirements,
and also its problems to be solved.

Keywords—Quality requirements; SQuaRE; IoT.

I. INTRODUCTION
Information and Communication Technology (ICT)

systems are increasingly used to perform a wide variety of
organizational functions and personal activities. The quality
of these products enables and impacts various business,
regulatory and information technology stakeholders. High-
quality ICT systems are hence essential to provide value, and
avoid potential negative consequences, for the stakeholders.

To develop such high-quality ICT systems, it is important
to define quality requirements, because finding the right
balance of quality requirements, in addition to well-specified
functional requirements, is a critical success factor to meet the
stakeholders' objectives.

Furthermore, the complexity of ICT systems has grown
exponentially with the advent of modern digital technologies
like Internet of Things (IoT). This has also led to focus on
more and more quality requirements that are critical to modern
ICT systems.

ISO/IEC 25030 quality requirements was published in
2007, and its revision process has been going on to expand its
scope from software to ICT systems [2]. The standard belongs
to ISO/IEC 25000 series: Systems and software Quality
Requirements and Evaluation (SQuaRE) has been developed
as the successor of the other standards on product-related
quality, including ISO/IEC 9126.

The quality requirements framework is applied to an IoT
system in our previous work [1]. This paper fleshes out the
contents to provide detailed discussion and evaluation of the
framework. Section II explains the quality requirements
framework and Section III describes the target IoT system,
and then the framework is applied to the system in Section IV,
and results of the application are qualitatively evaluated in
Section V. Section VI reviews the related works, and finally,
Section VII concludes this study.

II. QUALITY REQUIREMENTS FRAMEWORK

A. Architecture of the SQuaRE series
The SQuaRE series consists of five main divisions and one

extension division. The main divisions within the SQuaRE
series are:

• ISO/IEC 2500n - Quality Management Division.
The standards that form this division define all
common models, terms and definitions used by all
other standards in the SQuaRE series. The division
also provides requirements and guidance for the
planning and management of a project.

• ISO/IEC 2501n - Quality Model Division. The
standards that form this division provide quality
models for system/software products, quality in use,
data, and IT services. Practical guidance on the use of
the quality model is also provided.

• ISO/IEC 2502n - Quality Measurement Division.
The standards that form this division include a
system/software product quality measurement
reference model, definitions of quality measures, and
practical guidance for their application. This division
presents internal measures of software quality,
external measures of software quality, quality in use
measures and data quality measures. Quality measure
elements forming foundations for the quality
measures are defined and presented.

• ISO/IEC 2503n - Quality Requirements Division.
The standard that forms this division helps specifying
quality requirements. These quality requirements can
be used in the process of quality requirements
elicitation for a system/software product to be
developed, designing a process for achieving
necessary quality, or as inputs for an evaluation
process.

• ISO/IEC 2504n - Quality Evaluation Division. The
standards that form this division provide requirements,
recommendations and guidelines for system/software
product evaluation, whether performed by
independent evaluators, acquirers or developers. The
support for documenting a measure as an Evaluation
Module is also presented.

B. Quality requirements and quality models/measures
Quality in use is the extent to which the influence

(behavioral and attitudinal outcomes and consequences) of
use of an ICT product or service meets the needs of users or

28

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

other stakeholders in specific contexts of use (Figure 1).
Therefore, quality in use requirements (QIURs) specify the
required levels of quality from the stakeholders' point of view.
These requirements are derived from the needs of various
stakeholders. QIURs relate to the outcomes and consequences
when the product is used in a particular context of use, and
QIURs can be used as the target for validation of the product.

Figure 1. Quality in use

QIURs can be specified using quality in use model

(ISO/IEC 25010 [3]) and measures (ISO/IEC 25022 [5]).
Figure 2 describes characteristics and subcharacteristics of
quality in use model.

Figure 2. Quality in use model [3]

Product/Data quality is the capability of an ICT

product/data that enables stakeholders to meet their needs
(Figure 3).

Figure 3. Product quality and data quality

Product quality requirements (PQRs) specify levels of

quality required from the viewpoint of the ICT product. Most
of them are derived from stakeholder quality requirements
including QIURs, which can be used as targets for verification
and validation of the target ICT product.

PQRs can be specified using product quality model
(ISO/IEC 25010 [3]) and measures (ISO/IEC 25023 [6]).
Figure 4 describes characteristics and subcharacteristics of
product quality model.

Figure 4. Product quality model [3]

Data quality requirements (DQRs) specify levels of

quality required for the data associated with the ICT product.
These can be derived from related QIURs and PQRs. DQRs
can be used for verification and validation from the data side.

DQRs can be specified using data quality model (ISO/IEC
25012 [4]) and measures (ISO/IEC 25024 [7]). Figure 5
describes 15 characteristics of data quality model, which are
categorized by inherent and/or system dependent.

Figure 5. Data quality model [4]

C. System hierarchy and scope of quality requirements
Figure 6 describes the system hierarchy the SQuaRE series

suppose and the scope for each type of quality requirements.
An information system, as the scope of QIURs, includes

at least one ICT product, one user and relevant environments,
and also can include other stakeholders such as developers,
acquirers, regulatory bodies and society at large.

An ICT product, includes software, and also can include
data, hardware, communication facilities, and other ICT
products as its ICT components. PQRs are defined for the ICT
product or its constituents (including sub-ICT products,
hardware, communication facilities, software, and in some
case software components), and DQRs are defined for the data
inside the ICT product.

ICT Product

use

Other
stakeholders influence

Context of use

Users

Effectiveness Efficiency Satisfaction Freedom from risk Context
coverage

Effectiveness Efficiency Usefulness
Trust

Pleasure
Comfort

Economic risk
mitigation

Health and safety
risk mitigation

Environmental risk
mitigation

Context
completeness

Flexibility

Context of use

ICT product

Data

Capabilityuse

influence

across contexts of use

Other
stakeholders

Users

Functional
suitability

Performance
efficiency Compatibility Usability

Reliability SecurityMaintain-
abilityPortability

Functional
completeness

Functional
correctness
Functional

appropriateness

Adaptability
Installability

Replaceability

Time-behavior
Resource
utilization
Capacity

Co-existence
Interoperability

Appropriateness
recognisability

Learnability
Operability
User error
protection

Use interface
aesthetics

Accessibility

Maturity
Availability

Fault tolerance
Recoverability

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Modularity
Reusability

Analysability
Modifiability
Testability

Inherent System dependent

Accuracy
Completeness
Consistency
Credibility

Currentness

Availability
Portability

Recoverability

Inherent &
System dependent

Accessibility
Compliance

Confidentiality
Efficiency
Precision

Traceability
Understandability

29

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. System hierarchy and scope of quality requirements

Figure 7 shows an example of mapping of a small IoT

system, named Room open/close monitoring system, to the
SQuaRE system hierarchy. The system judges whether the
room is open or close based on luminance data measured
under the room light, and user can know it through web.

Figure 7. Mapping of Room open/close monitoring system to the SQuaRE

system hierarchy

The information system includes a target ICT system, its
users and relevant environment, which includes smartphones
(as non-target ICT products) and the physical layout and
phenomena in the room. The target ICT product includes a
sensor device and an IoT gateway as hardware, Xbee and Wi-
Fi as communication facilities, several software components
(such as “send sensor data,” “transmit sensor data,” “receive
and save data” and “judge room open/close”) as software, and
“luminance data” as data. If an ICT product is to be developed,
the quality of all the target entities must be addressed and
managed.

D. Quality requirements framework
The revision of ISO/IEC DIS 25030 [2] will provide a

framework for quality requirements, which consists of

concept of the quality requirements, and processes and
methods to elicit, define, use and govern them.

There are three important points:
• To elicit quality requirements, not only direct users of

the ICT product but also indirect users (using results of
the product) and other stakeholders, such as developers,
regulatory body, and society at large should be taken into
account. TABLE I shows which type of stakeholders is a
source of, a user of and relevant to which type of quality
requirements.

TABLE I. STAKEHOLDERS AND TYPES OF QUALITY

REQUIREMENTS

Stakeholder
Quality requirements

QIUR PQR DQR

User

Primary User S S S

Secondary User S S S

Indirect User S S

Other
stakeholder

Developer U S, U S, U

Acquirer U U U
Regulatory

body S S S

Society R

S: a source of / U: a user of / R: relevant to

• QIURs should be considered first because most of PQRs
are derived from QIURs, and they should be deployed
into PQRSs and DQRs of its sub-products (smaller ICT
products, software, data, hardware and communication
facilities) to meet them. Figure 8 describes how quality
requirements derive others in the system hierarchy.

Figure 8. Derivation of quality requirements [2]

• Quality requirements should be defined quantitatively,

in order not to be vague and unverifiable requirements

Information
System

ICT product

Communication
facility

Software Hardware

User

1..* 1..*

1..*

Software
component

1..*

*
Information
subsystem

*
ICT
component

* *

*

Software
subcomponent

Data

*

Relevant
environment

1..*

Other
stakeholder

*

ICT
component

ICT
component

ICT
component

ICT
component

QIURs

DQs

PQRs

Luminance data

�����

Arduino
Raspberry Pi

�	���
�	���������

Arduino
(Arduino IDE)

����

Raspbian
(Linux)

IoT gatewaySensor device

����

Smartphone

UserRelevant
Environ-
ment

Luminance
data

ICT product
(software)

Data

ICT product

Information system

Room light
Other environment

Luminance
sensor

 	�	
�	�����
�	����	����
����� ������
��

�	���������
Receive
and save
data

Judge room
open/close

ICT product
(Hardware)

ICT product
(Communication

Facility)

IoT server

Python PHP
Linux

Information system

Derived	from
Give	requirements	as	secondary	input,	such	as	guidelines
Give	requirements	as	constraints	(ICT	requirements)

ICT	product/Data

Users
Other	

stakeholders
(Regulator,	

etc.)	

ICT	product/Data

Software/Data

QIURs

PQR/
DQR

PQR/
DQR

PQR/
DQR

User Relevant	
environment

Non-target	Hardware	
&	Communication	

facility

Non-target	
Software/Data

Hardware	&	
Communication	

facility

PQR/
DQR

Entity	typeType	of	Quality	
requirements

A
xQRs xQRs can	be	defined	

for	Type	A	entity

Other	
stakeholders
(Developer,	
tester,	etc.)	

Non-target	
ICT	product/Data	(ICT	component)

30

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that depend on subjective judgement for their
interpretation. To specify the quality measure, ISO/IEC
25022 for QIUR, ISO/IEC 25023 for PQR and ISO/IEC
25024 for DQR should be used.

III. IOT SYSTEM AND TARGET SYSTEM

A. Characteristics of IoT systems
The IoT envisages the future in which digital and physical

things or objects can be connected by means of suitable
information and communication technologies, to enable a
range of applications and services. The IoT’s characteristics
include [8]:

• many relevant stakeholders involvement
• device and network heterogeneity and openness
• resource constrained
• spontaneous interaction
• increased security attack-surface

These characteristics will make development of the diverse
applications and services a very challenging task.

B. Target system
The target IoT system, to which SQuaRE’s quality

requirements framework is applied, is Elderly monitoring
system. Figure 9 shows its system architecture.

Figure 9. Elderly monitoring system [9]

The sensor devices of the system gathers sensor data of the

target elderly living alone. The sensors include motion,
luminance, temperature, sound (microphone) and vision
(camera) sensors at fixed points in the elderly’s house, and
wearable sensors to measure body temperature, pulse, blood
pressure, and acceleration of the target. These sensor data are
sent to the server of the service company, which monitors and
analyzes actions and body conditions of the target to provide
several services, such as informing the designated persons
(persons to monitor) of the dangerous situation about the
target, directly give advices to the target through the speakers,
and so on.

TABLE II shows the important data for this system in the
site of the service company.

TABLE II. IMPORTANT DATA FOR THE SYSTEM

Data Description Data items

Target Info

Personal data about

targets, including their

medical history

Target ID, Name, Birthday,

Medical history, Physical info,

Place

Parameters

for

monitoring

Parameters and rules

about what and how to

monitor

Target ID,

Sensor data (type, range,

accuracy, unit),

Sensor configuration,

Abnormity: (data, range)->action

Persons monitoring the target

Monitor data

Time series of data for

targets and system

components monitored

from sensors

Target ID,

Sensor data with time,

Status of system components

with time

Action log

Time series of targets'

actions the system

guesses

Target ID,

Sensor data with time,

Status of system components

with time

Figure 10 describes all the use cases of elderly monitoring

system.

Figure 10. Use cases of the elderly monitoring system

(written by the author)

Internet

Target
info

Parameters
for

monitoring

Monitor
data

Action
log

Android
terminal

Arduino

Zigbee
(C)

Zigbee
(R)

Server
(Linux)

Zigbee
(R)

HDMI

Bluetooth

Fixed
sensors

Wearable sensors

Camera

Screen

Mic/
Speaker

3G/4G or
WiFi

Smart
device

(temperature, pulse,
blood pressure,

acceleration)

(motion, luminance(room),
sound(kitchen),

temperature(stove))

Target

Person
monitoring

(target / family
/ nurse)

Service company
(operator/

maintainer/
data input operator)

3G/4G or
WiFi

1-1
Input Sensor
configuration

1-2
Edit target info

1-3
Define abnormities
and their treatment

1-4
Define monitors and

their authority

2-1
Gather sensor data

for the target

2-2
Monitor and control

3-1
Access monitor data

3-2
Take photos

3-3
Hold TV conference

5
Report results of

analysis

4
Monitor and analyze

system status

Service company
(data input operator)

Contractor
(target / family)

Elderly living alone
(target)

Person to monitor
(target / family /

nurse)

Target
info

Parameters
for

monitoring

Monitor
data

Action
log

Service company
(operator/maintainer)

31

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. APPLICATION OF THE FRAMEWORK

A. Stakeholder identification and selection of important
QIURs
In the first step, stakeholders of the target system are to be

identified, in which the quality requirements framework
provides categories of stakeholders: direct users, indirect user
and other stakeholders. Other stakeholders include users of
quality requirements (developers, acquirers and independent
evaluators), regulatory bodies, and society at large.

The stakeholders identified for the elderly monitoring
system are:

• Direct user: contractor, elderly living alone, family,
nurse, and service company’s operators

• Indirect user: service company’s managers
• Other stakeholder: Developer, Ambulance

In the second step, the outcomes and consequences the

target ICT product is required to provide should be identified.
First, for all stakeholders, their goals to achieve through using
the target system are extracted. In case of the direct users,
there must be some use cases of the system (Figure 10), in
which they are involved to achieve their goal. In case of
indirect users, who uses not the product itself but the outputs
of the product, and other stakeholders, which do not use it but
may get influenced from it, there are no use cases relevant to
their goals.

Since the quality in use model (its characteristics/
subcharacteristics), shown in Figure 2, categorizes outcomes
and consequences that the ICT product provide, this step is
simplified into selecting important quality in use
characteristics/ subcharacteristics for achieving stakeholders’
goals (and use cases).

TABLE III shows an example of selecting important QIURs
for direct users. One example is about contractor, which has
the goal to inform the service company of what he/she wants
them to do. This goal corresponds to Use case 1-2, 1-3 and 1-
4, and therefore, efficiency (of operation for input) and
freedom from risks (of inputting wrong parameters) are
selected as important subcharacteristics of quality in use.
Another example is about the elderly living alone has two
goals: to detect the designated abnormalities on himself/
herself to take the designated actions, and to obtain useful
information on his/her current body conditions and behavioral
patterns. The former goal corresponds to Use case 2-2
“Monitor and control,” and therefore effectiveness (early
medical treatment) and trust (on getting correct results on
proper timing) are selected as important subcharacteristics of
quality in use. The latter goal corresponds to Use case 5
“Report results of analysis,” and therefore effectiveness
(obtaining useful information on current body conditions and
behavioral patterns to provide objective insights) is selected.

These QIURs, which consist of selected subcharacteristics
and their brief description, are a starting point for further
enhancement to detailed quality requirements and for
derivation of PQRs and DQRs, which is described in Section
B.

TABLE III. QIURs SELECTION FOR DIRECT USERS

Stakeholder Goal
Use

case

QIUR (with target outcomes and

consequences)

Elderly living

alone

(direct user)

Detect designated

abnormalities for the

target, and take actions.

2-2

Effectiveness: early medical

treatment

Trust: correct results on proper

timing

Obtain his/her own

current body condition and

behavioral pattern.

5

Effectiveness: obtain info on

current body condition and

behavioral pattern to provide

objective insights.

Family

(direct user)

Confirm target's normality.
3-1

3-2

Effectiveness: see target's

condition anytime and anywhere

Be informed of target's

serious abnormalities.
2-2

Trust: correct results on proper

timing

Freedom from risks: prevention

from

* overlook of serious abnormalities

* unnecessary notice on trivial

abnormalities

Nurse

(direct user)

Confirm target's normality.
3-1

3-2

Effectiveness: remote nursing

Efficiency: early notice of patient's

abnormalities

Be informed of target's all

abnormalities.
2-2

Effectiveness: early treatment

Trust: correct results on good

timing

Freedom from risks: prevention

from overlook of serious

abnormalities

Create reports for asking

doctors to diagnose

abnormalities.

5 Efficiency: automatic reporting

Service

company's

operator

(direct user)

Monitor all equipment, and

take actions if something

wrong with them.

4

Efficiency: system monitor and

control

Effectiveness: preventive actions

before disfunction or malfunction

Maintain and update

system and equipment.
1-1 Efficiency: maintenance activities

Contractor

(direct user)

Inform the service

company of what he/she

wants them to do.

1-2

1-3

1-4

Efficiency: operation for input

Freedom from risks: prevention

from wrong input

TABLE IV shows an example of selecting important QIURs

for indirect users and other stakeholders.

TABLE IV. QIURs SELECTION FOR INDIRECT USERS AND OTHER

STALEHOLDERS

Stakeholder Goal
QIUR (with target outcomes and

consequences)

Service

company's

manager

(indirect

user)

Customer satisfaction
Usefulness

Trust

Prevention from

incidents

Freedom from risks: prevention from

* incidents by system faults or

malfunctions

* incidents by normal operation

* privacy leakage

* malfunction by malicious attack

Developer

(Other

stakeholder)

Achieve QCD goal Efficiency: development activities

Update the system to

implement new

functions periodically

Efficiency: maintenance activities

Ambulance

(Other

stakeholder)

Dispatch ambulance

cars on demand (by

nurse's call)

Freedom from risks: prevention from

unnecessary dispatches of ambulance

cars

32

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For instance, the service company’s manager has two
goals: to get customer satisfaction, and to prevent from
incidents that may affect the company’s business. To achieve
the former goal, usefulness (of the product) and trust (on
getting good services) are selected as important
subcharacteristics of quality in use. To achieve the latter,
freedom from risks (of system faults, security incidents and
so on) is selected.

Other stakeholders, such as developers and regulatory
bodies, also give some quality requirements on the target
entities.

B. Derivation of PQRs and DQRs
As described in previous section, QIURs for each

stakeholder have been elicited and documented. In the next
step, they recursively evolve into PQRs and DQRs for the
target entities at the lower level of the system hierarchy.

Figure 11 is a mapping of Elderly monitoring system to
the SQuaRE system hierarchy after the concept design
finished, in which half-tone processed IoT devices, data and
software components are the target entities whose quality
must be managed.

Figure 11. Target entities for quality requirements

for Elderly monitoring system

 The other entities, which are non-target ones, may

influence and give some constraints to the target entities that
include or interact with them.

To meet the corresponding QIURs, important product
quality characteristics/ subcharacteristics (shown in Figure 4)
for PQRs, and data quality characteristics/ subcharacteristics
(shown in Figure 5) for DQRs are selected. Some PQRs for
the target ICT product may be deployed into subcomponents
to meet them (denoted with ->). DQRs are identified for the
data files or data base used in the product.

TABLE V exemplifies how to derive PQRs and DQRs from
QIURs of the service company's manager. From freedom
from risks of incidents by system faults or malfunctions, three

PQRs of availability for server, and maturity and time-
behavior of the whole ICT product are identified. Availability
of server (PQRs) entails recoverability of all the data on
server (DQRs). Maturity of the whole ICT product (PQRs) is
deployed into maturity of all the subcomponents (PQRs),
including IoT devices, and software components, and
accuracy, completeness, and consistency of all the data
(DQRs). Time-behavior of the whole ICT product (PQRs) is
deployed into throughput of server (PQRs), which entails
efficiency and accessibility of monitor data (DQRs).

From freedom from risks of privacy leakage (QIURs),
confidentiality of monitor data, target info and action log
(DQRs) is derived, and then, one of monitor data entails
confidentiality of all the devices and communication
facilities from sensors to server, and one of target info and
action log entails confidentiality of server and web.

TABLE V. DERIVATION OF PQRs AND DQRs FROM QIURs OF

SERVICE COMPANY’S MANAGER

Stakeholder QIUR PQR DQR

Service

company's

manager

(indirect

user)

Freedom from

risks:

 prevention

from

* incidents by

system faults

or

malfunctions

Availability of

 server

Recoverability of

all the data on

server

Maturity

 ->Maturity of all

sub-components

Accuracy,

Completeness and

Consistency of all

data

Time-behavior

->Throughput of

 server

Efficiency and

Accessibility of

Monitor data

* incidents by

normal

operation

Maturity:

Accuracy,

Consistency and

Currentness of

Monitor data

* privacy

leakage

Confidentiality of all

the devices and

communication

facilities from

sensors to server

Confidentiality of

Monitor data

Confidentiality of

server and web

Confidentiality of

Target info and

Action log

* malfunction

by malicious

attack

Integrity: IoT

devices, network

Traceability of

Parameters for

monitoring

TABLE VI exemplifies how to derive PQRs and DQRs

from QIURs of the contractors (direct user). Use case 1-2, 1-
3 and 1-4 are associated with “parameter setting,” which is a
software component on the server, and therefore, the derived
PQRs and DQRs are respectively for the component and for
“parameters for monitoring” as its input/output data. From
efficiency (of operation for input), operability and

Sensor
device

Actuator
device

Sensor
device

Sensor
device

IoT
gateway

Server

Actuator
device

Internet

Smart
Device

PC
(Web browser)

Data receiving
& saving

Monitoring &
controlling
Parameter

setting

System
management

Info accessing &
reporting

Direct
connection

Radio
connection

Software
component

Target
info

Parameters
for

monitoring

Monitor
data

Action
log

Data
IoT device

IoT product

Service company
(data input operator)

Contractor
(target / family)

Elderly living alone
(target)

Person monitoring
(target / family /

nurse)

Service company
(operator/maintainer)

Information system

AmbulanceDeveloper

Other stakeholder

Service company’s
manager

half-tone processed box:
target entities of this product

33

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

accessibility of parameter setting as PQRs are derived, which
entails understandability of parameters for monitoring
(DQRs). From freedom from risks (of inputting wrong
parameters) (QIURs), learnability and user error protection
of parameter setting (PQRs) are derived, which entails
understandability of parameters for monitoring (DQRs).

When considering freedom from risks about an IoT
system, it is necessary to consider not only the risks relating
to the integrity of the system and the confidentiality of its
important data, but also the risks that the system gives some
damage to the other systems; e.g., some IoT devices in the
system infect malware to contributes to distributed denial-of-
service (DDoS) attacks [10][11]. This means that the product
quality requirements for IoT devices connecting to the
Internet should include general internet security requirements.

TABLE VI. DERIVATION OF PQRs AND DQRs FROM QIURs OF
CONTRACTOR

Stakeholder
Use

case
QIUR PQR DQR

Contractor

(direct

user)

1-2

1-3

1-4

Efficiency:

operation

for input

Operability and

Accessibility of

Parameter setting

(web)

Understandability

of Parameters for

monitoring

Freedom

from risks:

prevention

from wrong

input

Learnability and

User error

protection of

Parameter setting

(web)

Accuracy,

Completeness

and Consistency

of Parameters for

monitoring

C. Specifying quality requirements
Quality requirements framework requires to

quantitatively specify all the QIURs, PQRs and DQRs
specified by using the quality requirements structure, shown
in Figure 12.

Figure 12. Quality requirements structure

Selected important quality subcharacterisrics selected and
derived in Sections A and B are enhanced through it into
complete quality requirements.

The following example describes a PQR for “User error
protection of Parameter setting” in TABLE VI.

l Target entity: Parameter setting
l Selected characteristic: User error protection
l Quality goal with conditions:

Parameter setting assist contractor to correctly input
parameters for monitoring through web.

l Quality measure: Avoidance of user operation error
(Uep-1-G [6])

l Target value: 1
l Acceptable range of values: 0.98 - 1.00

V. QUALITATIVE EVALUATION
The following evaluation results are obtained from the

application of the quality requirement framework defined in
ISO/IEC DIS 25030 [2] to an IoT product of Elderly
monitoring system:

A. Stakeholder identification and selection of important
QIURs

� Merits:
Ø The categorization and examples of roles for

stakeholders makes it easy to identify stakeholders,
especially not overlooking indirect users and other
stakeholders other than direct users. In addition,
provided categories and roles ease to guess
stakeholders’ essential goals.

Ø Knowing the goals of stakeholders and their use
cases, it is easy to find the quality sub-
characteristics related to them.

� Issues:
Ø There may be a high possibility that relationship

patterns between the stakeholder’s roles and
quality sub-characteristics can be developed.

B. Derivation of PQRs and DQRs
� Merits:

Ø Because extracting the QIURs first and then
associating them with PQRs and DQRs, the
necessity and the priority of PQRs and DQRs are
much more visible than extracting them alone.
These would be useful in the steps of prioritizing
of and resolving conflicts between quality
requirements, which are in the quality request
framework but not applied this time.

Ø Mapping the target information system and the
ICT product to the SQuaRE system hierarchy
provides two advantages:
² to ease to clarify the target entities whose

quality should be managed, and
² to support to derivate PQRs and DQRs

recursively along with the hierarchy.
� Issues:

Ø It is difficult to check whether PQRs and DQRs it
are comprehensively derived from QUIRs. The
framework does not support how to check it. There
may be a high possibility to develop patterns of
mapping from the types of ICT products to a set of
important quality sub-characteristics.

Target
Entity

Quality
measure Target Value

Acceptable range
of values

Give criteria
for evaluation

Quality goals
with conditions

Quality
characteristics

state

measure

Quality model
(ISO/IEC 2501n)

Quality measures
(ISO/IEC 2502n)

Give
aspect

34

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Specifying quality requirements
� Merits:

Ø Because the quality requirement structure provides
a list of items required to quantitatively describe
the quality requirements and a list of quality
measures corresponding to the quality sub-
characteristics, it is very smooth to refine the
quality requirements if an appropriate measures
can be found.

� Issues:
Ø The set of measures provided in ISO/IEC 25022-

25024 are not enough to find the right ones for this
application. Especially for engineering purposes,
measures for a function and component are needed,
but such measure are very few.

VI. RELATED WORK
There are few reports on application of quality

requirements standards to somewhat large and complex
systems. Doerr et al. [10] reports their experience with using
the ISO 9126 [13] and IEEE-830 [14] as quality requirements
methods in three different settings, concluding that the
methods led to more complete quality requirements. Jardim-
Goncalves et al. [15] propose a test and evaluation framework
to assess quality of ICT product in the architectural design,
supported by the SQuaRE and Generalized Net.

Elicitation for of quality requirements is one of the most
important issues [16]. Robertson et al. [17] address that use
case is a good but not-always-useful method to elicit quality
requirements because some quality requirements can be
linked directly to a functional requirement, while some apply
to the product. To help elicit quality requirements, they
classified quality requirements into eight types: look and feel,
usability and humanity, performance, operational,
maintainability, security, cultural and political, and legal.
Plosch et al. [18] propose an elicitation method for quality
requirements using goal-oriented approach, which consist of
four steps: identify goals, specify quality aspects, derive
measurable factors and derive quality requirements. The
quality requirements framework of ISO/IEC 25030 provides
all the aspects which the above approaches have.

It is important to develop and update the quality
requirements techniques in order to deal with new
technologies. Noorwali et al. [19] propose an approach for
specifying quality requirements in the context of big data.
Knass et al. [20] propose a knowledge management
framework for knowledge about quality requirements, so that
a development team in agile can properly establish, share and
maintain them. The quality requirements framework of
ISO/IEC 25030 will be continuously updated so that it can be
applicable to new technologies.

VII. CONCLUSION AND FUTURE WORK
Modern ICT systems like IoT systems should put more

focus on their quality requirements. This paper provides the

brief introduction of ISO/IEC 25000 (SQuaRE) series, which
define quality models and measures, and how to define
quality requirements and evaluate quality of the ICT products.

And then, the IoT systems’ unique characteristics
compared to the other information systems are mentioned,
including many relevant stakeholders’ involvement, device
and network level heterogeneity and openness, resource
constrained, spontaneous interaction, and increased security
attack-surface, which may make development of the diverse
applications and services a very challenging task.

To solve this problem, we apply the quality requirements
framework of the ISO/IEC 25030 revision to an IoT system,
Elderly monitoring system [1], and this paper fleshes out the
contents and provide detailed discussion. The results of this
application make us understand the usefulness and
limitations (some issues to impede its smooth use) of the
framework. The usefulness of the framework includes: the
stakeholder categorization makes it easy to identify
stakeholders; extracting the QIURs first, from which PQRs
and DQRs are derived, makes their necessity and priority
visible; the SQuaRE system hierarchy clarifies the target
entities whose quality should be managed, and supports to
derivate PQRs and DQRs recursively along with it; the
quality requirement structure makes it smooth to
quantitatively refine the quality requirements.

More application of the framework to a variety of IoT
systems and much larger scale ones and some quantitative
evaluation should be needed to ensure its usefulness and to
clarify its limitations and problems.

REFERENCES
[1] T. Nakajima. “Applying Quality Requirements Framework to an IoT

System,” The Fourth International Conference on Fundamentals and
Advances in Software Systems Integration, Venice (Italy), September
16 - 20, 2018.

[2] ISO/IEC DIS 25030, Systems and Software engineering — Quality
requirements framework.

[3] ISO/IEC 25010:2011, Systems and Software engineering — System
and software quality models.

[4] ISO/IEC 25012:2008, Systems and Software engineering — Data
quality model.

[5] ISO/IEC 25022:2016, Systems and Software engineering —
Measurement of quality in use.

[6] ISO/IEC 25023:2016, Systems and Software engineering —
Measurement of system and software product quality.

[7] ISO/IEC 25024:2015, Systems and Software engineering —
Measurement of data quality.

[8] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke,
“Middleware for internet of things, a survey,” IEEE Internet of Things
Journal, Vol. 3, No. 1, pp. 70-95, 2016.

[9] S. Okazaki et al., “An Intelligent Space System and its Communication
Method to Achieve the Low Energy Consumption,” IEEJ-C Vol. 136,
No. 12, pp. 1804-1814, 2016 (in Japanese).

[10] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. “DDoS in the IoT:
Mirai and other botnets,” Computer, Vol. 50, No. 7, pp. 80-84., 2017.

[11] E. Bertino and N. Islam. “Botnets and internet of things security,”
Computer, Vol. 50, No. 2, pp. 76-79, 2017.

[12] J. Doerr, D. Kerkow, T. Koenig, T. Olsson, and T. Suzuki. "Non-
functional requirements in industry-three case studies adopting an

35

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

experience-based NFR method." 13th IEEE International Conference
on Requirements Engineering (RE'05). IEEE, 2005.

[13] ISO/IEC 9126, Software engineering — Product quality -- Part 1:
Quality model.

[14] IEEE 830-1998 - IEEE Recommended Practice for Software
Requirements Specifications.

[15] R. Jardim-Goncalves, Ricardo, and V. Taseva. "Application of
SQuaRE and Generalized Nets for extended validation of CE systems."
2009 IEEE International Technology Management Conference (ICE).
IEEE, 2009.

[16] S. Ullah, M. Iqbal, and A. M. Khan. "A survey on issues in non-
functional requirements elicitation." International Conference on
Computer Networks and Information Technology. IEEE, 2011.

[17] S. Robertson, and J. Robertson. Mastering the requirements process:
Getting requirements right. Addison-wesley, 2012.

[18] R. Plosch, A. Mayr, and C. Korner. "Collecting quality requirements
using quality models and goals." 2010 Seventh International
Conference on the Quality of Information and Communications
Technology. IEEE, 2010.

[19] I. Noorwali, D. Arruda, and N. H. Madhavji. "Understanding quality
requirements in the context of big data systems." Proceedings of the
2nd International Workshop on BIG Data Software Engineering. ACM,
2016.

[20] E. Knauss, G. Liebel, K. Schneider, J. Horkoff, and R. Kasauli.
"Quality requirements in agile as a knowledge management problem:
more than just-in-time." 2017 IEEE 25th International Requirements
Engineering Conference Workshops (REW). IEEE, 2017.

36

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Comparative Evaluation of Database Read and Write Performance
in an Internet of Things Context

Denis Arnst∗,
University of Passau, Passau, Germany

Email: ∗arnst@fim.uni-passau.de
Thomas Herpich†, Valentin Plenk‡, Adrian Wöltche§

Institute of Information Systems at Hof University, Hof, Germany
Email: †thomas.herpich@hof-university.de, ‡valentin.plenk@iisys.de, §adrian.woeltche@iisys.de

Abstract—In the context of the Internet of Things (IoT), there
is the need to manage huge amounts of time series sensor data,
if high frequency device monitoring and predictive analytics are
targeted for improving the overall process quality in production
or supervision of quality management. The key challenge here
is to be able to collect, transport, store and retrieve such high
frequency data from multiple sensors with minimum resource
usage, as this allows to scale such systems with low costs. For
evaluating the performance impact of such an IoT scenario,
we produce 1000 datasets per second for five sensors. We send
them to three different types of popular database management
systems (i.e., MariaDB, MongoDB and InfluxDB) and measure
the resource impacts of the writing and reading operations
over the whole processing pipeline. These measurements are
CPU usage, network usage, disk performance and usage, and
memory usage results plus a comparison of the difficulty for the
developers to engineer such a processing pipeline. In the end, we
have a recommendation depending on the needs, which database
management system is best suited for processing high frequency
sensor data in an IoT context.

Keywords–performance; benchmark; nosql; relational;
database; industry 4.0; mariadb; mongodb; influxdb; internet of
things; high frequency data acquisition; time series.

I. INTRODUCTION

Internet of Things (IoT), Industry 4.0 (I4.0), . . . these
current buzzwords and many more refer to data-based man-
agement strategies, i.e., a new way of processing big and
smart data. While many papers propose data-mining algorithms
to extract commercial value from a database or a data lake
(e.g. [2]–[4]), less address the computing requirements of
such algorithms in combination with the systems writing or
reading the data. The need for such an evaluation arises,
because of the urge to become more and more precise in
the technological advancement, the quality management has
to keep up for being able to minimize defective products.
We call this the industrial data analytics process. Without
proper systems for managing high frequency data of dozens
or hundreds of different sensors, it is for example nearly
impossible to detect electrical distortions in the power supply
of precision tools for producing highest quality engine parts.
Having possible candidates of systems for managing such
data without having to pay enormous sums of money, allows
to incorporate a new level of quality management and even
predictive analytics in new fields of technological systems, e.g.,
in production, surveillance, smart home, security business or
economics that would otherwise be too expensive or too slow.

In this paper, we therefore evaluate the computing re-
quirements on all parts of an IoT and I4.0 sensor system in

a benchmark scenario for being able to recommend one or
more systems depending on the needs of the industrial data
analytics process [5]. The benchmark scenario is based on one
of our research projects, where we collect and store ≈ 4GB

day
of sensor data. This does not sound much, but within a year
of measurement, this can grow to ≈ 1.5 TB

year , which is a lot for
a traditional database system. This is why we need to focus
on a small impact of resource usage for being able at all to
accomplish the goal of high frequency data management.

In our scenario, for simulating this big picture, we first
store generated time series sensor data to a database, which
simulates the acquisition, and then we retrieve parts of the data
for simulating the analytics part. We think that typical sensor
acquisition computing resources have only low performance
when sitting nearby the sensor (i.e., integrated circuits only
made for reading and sending the sensor data). For the data
to reach the database server, we believe that there might be
cases where no cable connection is set up but wireless data
transportation could be installed. Although the server itself is
normally well suited concerning its computational capacity,
the low resource impact on writing is an important goal. With
reading the data, we think most work is still on the database
server, which has to find and accumulate the needed data
points. The client that reads the data might be a normal desktop
computer or laptop, but also could be a smartphone or tablet,
so the performance impact on the reading client side also is
not to be left out. As the database server is the primary key
in performance here, since all the writing and reading work
is done there, our benchmark mainly focuses on the different
database system servers.

Of course, the typical database servers can be tuned to-
wards high performance reading or writing of data, but often
not towards both at once. This is especially the case, when a
fast retrieval is more important than a fast storage, for example
with time series data in predictive analytics. When comparing
different sensor readings at different points in time, relational
databases rely on B-tree indexes that allow a fast search for
data. These indexes are a huge performance bottleneck if
frequent updates are made. This stems from B-trees being
optimized for random fills and not for updates only coming
from one side of the tree. [6] propose structures like the
B(x)-tree to overcome this problem. Nevertheless, standard
databases do not implement specialized index structures in
most cases. Instead, specialized ”time-series” databases for this
use case exist (e.g. [7]–[10]).

To verify whether these databases are more suitable for
our application, we use the benchmark scenario presented in

37

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Section II that generates a standard load on all subsystems
of the setup, to compare relational, NoSQL and specialized
time-series databases. Section III presents our test candidates.

Moreover, our experience is that companies rely on systems
they already know and that have been proven to work stably.
Additionally, the developers often have a long experience in
standard database systems such as relational databases but
not in specialized databases like the mentioned time-series
databases. We believe that there are many installations of
traditional databases that are considered for the industrial
data analytics process instead of choosing a specialized tool,
because of the risk that comes with a software that has not been
tested and validated by the company yet. Therefore, we also
consider the implementation difficulty of specialized databases
in comparison to traditional systems, and we also develop
”sophisticated” algorithms for getting more performance out
of these systems, which would not be available with rather
”naive” implementations.

In Section IV, we describe different implementations we
developed for writing to the databases and reading from them.
We evaluated several ideas from [11], such as time series
grouping, which is such a more sophisticated approach.

To evaluate the database performance, we measure the load
on the involved infrastructural components, i.e., CPU, memory,
network and hard disk, and perform the benchmarking, as
described in Section V. We believe that the infrastructural
impact is most important for deciding which database is best
suited for a specific IoT or I4.0 scenario. Section VI discusses
and explains the findings. Section VII summarizes the paper
and gives recommendations for different needs in an industrial
data analytics process.

Figure 1. Simulated Test Data: Machine Angle (top) and four Data channels

II. BENCHMARK APPLICATION

One of our current research projects is using predictive
maintenance for analyzing data stemming from a complex
tool operating within an industrial machine tool. The tool
is equipped with 13 analog and 37 digital sensors recording
mechanical parameters during operation. The machine opens

and closes the individual tool components ≈ 3 times per
second, i.e., 3 working cycles per second.

Our data-gathering application records ≈ 300 samples per
cycle from the sensors and stores them in a database for
later analysis. Basically, it stores 1000 samples

sec . This keeps
the software structure simple and universal and requires few
computing resources on the system writing the data.

For our analysis on the client side we need to retrieve all
samples in one cycle. This does not correspond to the structure
of the database. Our client software maps the time-series data
to machine cycles by using one of the analog input channels
as abscissa. This channel, shown as top channel in Figure 1,
represents the rotatory angle of the machine tool’s main drive.
One rotation corresponds to one machine cycle. The time-
series data of this channel is a sawtooth wave. The period
of this wave is equal to the cycle time.

We use this scenario of writing and reading sensor data
as a base idea for this paper to benchmark the industrial data
analytics process. For the tests in this paper, we substitute
the actual instrumentation and signal conversion with a small
program that creates the sawtooth wave and four sine waves.
For more realistic data, we add some random noise. This
simulates the uncertainty of the sensor readings due to the
sensor resolution and electrical distortion. This prevents the
optimazation of the algorithm by hard-coding a machine cycle
duration, which would be possible if the data was completely
deterministic. Our reading algorithm, which searches for the
measured machine cycle by comparing the noisy abscissa data,
can be seen as very realistically usable this way.

Figure 1 shows the simulated data. In total, we simulate 5
analog channels with a resolution of 12 bit (represented using
2 bytes) and a sample rate of 1000 samples

sec . This corresponds
to a data rate of 10000bytes

sec of simulated data at the sensor.
Later, we add timestamps for each sample with millisecond
resolution, which increases the amount of data sent to the
database server.

Figure 2 shows the flow of the data through our setup. The
reason for this data flow is that we think this exactly matches
a typical industrial environment, where sensors gather mea-
surements (Data-Source), a piece of small software transmits
this information to a database server (Database Writer), and a
monitoring service reads the data from the database (Database
Reader).

In our setup, the Banana Pi single board computer is
running two separate applications: the first simulates sensor
data for replacement of real sensors. The second receives
the data and writes it to the database on our server. These
applications are linked via a Linux message queue. If the
second application is not reading fast enough to keep the
buffered data in the queue below ≈ 16 kByte, data is lost.
This is similar to reading a real sensor which does not cache
the data or waits for another application to read the data before
it overwrites its internal memory with new measurements.

Figure 2 then shows the database specific applications
with gray background. These writer and reader applications
are implemented each for InfluxDB, MariaDB and MongoDB,
because every database has it’s own application programming
interface. They use high-level libraries as far as possible to
access the database.

38

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ClientServerBanana Pi

Database
Reader

Data-Source
(Simulation)

Database
Database Writer

IPC-
Queue

TCP or UDP
over

fast Ethernet

HTTP or TCP
over

fast Ethernet

Figure 2. Block Diagram of the Test setup

For the transmission of the data, in the case of InfluxDB,
the writing application uses a very fast and easy to access UDP
interface. The advantage of this interface is that it is sufficient
to send a simple concatenated string that is then interpreted by
the InfluxDB server system for commitment of the data. For
reading InfluxDB, we use the HTTP interface with an high-
level library, which is based on TCP packets. This is because
the UDP interface is solely for writing and the HTTP interface
is the recommended way of querying data from InfluxDB.
MariaDB and MongoDB both use specific TCP connections
for the writing and reading of the data.

Concerning the hardware used in our setup, the single
board-computer is a Banana Pi M3. This system uses an ARM
Cortex A7 (8 x 1.8 GHz) with 2 GB DDR3-RAM and has
Gigabit Ethernet on board.

The three databases are run on a dedicated server with an
Intel Core i5-4670 CPU (4 x 3.4 GHz), 16 GB DDR3-RAM
(4 x 4 GB) and a 256 GB SSD on SATA 3.1 (6.0 Gb/s), also
with Gigabit Ethernet. This server is different from the server
used for the measurements in [1], because, unfortunately, the
old hardware broke.

The database reader is run on a dedicated desktop computer
with an Intel Core i7-4785T (4 x 2.2 GHz with SMT), 16 GB
DDR3-RAM (4 x 4 GB) and Gigabit Ethernet.

Concerning the software, the simulation application as well
as the InfluxDB and MariaDB writing and reading applications
are written in C, the MongoDB writing and reading applica-
tions are written in C++. We decided to use C-based languages
for performance reasons, so that the application benchmark can
be run with native platform speed.

All systems are running a Linux CentOS 7 without X.org
server and with the same level of system updates. They are
linked via a Gigabit Ethernet switch for non-blocking network
IO.

III. CHOICE OF DATABASES

Various publications like [8] or [12] list a huge number of
different databases. They distinguish three categories relevant
for us: Relational Database Management Systems (RDBMS),
NoSQL Database Management Systems (DBMS), and the
more specialized Time Series Databases (TSDB). For our
benchmark, we chose one system for each category. For the
selection we focused on mature (stable releases available for at
least three years) and free software with options for enterprise
support. We mainly consulted the database ranking website
[12] as a basis for selecting databases for our comparison.

As a representative RDBMS we selected the open source
database MariaDB [13]. It is a fork of the popular MySQL
database and widely used in web applications and relational

scenarios. [14] lists MySQL and its more recent fork MariaDB
combined as top RDBMS.

We selected MongoDB [15] as a DBMS advertised ex-
pressly for its usefulness in an IoT context with a lot of sensor
data. It is also the most promising document store [16].

As TSDB we chose InfluxDB [17], which claims to be
highly specialized in sensor data. This claim is confirmed by
the score in [18].

We believe that our choice stands for all major and cur-
rently important and well-known types of database systems in
the IoT and I4.0 industrial data analytics process.

IV. THE DIFFERENT IMPLEMENTATIONS

As seen in Figure 2 the database writers commit the sensor
data to the databases (see Section IV-A). The database readers
(see Section IV-B) read the written sensor data and then
calculate a sum for one machine cycle of sensor data, thus
simulating light analytical processing.

Each writer and reader is written for each database system,
so that we have at least three writing and three reading
applications for comparison purposes. Moreover, because of
the architecture of a database server (NoSQL vs. RDBMS vs.
TSDB), we also had to implement different ways of storing
the data. Additionally, during early development and because
of recommendations at MongoDB, we decided to write an
additional two variants in data storage and transport for both
MariaDB and MongoDB to optimize a degradation behavior
that occurs with what we call a ”naive” implementation. This
sums up to five different writing and five different reading
applications for our benchmark. Later, we will introduce a
sixth and seventh reading variant of the InfluxDB application
for being able to compare the reading better to the two variants
of the other database systems.

The difference is that in theoretical database lecture, we
are taught to normalize data for being able to freely filter and
combine without having redundant entries. This typical (or
”naive”) way of implementing database architectures in our
case leads to a performance degradation because of the high
frequency of values. The trouble lies in the frequent updates
of index structures and files on the hard disk. As a typical
hard disk drive (HDD) is able to perform ≈ 100 input or
output operations per second (IOPS), a traditional, normalized
approach would not be able to handle such high frequency
inserts of 1000 sensor reads per second. For still being able
to measure and compare this traditional approach, we had to
use solid state drives (SSD), which can reach about ≈ 100K
of IOPS today, which in our scenario is enough for not being
the bottleneck.

39

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Nevertheless, by using what we call ”advanced” imple-
mentation strategies, optimized towards this special problem
of high frequency inserts of data, we can reduce the number
of necessary IOPS of the database server and improve the per-
formance for having more capacity left to address increasing
workloads.

The ”advanced” approach caches all the sensor data of one
second (in our case, which could be more in reality, if needed)
and then only writes our 5 ∗ 1000 data points in one operation
to MariaDB and MongoDB. Interestingly, InfluxDB does the
same on the server side and caches the data until a larger block
is filled, before it writes the data down to the disk. Because
InfluxDB does this itself (as it is specialized for time series
data), we only had to write one version for this database server.

The aggregation of the sensor data in case of MariaDB
und MongoDB, which theoretically should be a lot faster than
the single insertion of data, unfortunately, has one big flaw
that has to be considered before following this approach: As
the data has to be cached in the writing application, it is not
available on the reading side, because it is not stored in the
database, yet. So when the monitoring application needs live
view of data, an additional pipeline from the sensor read to
the live monitoring system has to be established. As we write
the data to a database first, which allows advanced database
querying techniques not available in client software without
additional libraries, but does not allow live monitoring, we
decided that this flaw has no impact in our case. Moreover,
as our reading algorithm needs complete machine cycles for
analysis, our scenario is not in the need of having live access
to the sensor data. As we also believe that many analytical
applications have no advantage of live data and still work fine
when the data is available only one or more seconds later, this
flaw is not further discussed in this paper.

Each implementation itself is optimized concerning run-
time complexity for reduced influence on the benchmarks by
using memory usage techniques (i.e., stack memory alloca-
tion), database specific techniques (i.e., prepared statements),
and general algorithmic design principles. This way, we are
able to achieve optimal database performance results. This
is also a reason for the usage of C and C++ as underlying
languages, because this allowed us to tune our algorithms
towards optimal performance, which would not have been
possible, for example, with a language that has no pointer
arithmetic or that uses a garbage collector. It could, of course,
also be possible, to compare the optimized implementations
in C and C++ against implementations without optimizations
like prepared statements, and others, but as this paper is about
different database processing pipelines and wants to max out
the performance, not lay out all possible code optimization
techniques, this is not covered here.

A. Database Writer and Database Structure
Now, every millisecond, the simulator (i.e., sensor) writes

a new measurement value into its local memory, overriding the
previous measurement. The sensor uses an internal clock for
this, which wakes up every millisecond. Our simulator uses the
clock_nanosleep function for simulating this behavior of
updating a measurement each millisecond, like a real sensor
could do.

The database writer application running on the single-
board computer now reads that new measurement from the

simulator (i.e., sensor) over the IPC queue, five values per
millisecond, so that we have received 1000 measurements per
second with five sensor measurements each, at the end of a
second. As the database writer is running on a computer that
has a system clock being synchronized to the real time (via
network time protocol), compared to a real sensor that might
not have a synchronized system time or no time at all, the
timestamp for the datapoint is added by the database writer.
Listing 1 shows the structure of the datapoint that is then sent
to the database: It contains the added timestamp and the set of
the five digital values read from the sensor (i.e., simulator).
The timestamp added has a resolution of one nanosecond
(for further adjustments to even higher frequencies than 1000
values per second) and uses 8 + 4 = 12 bytes of memory for
representing the second as long and the relative nanosecond
part of the corresponding second as int. The digital values
are represented as 16-bit (2 byte) integers. Thus one datapoint
uses 12 + 5 ∗ 2 = 22 bytes of memory in sum.

Listing 1. One datapoint

1 struct data_point
2 {
3 int64_t s;
4 int32_t ns;
5 uint16_t measurements[5];
6 };

1) MariaDB – Individual datapoints: This is a straightfor-
ward implementation of the data structure (we called it ”naive”
earlier). We sequentially store each datapoint as five rows in the
database table, so we have a normalized table structure (i.e.,
each measurement gets its own row). This results in a high
rate of operations on the database (1000 writes

second). The impact
could be even higher, if we had written each measurement
in a single commit, but we aggregated each sensor readout
(with five values each) in one commit, so that five rows are
inserted per commit. This means that we have 5000 rows

second of
sensor data. Moreover, it means that the index also is updated
1000 times

second and the disk probably has a four to five times
higher load, because it has to write the database log, the data
itself, the index update, file system table updates and maybe
also file access and or modification times. For this reason, this
normalized approach is not suited for a traditional hard disk
drive.

Table I shows the structure of the data, which is based on
the data_point structure. A compound index is set on sec-
ond and nanosecond for later retrieval of single measurements
in our reading benchmark. number describes the index of the
sensor, so in our test, a value from 0 to 4 for the five different
sensor values, measurement is the corresponding sensor value.

TABLE I. MariaDB - Table structure of individual datapoints

Field Type
second bigint(20)
nanosecond int(11)
number smallint(5) unsigned
measurement smallint(5) unsigned

Our C implementation of the algorithm based on
libmariadb uses prepared statements, struct data binding
and a single commit for five rows per sensor read for higher

40

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance. These performance optimizations, the explicit
transaction preparation and commitment and the manual cre-
ation of tables necessary for a relational database (not needed
in the other database systems) make the MariaDB code the
largest and most complicated of all our implementations.

2) MariaDB – Bulk Datapoints: As mentioned in Sec-
tion IV and in the preceding paragraph, this implementation
collects all datapoints for one second in memory (i.e., same
int64_t s value), creates one JSON document per second
and writes this document out as one row per second. Thus,
we can store the data in bigger units, which reduces the load
dramatically. Instead of 1000 writes

second with 5000 rows per second,
we now only have 1 write

second with 1 row per second and only 1
index update per second.

For the storage of the JSON document, the table structure
is a little bit different. In MariaDB, the JSON field is an alias
for longtext field. Yet, the specialized JSON query commands
in MariaDB work for such fields, which could allow to later
query within the JSON data directly, though we did not use
this approach in our reading benchmark, because of other
reasons discussed later. Table II shows the used structure
with this approach. second has an index, again for faster
retrieval of the data later in our reading, size contains the
length of the text in the JSON field, and measurements is the
mentioned JSON document, built in linear time according to
the example in Listing 2. The JSON document now contains
the nanoseconds with the related measurements according to
the data_point structure. We did not save the amount of
measurements (five) within the JSON document, because we
have a defined data_point.measurements size of five.
This means that we can save this space in our scenario, as
we will never have fewer or more than five measurements per
sensor read per millisecond in our datapoints.

TABLE II. MariaDB - Table structure of datapoints in bulk

Field Type
second bigint(20)
size int(10) unsigned
measurements json

Listing 2. MariaDB - JSON Documents

1 {
2 "measurements": [
3 {"ns":346851124,"m":[389,792,602,315,552]},
4 {"ns":346933204,"m":[516,794,634,317,559]}
5 ...
6]}

The difficulty of this adaption is similar to the original,
individual approach, but in one detail is quite complicated:
As it is theoretically impossible to know how many mea-
surements one cycle will have (most of the time the stated
5000 measurements per second in our case, but this is not
guaranteed in a real-world scenario), we needed to implement
a dynamically growing character field for the JSON data. We
also needed to change the struct binding in the transaction
commitment for honoring the dynamical length of the JSON
data. As dynamic arrays copy their memory contents multiple
times while growing, this theoretically reduces performance.
But as we use a global string variable and as the length of the

datapoints as string is always very similar, the dynamic string
normally only grows during the first iteration and then is not
reallocated anymore in subsequent calls. This is why we can
state that the JSON document is built in linear time during the
benchmark.

3) MongoDB – Individual Datapoints: As a document-
orientated database, MongoDB allows for flexible schemata,
which allows us to leave out any schema creation. Data
is internally organized in BSON (Binary JSON) documents,
which are in turn grouped into collections.

Saving the individual datapoints according to Listing 1,
each measurement would be a document with the time of
measurement and the values organized as a JSON-array. This
is like a mixture of the individual MariaDB and the bulk
MariaDB approach, just with a JSON document per sensor
read, so with 1000 JSON documents per second.

The database supports setting an index on a field of a
document, so to support further searching of measurements,
we set an index on time as we have in MariaDB. With such a
structure, similar to the individual MariaDB approach, numer-
ous documents are created per second. After each document
has been added, the index also needs to be updated, which
results in a similarly high computational effort as with the
individual MariaDB approach.

The software for the MongoDB database writer is written in
C++ and uses mongocxx in conjunction with the bsoncxx
library. The document orientated approach of MongoDB makes
designing data structures very flexible. However, the freedom
leads to more work on the initial programming approach, as
there is no schema for clear orientation. Also the need to link
two libraries creates additional effort.

4) MongoDB – Bulk Datapoints: As already stated in
Section IV-A2, we can store a collection of datapoints at once.
In MongoDB, we can implement this with the structure shown
in Listing 3.

Listing 3. Datapoints in bulk

1 {
2 "time" : ISODate("2018-02-12T19:56:49Z"),
3 "measurements" : [
4 { "time" : ISODate("2018-02-12T19:56:49.13

5Z"), "sensors" : [0, 0, 0, 9, 347] }
,

5 { "time" : ISODate("2018-02-12T19:56:49.13
6Z"), "sensors" : [0, 2, 4, 10, 351]
},

6 ...
7]
8 }

The time value of the top-level document has again a
precision of one second. This document holds all datapoints
sampled during this second in an array, similar to the bulk
MariaDB variant. Every nested document contains the exact
time of its measurement and the actual sensor-values. This
is similar to the MariaDB JSON document, though the time
has no extra field and the nanoseconds have a defined format
(ISODate) that bloats the document. Of course, we thought
about using the nanosecond solely, like with MariaDB, but
MongoDB recommended the general use of ISODate, so we
followed this recommendation.

41

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With this approach, similar to MariaDB, the index has to
be updated only once per second resulting in optimized write
performance. Nevertheless, it must be considered that in this
case only a whole second but no parts of it can be retrieved
efficiently. Although MongoDB can retrieve values directly
within a JSON document, similar to MariaDB, the document
first has to be loaded and parsed, before the database server can
find the queried value. However, because of the high increase
in write throughput, we accept this drawback.

Similar to the MariaDB approach, the application creates
a document for a whole second and fills it until the second
has passed. Then it sends the document to the database server
once per second.

The documentation for MongoDB provides examples for
the use of streams and basic builders consisting of function
calls. We followed these examples as well as possible with
our implementation. Yet the use of nested structures and the
nature of C++-streams is poorly documented in the doxygen-
based manuals, increasing the implementation effort.

5) InfluxDB: As a time-series database InfluxDB has a
strict schema design we have to follow. Every series of data
consists of points. Each point has a timestamp, the name of
the measurement, an optional tag, and one or more key-value
pairs called fields. Timestamps have an accuracy of up to
one nanosecond and are indexed by default. The name of the
measurement should describe the data stored. The optional
tags are also indexed and used for grouping data. Data is
retrieved with InfluxQL, a SQL-like query language. Data is
written using the InfluxDB Line Protocol (Listing 4). This
is how the protocol is built up: The first string is the name
of the measurement, here simply measurement. Subsequently
follow the key-value pairs with five measurements and finally
a timestamp in nanosecond precision.

Listing 4. InfluxDB Line-Protocol example

1 measurement m0=0, m1=0, m2=0, m3=9, m4=347
1518465409001000000

The database writer for InfluxDB is written in C. The de-
fault API for InfluxDB is HTTP. For our high-frequency write
access however, we chose the UDP protocol, which is also
supported. We believe that the overhead is smaller when using
the UDP protocol, because HTTP is a very verbose protocol,
especially when sending small requests very frequently like in
our case. So in this case, the data is composed into the Line
Protocol with simple C-String functions and sent with the Unix
function sendto. Since no external code is required and a
custom design of the data structure is not possible, using the
database is straightforward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not necessary,
which is a benefit for software developers using it, when small
overhead is desired.

Of course, the choice of UDP has the probability of data
loss, which is acceptable in our use case, because we have
very high frequency data and the loss of single measurements
could be compensated, for example by interpolation, or just
be ignored, when reading. For enabling the UDP service of
InfluxDB, the OS was configured corresponding to the infor-
mation provided by InfluxData [19]. Because we use dedicated

computers linked together with a nonblocking switch, we had
no measurable UDP loss in our tests. When using a wireless
link between database writer and database server, maybe the
HTTP protocol should be preferred despite the large overhead.

With InfluxDB, additional implementation variants were
not needed, because the scheme is fixed and InfluxDB itself
caches, accumulates in bigger units and even compresses the
data, before it is written to disk. This is why InfluxDB is
the only database system that works out of the box for time
series data without additional effort in optimizing the datapoint
storage.

B. Database Reader
In our reading part of the benchmark, we want to simulate

an interactive monitoring application. We use the database
reader application variants to retrieve the data for three ran-
domly selected machine cycles per second. The rate of 3 reads

sec
is quite high for an interactive application, where a user
selects individual machine cycles for further analysis, but we
assume the user clicks very fast and often. A non-interactive
application, e.g., condition monitoring for predictive analytics,
will process the consecutive cycles at the end of the data
set, not randomly selected cycles. As the most recent data
might still be cached inside the database or page cache of the
operating system, and could also be selected by just jumping
to the end of the data set minus a selected range, our random
selection is an adequate usage scenario between worst and best
case. As we select by time and always have set indexes on the
time, the selection should not trigger sequential scans of the
data but make usage of our selected database structures.

t

t1

t2

t4

t3

t3

t5

t5

t (s)

0 0.334 1.334 1.667

value

0

1024

2048

3072

4096

Figure 3. Strategy to find start and end time for a machine cycle

Figure 3 explains our implementation of the reading al-
gorithm. We start at t, which is randomly selected in our
benchmark. From there we search forward to t1, the first point
after t where the data of the abscissa-track is bigger than half
the amplitude. This value is fixed, as we know the range of the
abscissa amplitude. From t1 we search backward to t2, the first
point before t1 where the data of the abscissa-track is smaller
than an eighth of the amplitude. From t2 we search backward
to t3, the first point before t2 where the data of the abscissa-
track is (again) bigger than half the amplitude. The start point
of our cycle is at t4 the minimum value of the abscissa-track
in the range t3 ≤ t4 ≤ t2. The end point of the cycle is at
t5. We find t5 by searching forward from t1 for the first point
where the data of the abscissa-track is (again) smaller than an
eighth of the amplitude.

This strategy can be implemented by issuing several
SELECT statements to the databases. In the following we refer
to this strategy as ”individual”.

Alternatively we can simply retrieve data for a longer time
span around the time t in question, e.g, bt − 1 sec . . . bt for

42

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

t − bt < 0.5 and bt . . . bt + 1 sec for t − bt ≥ 0.5, and
then perform the same search operation on the retrieved data
in memory. This alternative way is necessary for the write
strategies in sections IV-A2 and IV-A4 where the database
structure does not allow to retrieve individual samples with
high performance. We said that the database allows individual
selection with JSON query commands, but as the data has to
be loaded and parsed in either way, we could just send it to
the client application and work with the aggregated second
on the reading side, again, just as when we aggregated on the
writing side. This leads to the five (or seven with the InfluxDB
alternatives) different reading applications, so that we have a
direct comparison to the five writing applications. Moreover,
we believe that the direct queries are slower, for example in
MariaDB (see Section IV-A2), because for the selection of
several time points in one document, the data has to be loaded
several times in sequence for each select statement. When we
copy the whole JSON block to the client side, parse it in linear
time O(n) and search solely in-memory, we can guarantee a
single read on the database side and reduce the possible load
on the server, as well as guarantee the linear searching time
on the client side. In the following we refer to this strategy as
”bulk”.

For InfluxDB, while we can retrieve individual datapoints,
we also had a bulk variant that read the whole block with
all measurements as with the MariaDB und MongoDB bulk
variants, and we implemented a ”bulk-1” variant of this strat-
egy, which reads only the data in the column corresponding
to the abscissa track, i.e, the machine angle, as a block, and
reads the data for the other four columns in a second read
operation spanning t1 . . . t5. The reason for this is that a
machine cycle in our benchmark is ≈ 0.33 sec and when we
read a block of a whole second, many measurements (of ≈ 3
machine cycles) are transmitted, though only around one third
of the data (one machine cycle) is really needed. With our
MariaDB and MongoDB bulk variants, we had to transmit
the whole block to prevent the database from parsing the
data multiple times, but InfluxDB has the flexibility to load
blocks of different datapoints. We were able to investigate
the transmission bandwidth with this behavior, at least for
InfluxDB, too. This is why we have seven reading applications.

V. TESTING

Most applications in our context face limitations in terms
of computing power and network bandwidth. For example, IoT
sensor devices in the field of smart home are often battery pow-
ered and wirelessly connected. In I4.0 context, sensors have
no computing power for analytical data processing and they
often are connected via proprietary protocols and interfaces.
Although servers are often better equipped, the client systems
like tablets, smartphones or notebooks have limited computing
capacity in comparison. Consequently, when writing data from
the sensor to the server, in our scenario, we measure the
load on the single board computer, the load on the server,
and the network load. When reading data, we measure the
load on the server, the load on the client, and the network
load as well. With these measurement parameters, we have a
good overview of all critical components of the industrial data
analytics process.

For the concrete measurement process, we defined the
following: The system load on the computers is measured

in terms of CPU and memory usage. For this, we created a
script, which runs the specified application for 15 minutes,
after a warm-up phase of 5 minutes for filtering out cold-
start phenomenona like caching data in the operating system
page cache, or CPU clock changes due to heat or power usage
(especially on the single board computer, which reduces its
CPU clock under heavy load).

Before the test run stops the application, it uses two Linux-
System commands to gather the following parameters: LCPU

indicates the processor usage. We obtain this value with the
Linux command ps -p <pid> -o %cpu, which returns a
measure for the percentage of time the process <pid> spent
running over the measurement time.

The maximum value for one core is always 100%. There-
fore, on our 8-core single-board computer, the absolute max-
imum value would be LCPU = 800%. On the server with
4 cores, the absolute maximum value is 400%. The client has
simultaneous multithreading enabled, so its 4 cores are doubled
to 8 threads in the operating system, for an absolute maximum
value of 800% instead of 400%.

Lmem indicates the memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used, which is held in RAM.

Ldisk shows the the amount of disk used by a database
server. To determine this parameter, we first empty the respec-
tive database completely by removing its data folder. Then we
start the database and measure the disk space of the folder
before we test. After the test we measure again the used disk
space. Ldisk is then calculated as the difference between the
folder size after the test and the folder size before the test with
an empty database folder. du -sh <path> is used to get the
disk consumption of the respective data folder.

To put the results in perspective: Our benchmark applica-
tion gathers and transmits ≈ 26.4 MByte of raw data during
the 20 minutes of our test. This is calculated as the following:
We have 5∗2 bytes of sensor data plus 12 bytes of timestamp
data per sensor read. We read each sensor 1000 times per
second. This sums up to (5∗2+12)∗1000 = 22000 bytes per
second, or 22 kBytes per second. We measure 20 minutes (of
which 15 minutes are used for the CPU, memory and network
measurement). So we have 22 kBytes∗60 s∗20 min/1000 =
26.4 MBytes, if no sensor value is omitted (which can happen
in the UDP InfluxDB writing test).

LIO then shows the average disk input-/output in kBytes
s

caused by the database writing operation being measured using
the pidstat command. As we use a SSD on the server, we
have raised the hardware limit of the IOPS a lot, compared to
a traditional HDD.

Lnet finally shows the average bandwidth used on the
network. We obtain that value with the command nload.
We run our test in the university network and therefore have
additional external network load (for example DHCP packets,
ARP requests, discovery services, ...). However before each
test, we observe the additional network load for some time,
and as it was always smaller than 1kBytes

sec , we neglect it.
To put LIO and Lnet in perspective: In our benchmark we

transfer 22kBytes
sec from the simulator to the database writers,

43

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

but as the raw data has to be packed into UDP or TCP
packets, which itself are packed into ethernet frames, the
network load has to be larger than the raw data. Especially
in case of the RDBMS and NoSQL database, we have an
additional communication protocol overhead (like SQL in
case of MariaDB), which adds more data to transmit than,
for example, the InfluxDB Line Protocol does. Our network
bandwidth results show the data plus the overhead for being
able to see what the individual applications really need as
underlying network throughput.

As our network connection between the tested systems is
always 1Gbit

sec , our hardware network limit is high enough for
our benchmark. Nevertheless, when using slower or weaker
connections (i.e., wireless network), the network bandwidth,
that may also differ in time, has to be considered as a hard
limit.

Before each test, we reboot the operating systems used in
the test. In case of a write test, we then erase the database
folder before starting the database. Then we turn on the
simulator of the sensor data (in case of a write test), the
database server (always), log in to the single-board computer
(in case of a write test) or the client (in case of a read test) and
start the database writer or reader software for the currently
active database. The actual benchmark begins with restarting
the database reader or writer after the warm up phase. The
database folder of course is not deleted after the warm up
phase and is measured over the whole 20 minutes, because
this could interfere with the other measurement parameters
like CPU, memory and disk IOPS. The reason for this is that
index structures like B-trees are never completely filled, but
at least 50%. This is for faster insertion in consecutive insert
operations, as the tree does not have to be updated for each
insert operation. When the database is empty though, the tree
is small and has to expand fast during the first minutes, as
there are, in absolute numbers, not enough empty buckets
for holding all the high frequency values. After the warm-
up phase, we believe that the index tree is big enough (as
1
4 of the data is already written and the tree has enough
space left for approximately another fourth, when it is filled
between 50% to 75%), so that tree rebalancings do not occur
often, and have no noticeable impact on the other measurement
parameters anymore. Of course, this example calculation of the
tree structure is not exactly precise, but explains very well why
we do not clear the database folder again after the warm-up
phase.

So in the end, we let the system gather the CPU, network,
memory, and disk IOPS data only for the 15 minutes phase
and the results from the 5 minutes warm-up phase are thrown
away, except for the disk usage, as stated. The performance
data detailed in Section VI is gathered by two scripts running
on the computers used for the test, which start and stop the
applications and measure the resource usages. We test each
database server and each writing-reading application bundles
sequentially, as testing everything in parallel would interfere
with each other’s measurements.

VI. RESULTS

Tables IV and V show our results for writing, respectively
reading. Figures 4 and 5 then visualize the data in relation to
the maximum values for each criterion.

To directly compare all our candidates, we calculate a
combined score by weighing the parameters. We think that
there are parameters that are more important in an IoT and I4.0
context, than others. We distinguish between critical (weight
of 3), important (weight of 2) and normal (weight of 1).

Since we find that the CPU is the most critical and limiting
parameter, we give it a weight of 3 on the server. On the client
it might even be more limiting due to the Banana Pi’s low
power design, which also justifies a weight of 3.

In absolute terms, the RAM usage on server and client was
very small compared to the available RAM, and therefore we
give it a normal weight (with 1).

As already stated, we used an SSD for our benchmarks,
which would not be a limiting factor in our tests. Nevertheless,
as it is possible to have a server with an HDD, which in that
case would be critical, we value the LIO parameter with a
mixture of both scenarios as important (so 2).

As the disk usage already correlates with LIO (i.e., both
disk parameters), we weight it with 1, so that the impact of
the disk results is in a decent relation to the other component’s
results. Additionally, the disk usage is not critical, as disk space
is easy to expand, but for example a high-performance CPU
can not easily be doubled to increase processing power for
non-parallel algorithms.

In wide areas, network-bandwidth could be a limiting
factor, especially when we have wireless connections, for
example in smart home scenarios. As in our main context of
IoT and I4.0, where we believe it is easier to connect the
machines with cables (as they need a large power supply,
too), we give the network an important weight (of 2). Wireless
scenarios would require an even bigger weight.

Finally, we take the subjective difficulty of our implemen-
tations into account. We grade on a scale from 5 (i.e., most
difficult), to 1 (i.e., easy), and weight this parameter with a
normal weight. The individual rating is determined by the
experience with the client implementation described in Section
IV. We know that this parameter is not objective, but as we
explained in Section I, the developer experience is an important
argument in deciding which database is selected. Nevertheless,
because we do not want to give a subjective parameter an
important weight, we only weight it with 1, as stated.

Based on the gathered result data, we calculate a score
according to the following formula, where
i = {net, CPU,mem, IO, . . .} and
imp = {MongoDBindividual,MongoDBbulk, . . .}:

Scoreimp =

1− ∑i

(
Li

maxi(Li)
· weighti

)
∑

i weighti

 · 100%
In this formula, we first normalize the resource usage to the

maximum value for each column in Tables IV and V. Then we
sum up the weighted normalized values, and normalize again
to the sum of all weights. Lastly we ”invert” the value by
subtracting it from 1. Thus, the best score is 100%.

Table III shows the aggregated scores for writing and
reading. The total score is the average between write- and
read-score. For writing, we only have one InfluxDB appli-
cation, which is the reason for the same score in all three
InfluxDB-Writing cells. The ranking and data differs from our

44

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. Scored Ranking

Writing Reading Total
Implementation Score Rank Score Rank Score Rank
MariaDB Individual 15% 7 71% 5 43% 6
MariaDB Bulk 59% 1 83% 2 71% 1
MongoDB Individual 35% 6 50% 7 43% 7
MongoDB Bulk 54% 2 60% 6 57% 5
InfluxDB Individual 39% 3 93% 1 66% 2
InfluxDB Bulk 39% 3 80% 4 60% 4
InfluxDB Bulk-1 39% 3 82% 3 61% 3

previous benchmark in [1], as we repeated all benchmarks in a
completely new environment, due to the fact that the previous
setup and hardware was not available anymore. In the previous
paper, we also used analog circuitry and a signal-generator for
generating our sensor data, but as this device was no longer
available, for this benchmark, we use a simulator to generate
our data. Moreover, we adapt the weights to be more objective,
which also has an impact on the ranking. Nevertheless, the
order of the ranks is the same as last time, so we think our
new setup is quite comparable.

A. Write Benchmark Results
In the write benchmarks, all five implementations show

little CPU usage with LCPUServer
≤ 5% on the server and

with LCPUClient
≤ 14% a significant but not critical CPU

usage on the Banana Pi. MongoDB individual, MongoDB bulk
and MariaDB bulk are the least demanding implementations
with respect to the server’s CPU. MariaDB bulk also is least
demanding on the client’s CPU. We can see that the server
CPU usage is in all cases far from critical, with the client CPU
usage being much higher.In cases of InfluxDB and MariaDB
Individual, as the CPU usage is a lot higher, this can limit
the amount of sensor information or the frequency, that the
database is able to process, earlier, than in the other scenarios.

The parameters LmemServer
and LmemClient

are fairly
uniform and non critical. We can see that the server’s mem-
ory usage is a lot higher in all scenarios, compared to the
client’s memory usage. This is because of the database servers
being complex software products, requiring some memory to
operate. Nevertheless, with typical servers having often more
than 16 GBytes of memory nowadays, the memory usage is
always uncritical. As the client’s memory usage in the write
benchmarks is only a few megabytes per test run, we can
say that this also has no real impact. It is interesting that the
InfluxDB UDP Line Protocol writing application uses by far
the least amount of memory on the client. This does make
sense, because we had no additional libraries involved in this
writing application.

Lnet is also similar for all systems. With Lnet ≈
400 kBit/s MariaDB bulk needs less network bandwidth.
We think, this is because the data that is sent to MariaDB
in the bulk variant, is transferred as binary data (i.e., bulk
data binding) attached to the insert SQL statement. All other
variants have either more individual transport operations, or
transport the data with more describing variables. For example,
InfluxDB always sends the full measurement name and the
timestamp as full timestamp with nanosecond precision, while
MariaDB bulk splits the timestamp into the second (transmitted
once) and the nanoseconds since the last full second. Mon-
goDB also is more verbose because of the JSON-format with

the ISODate. We believe that this explains, why MariaDB bulk
has the least network demand in writing.

In terms of disk usage, the compressing databases (i.e.,
InfluxDB) have a clear advantage. With Ldisk = 5 MByte
InfluxDB is the best in the test. Nevertheless, the bulk variants
also need significantly less disk space than the individual
variants. This is easy to explain, because in the individual data
point rows, informations like the second are redundantly stored
for each row. Moreover, the index structures are larger, as they
have to reference more rows than in the bulk variants.

Concerning the implementation difficulty, InfluxDB was
the easiest, needed the fewest lines of code, no additional
libraries, and no schema to define. MongoDB Individual and
bulk was much more difficult, because it needed two additional
libraries (with BSON instead of JSON not being a well known
data structure) and more effort in creating a schema for the
document storage. MariaDB was most difficult in both cases,
as in the individual case, the schema and index structure was
more complicated (i.e., combined index, which needs attention
in the definition because it is sensitive to the order of the
definition of the columns), while in the bulk case, the schema
and index were easier to define, but additional effort was
needed for the buffering of the data up to one second, before
the commit. Both MariaDB variants needed the most lines of
code and had advanced techniques like prepared statements
and bulk data binding applied for optimal performance, which
increased the difficulty for the developer.

The way we wrote our data was relatively simple concern-
ing its structure and insertion since we made no preprocessing
for our analytical reading algorithm. Especially for InfluxDB
this made the implementation very easy and straightforward
because we could used the given schema. This led to a more
difficult implementation on the reading side.

With our weighting, however, MariaDB bulk is the best
ranked database. It needed the least resources concerning the
critical CPU usage and the important network usage. Its disk
usage was average, though the disk IOPS were worse than
MongoDB and InfluxDB. Although its implementation was
more difficult, it scored a little bit higher than MongoDB
bulk, especially because of the much higher CPU usage of
MongoDB. The InfluxDB writer only performed third, because
it needed a lot more CPU resources on the server side, due to
its buffering and compression mechanism.

B. Read Benchmark Results
In the read benchmarks, MongoDB individual could not

keep up with 3 reads per second, as we defined in our scenario.
This means that MongoDB individual has a noticeable latency
in the interactive application use case. With LCPUServer

≈
87% (single thread, so maximum is 100% here) it almost
blocked our database server, which would further delay parallel
queries from other reading clients.

MongoDB bulk was better concerning the CPU usage on
the server side, but caused a high load on the client with
LCPUClient

≈ 16%. We attribute this to the JSON-formatted
entries that the client had to parse. As we used a library for
parsing, we could not optimize the parsing process towards
this special JSON format, like we could do in MariaDB bulk.

This is why MariaDB bulk has the least CPU impact, as
it only refers to loading blocks of data and sending them

45

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

over without further processing, because the client application
parses the JSON data. This might have been different if we had
used the server side JSON query mechanisms that we wanted
to avoid because of the impact on the CPU usage. MariaDB
Individual obviously causes a higher CPU load as it has to
look up more individual table entries, and InfluxDB also uses
more CPU power than MariaDB, as it has to decompress the
data it previously compressed while saving.

For all approaches but MariaDB Individual, LIOServer
is

below the data rate of 22 kByte/s that is theoretically required
for reading 3 machine cycles per second (with each being
≈ 0.33 sec), i.e., the same data rate as in the write benchmarks.
We attribute this to the databases or operating system caching
data in memory and the relatively small amount of data stored
during our test (≈ 26.4 MBytes). With several hundred
gigabytes or even terabytes of data, we might have overcome
this problem when randomly selecting machine cycles. In
a real-world scenario, where sensor information for several
hundreds of sensors is logged over many years, we believe the
outcome for the disk IOPS in reading will be different to our
benchmark.

The memory footprint LmemServer
is comparable to the

writing benchmark, which is obvious in case of MariaDB
and MongoDB being complex database systems. Interestingly,
InfluxDB had much lower memory usage, which we believe
lies in the fact that when writing, InfluxDB buffered and
compressed the incoming data, while when reading, does
not have to buffer anything and uses decompression methods
normally being less memory intensive, as no code book has to
be built up and held in memory.

Concerning the client memory, InfluxDB individual and
bulk loading with all data were best in the memory usage.What
surprised us was the memory footprint of InfluxDB, when bulk
loading only the data of the abscissa track and then loading the
machine-cycle in a second run (bulk-1) was tested. Although
the CPU usage was lower, as less data had to be processed
on the client side, the memory usage was clearly higher than
in the other scenario. Unfortunately, we detected a memory
leak in the code that was used for this benchmark, after the
testing environment was already shut down and disassembled.
We believe that the memory footprint should have been similar
to the other two InfluxDB reading benchmarks.

The network bandwidth was much higher when reading
than while writing. We think that this lies in the fact that in case
of the individual queries, we sent six queries to the databases
that each had to run three times per second over the network,
and in case of the bulk queries, we always had to load two
seconds of data (six machine cycles) three times per second for
being able to select one machine cycle in the client application
then. InfluxDB performed best in its individual case, having
less impact than when writing, which does make sense, as the
protocol needed to transmit only the filtered data.

The difficulty rating is that MongoDB was the easiest
in this part, because the defined scheme used on writing
as well as the ability of MongoDB to help us with the
JSON (or BSON) parsing by its libraries, made it adequately
difficult to implement. InfluxDB in its individual variant also
was comparably easy to implement due to the given scheme
and simple InfluxQL language. The bulk variants were more
difficult in InfluxDB, because InfluxDB itself did not bulk-
store the data, so we had to manually select more data, though

InfluxDB could have filtered it for us server-side. We wanted
to compare the resource impact of bulk variant reading in
InfluxDB, but to sum up, this is not advisable, as the benefit
compared to individual loading is small in the resource usage,
but the implementation is a lot more difficult. MariaDB was
by far the most difficult part, because even sending out the
individual queries needed prepared statements and data binding
mechanisms, which bloated the code a lot. The MariaDB bulk
variant was the most difficult to implement, because we had
to write a complete JSON parser ourselves (to be fair, only a
highly optimized JSON parser for the underlying data structure
was built, no general use parser) for guaranteeing linear parsing
time for six in-memory queries, because we believe the that
the database itself would have parsed the data multiple times.

With our weighting, InfluxDB individual is the best
database for reading. This is because even though the overall
CPU usage was higher than in case of MariaDB bulk, the
other resource usages (like memory, disk IOPS and network
bandwidth) were all lower. Moreover, it was relatively easy to
implement, compared to the other variants.

We cannot recommend MongoDB individual, but Mon-
goDB itself already recommends to bulk-write and -load
the data. So at least, we can confirm this recommendation.
MongoDB bulk, however, was still not very fast. We believe
that this lies in the high CPU usage on the client, which
is caused by the BSON library we used, which parses the
document data in a more general and thus not optimized for
this specific use case way.

MariaDB Individual on the hand end is normalized, like
theory says is a good practice, but for this specific use case,
the memory, CPU and disk usage on the server are quite high
in comparison. MariaDB bulk is definitely the recommended
way, despite its difficult implementation, as it causes nearly
no load on the server and client, especially because we also
implemented a highly optimized JSON parser for our own
document structure.

C. Summary
In total we find MariaDB Bulk as the best implementa-

tions altogether with a score of 75%. However, the MariaDB
implementations are quite complex and in our case, they
were written by an experienced developer, who knew how
to optimize the workload. This means that RDBMS are still
capable of working with the types of data we investigated.

With 66% the InfluxDB individual implementations are not
far behind, while being much easier to implement. We believe
that if the developer is willing to learn a new database system
for this use case of time series data management in the context
of IoT and I4.0, InfluxDB might be the right choice.

VII. CONCLUSION

We introduced a complete benchmark set that was inspired
by real world scenarios from IoT and I4.0 scenarios and
benchmarked a set of three different types of database systems
with one or more variants of writing and reading applications
to simulate the behavior of high frequency monitoring and pre-
dictive analytics in the context of the industrial data analytics
process.

While we presented MongoDB as a good candidate in
[1], we had to observe a lack of performance in the read

46

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

benchmarks. This might be caused by our high-frequency, low
data volume read application. MongoDB obviously is better for
larger documents with different schemata than for relational
structured time series data.

MariaDB bulk scored best in the write benchmarks with a
low resource requirement, and it performed well in the read
benchmarks, especially because we were able to optimize a
lot, like custom JSON parsing. This demonstrates that ’classic’
RDBMS are able to keep up with more modern architectures
like the one we benchmarked, although they put some strain
on LIO, Ldisk and the developer.

The TSDB InfluxDB individual showed reasonably good
write and read performance while requiring the least amount of
database know-how. The naive read and write implementations
scored quite well, but we think that in very large installations,

the compression and server-side buffering mechanisms can
lead to an earlier exhaust of resources than when using a
RDBMS. If the server is more than capable enough and if
the developer wants an easier implementation, then InfluxDB
can be recommended.

With our results, individual developers and companies have
a base for deciding which database system, and how much
effort and resources are needed to implement high frequency
monitoring and analytical processing techniques for improving
their overall product.

ACKNOWLEDGMENT

This work was supported by the European Union from
the European Regional Development Fund (ERDF) and the
German state of Bavaria.

TABLE IV. Test Results: Write Benchmarks

Server Banana Pi Infrastructure Difficulty
LCPUServer

LmemServer
LIOServer

LCPUClient
LmemClient

Lnet Ldisk

MariaDB Individual 5% 170.835 kByte 1840 kByte/sec 9,4% 2.096 kByte 715 kBit/s 88 MByte 5
MariaDB Bulk 1% 160.834 kByte 417 kByte/sec 6,5% 2.232 kByte 395 kBit/s 32 MByte 5
MongoDB Individual 1% 257.166 kByte 71 kByte/sec 13,9% 3.561 kByte 710 kBit/s 58 MByte 4
MongoDB Bulk 1% 137.701 kByte 56 kByte/sec 8,9% 3.607 kByte 617 kBit/s 15 MByte 4
InfluxDB 5% 147.444 kByte 37 kByte/sec 11,7% 284 kByte 785 kBit/s 5 MByte 1
Weight 3 1 2 3 1 2 1 1

TABLE V. Test Results: Read Benchmarks

Server Client Infrastructure Difficulty
LCPUServer

LmemServer
LIOServer

LCPUClient
LmemClient

Lnet

MariaDB Individual 7% 208.896 kByte 46,9 kByte/s 0,4% 4.427 kByte 1025 kBit/s 4
MariaDB Bulk 0% 154.544 kByte 5,2 kByte/s 0,6% 3.979 kByte 3520 kBit/s 5
MongoDB Individual 87% 188.737 kByte 3,5 kByte/s 1,4% 5.487 kByte 6750 kBit/s 3
MongoDB Bulk 11% 121.252 kByte 1,6 kByte/s 15,9% 2.564 kByte 3520 kBit/s 3
InfluxDB Individual 8% 40.605 kByte 0,9 kByte/s 1,3% 1.533 kByte 530 kBit/s 3
InfluxDB Bulk 12% 37.272 kByte 1,1 kByte/s 7,0% 1.556 kByte 1898 kBit/s 4
InfluxDB Bulk-1 7% 26.970 kByte 1,2 kByte/s 3,4% 28.979 kByte 1025 kBit/s 4
Weight 3 1 2 3 1 2 1

47

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

$L_{CPU_{Server}}$ $L_{mem_{Server}}$ $L_{IO_{Server}}$ $L_{CPU_{Client}}$ $L_{mem_{Client}}$ L_{net} L_{disk}

Server Banana	Pi Infrastructure

Write

MariaDB	Individual MariaDB	Bulk MongoDB	Individual MongoDB	Bulk InfluxDB

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Figure 4. Overview of all Write Benchmark Values (normalized to respective Maximum)

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

$L_{CPU_{Server}}$ $L_{mem_{Server}}$ $L_{IO_{Server}}$ $L_{CPU_{Client}}$ $L_{mem_{Client}}$ L_{net}

Server Client Infrastructure

Read

Maria-DB	Individual Maria-DB	Bulk Mongo-DB	Individual Mongo-DB	Bulk Influx-DB	Individual Influx-DB	Bulk Influx-DB	Bulk-1

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

$L_{CPU_{Server}}$ $L_{mem_{Server}}$ $L_{IO_{Server}}$ $L_{CPU_{Client}}$ $L_{mem_{Client}}$ L_{net}

Server Client Infrastructure

Read

MariaDB	Individual MariaDB	Bulk MongoDB	Individual MongoDB	Bulk InfluxDB	Individual InfluxDB	Bulk InfluxDB	Bulk-1

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Unix function sendto. Since no external code is required and
a custom design of the data structure is not possible, using the
database is straight-forward and fast to implement.

Additionally, InfluxDB also offers built-in functions to
process data statistically and a client library is not absolutely
necessary, which is a benefit for software developers using it.

The choice of UDP has the probability of data loss, which
is acceptable in our use case. For enabling the UDP service
of InfluxDB, the OS was configured correspondingly to the
information provided by InfluxData.4

V. TEST CRITERIA

Most applications in our context face limitations in terms
of computing power and network bandwidth. Consequently we
measure the load on the single board computer, the load on
the server and the network load.

The CPU load on both computers is measured in terms
of CPU and memory usage. We created a script, which runs
the specified application for one hour. Before it ends the
application, it uses two Linux-System commands to gather the
following parameters.

LCPU indicates the processor usage. We obtain this value
with the Linux command ps -p <pid> -o %cpu which
will return a measure for the percentage of time the process
<pid> spent running over the measurement time.

The maximum value for one core is always 100%. On
our 8 core single-board computer the absolute maximum value
would be LCPU = 800%. On the server the absolute maximum
value is 600%.

Lmem indicates memory usage in kByte. We use
the amount of memory used by the process <pid> as
the sum of active and paged memory as returned by
the command ps aux -y | awk ’{if ($2 == <pid>
) print $6}’. It outputs the resident set size (RSS) mem-
ory, the actual memory used which is held in RAM.

Ldisk shows the the amount of disk used by a database. To
determine this parameter we first empty the respective database
completely by removing its data folder. Also we start the
database and measure the disk space of the folder before we
test. After the test we measure the used disk space again and
use the difference as result. du -sh <foldername> is used to
get the disk consumption of the respective data folder. To put
the results in perspective: Our benchmark application gathers
and transmits ⇡ 53MByte of raw data during the one hour of
our test.

LIO shows ...TODO
Plenk:
Beschreiben Lnet shows the average bandwidth used. We obtain that

value with the command nload. To put that number in
perspective: In our benchmark we transfer 10.000bytes

sec from
the microcontroller to the single-board computer.

We run our test in the university network and therefore
have additional external network load. However before each
test, we observed the additional network load and as it was
always smaller than 1kByte/s, we neglected it.

4https://github.com/influxdata/influxdb/blob/master/services/udp/README.md

LCPUServer
LCPUClient

(1)
LmemServer

LmemClient
(2)

Lnet Ldisk LIO (3)
(4)

VI. TESTING

Before each test, we restart both the Banana Pi and the
server. We then erase the database folder on the server and give
both systems ⇡ 5min to settle. Then we turn on the function
generators, log in to the single-board computer and start the
Database Writer software for the currently active database. The
actual benchmark begins with starting the Receiver Software.

We let the system gather data from the function generators
for 60 minutes. The performance data detailed in Section V is
gathered by two scripts running on the single-board computer
and the server during the test.

VII. RESULTS

Table IV shows our results. Figure 3 visualizes the data in
relation to the maximum values in respective to each criteria.

The Bulk implementations of MariaDB and MongoDB
are able to surpass all other databases in regard to server
processor usage. InfluxDB required the least CPU usage when
only regarding individual implementations. All implementa-
tions could handle the high data rate, however the rate of the
MariaDB individual implementation was fluctuating in tests.
The RAM usage of the InfluxDB components were the lowest.
Nonetheless, even the utilization of MariaDB - the database
with the highest memory usage - was absolutely seen so low
that it may not be relevant. The usage and activity of the
disk was significantly higher when using MariaDB compared
to the others. The InfluxDB and the bulk implementation of
MongoDB got by with the least amount of disk usage.

To directly compare all our candidates we calculate a
combined score by weighing the parameters. In a first step
we set the values of each column in Table IV in relation
to the columns maximum, so that we compare the relative
performance. In the next step before we add them up we assign
each parameter a weighting.

Since we find that the CPU is the most important parameter,
we give it a weight of 2 on server and as resources on
client are limited it is weighted with 2.5 there. In absolute
terms, the RAM usage on server and client was very little
and therefore we weight it with 0.25. For IO we used a SSD,
when using a HDD, IO usage could pose a larger problem
and therefore it is weighted with 2.5. As the disk usage is
already correlating with IO, we weight it with 0.5 so that the
impact of the disk results is in a decent relation to the other
component results. On difficult places, network-bandwidth
could be limited, potentially a data logging application could
be connected wirelessly, so we weight it with 1.5.

Lastly we take the subjective difficulty of our implementa-
tions into account. We grade on a scale from 5, most difficult
to 1 easy and weigh this parameter with 0.2. The individual
rating is determined by the explained experience with the client
implementation described in Section IV.

The weights are multiplied with each criteria and aggre-
gated, resulting in points. This way the maximum points a

Figure 5. Overview of all Read Benchmark Values (normalized to respective Maximum)

48

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] D. Arnst, V. Plenk, and A. Wöltche, “Comparative Evaluation of

Database Performance in an Internet of Things Context,” in Proceedings
of ICSNC 2018 : The Thirteenth International Conference on Systems
and Networks Communications, Nizza, October 2018, pp. 45 – 50.

[2] D. Wang, J. Liu, and R. Srinivasan, “Data-driven soft sensor approach
for quality prediction in a refining process,” IEEE Transactions on
Industrial Informatics, vol. 6, no. 1, Feb 2010, pp. 11–17, URL:
https://dx.doi.org/10.1109/TII.2009.2025124 [retrieved: 2018-08-14].

[3] G. Köksal, İ. Batmaz, and M. C. Testik, “A review of data mining appli-
cations for quality improvement in manufacturing industry,” Expert Sys-
tems with Applications, vol. 38, no. 10, 2011, pp. 13 448 – 13 467, URL:
http://www.sciencedirect.com/science/article/pii/S0957417411005793
[retrieved: 2018-08-14].

[4] F. Chen, P. Deng, J. Wan, D. Zhang, A. V. Vasilakos, and X. Rong, “Data
mining for the internet of things: Literature review and challenges,”
International Journal of Distributed Sensor Networks, vol. 11, no. 8,
2015, p. 431047, URL: https://doi.org/10.1155/2015/431047 [retrieved:
2018-08-14].

[5] J. Lee, H. D. Ardakani, S. Yang, and B. Bagheri, “Industrial big
data analytics and cyber-physical systems for future maintenance &
service innovation,” Procedia CIRP, vol. 38, 2015, pp. 3 – 7, URL:
http://www.sciencedirect.com/science/article/pii/S2212827115008744
[retrieved: 2018-08-14].

[6] C. S. Jensen, D. Lin, and B. C. Ooi, “Query and update effi-
cient b+-tree based indexing of moving objects,” in Proceedings of
the Thirtieth International Conference on Very Large Data Bases
- Volume 30, ser. VLDB ’04. VLDB Endowment, 2004, pp.
768–779, URL: http://dl.acm.org/citation.cfm?id=1316689.1316756 [re-
trieved: 2018-08-14].

[7] S. Acreman, “Top 10 time series databases,” URL:
https://blog.outlyer.com/top10-open-source-time-series-databases
[retrieved: 2018-08-14].

[8] A. Bader, O. Kopp, and M. Falkenthal, “Survey and Comparison of
Open Source Time Series Databases,” Datenbanksysteme für Busi-
ness, Technologie und Web - Workshopband, 2017, pp. 249 – 268,

URL: http://btw2017.informatik.uni-stuttgart.de/slidesandpapers/E4-14-
109/paper web.pdf [retrieved: 2018-08-14].

[9] D. Namiot, “Time series databases,” in DAMDID/RCDL, 2015,
URL: https://www.semanticscholar.org/paper/Time-Series-Databases-
Namiot/bf265b6ee45d814b3acb29fb52b57fd8dbf94ab6 [retrieved:
2018-08-14].

[10] S. Y. Syeda Noor Zehra Naqvi, “Time series databases and in-
fluxdb,” Studienarbeit, Université Libre de Bruxelles, 2017, URL:
http://cs.ulb.ac.be/public/ media/teaching/influxdb 2017.pdf [retrieved:
2018-08-14].

[11] A. M. Castillejos, “Management of time series data,” Dissertation,
School of Information Sciences and Engineering, 2006, URL:
http://www.canberra.edu.au/researchrepository/file/82315cf7-7446-fcf2-
6115-b94fbd7599c6/1/full text.pdf [retrieved: 2018-08-14].

[12] solidIT consulting & software development gmbh, “DB-Engines Rank-
ing,” URL: https://db-engines.com/en/ranking [retrieved: 2018-08-14].

[13] “MariaDB homepage,” URL: https://mariadb.org/ [retrieved: 2018-08-
14].

[14] solidIT consulting & software development gmbh, “DB-
Engines Ranking of Relational DBMS,” URL: https://db-
engines.com/en/ranking/relational+dbms [retrieved: 2018-08-14].

[15] “MongoDB homepage,” URL: https://www.mongodb.com/what-is-
mongodb [retrieved: 2018-08-14].

[16] solidIT consulting & software development gmbh, “DB-
Engines Ranking of Document Stores,” URL: https://db-
engines.com/en/ranking/document+store [retrieved: 2018-08-14].

[17] “InfluxDB homepage,” URL: https://www.influxdata.com/time-series-
platform/influxdb/ [retrieved: 2018-08-14].

[18] solidIT consulting & software development gmbh, “DB-
Engines Ranking of Time Series DBMS,” URL: https://db-
engines.com/en/ranking/time+series+dbms [retrieved: 2018-08-14].

[19] “UDP Configuration of InfluxDB,” URL:
https://github.com/influxdata/influxdb/tree/master/services/udp
[retrieved: 2018-08-14].

49

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Reliable IoT-Based Embedded Health Care System for Diabetic Patients

Zeyad A. Al-Odat∗, Sudarshan K. Srinivasan∗, Eman M. Al-Qtiemat∗, Sana Shuja†
∗Electrical and Computer Engineering, North Dakota State University

Fargo, ND, USA
†Electrical Engineering, COMSATS Institute of Information Technology,

Islambad, Pakistan
Emails: ∗zeyad.alodat@ndsu.edu, ∗sudarshan.srinivasan@ndsu.edu, ∗eman.alqtiemat@ndsu.edu,

†SanaShuja@comsats.edu.pk

Abstract—This paper introduces a reliable health care system
for diabetic patients based on the Internet of Things technology.
A diabetic health care system with a hardware implementation
is presented. The proposed work employs Alaris 8100 infusion
pump, Keil LPC-1768 board, and IoT-cloud to monitor the
diabetic patients. The security of diabetic data over the cloud
and the communication channel between health care system
components are considered as part of the main contributions
of this work. Moreover, an easy way to control and monitor
the diabetic insulin pump is implemented. The patient's records
are stored in the cloud using the Keil board that is connected
to the infusion pump. The reliability of the proposed scheme is
accomplished by testing the system for five performance charac-
teristics (availability, confidentiality, integrity, authentication, and
authorization). The Kiel board is embedded with Ethernet port
and Cortex-M3 micro-controller that controls the insulin infusion
pump. The secure hash algorithm and secure socket shell are
employed to achieve the reliability components of the proposed
scheme. The results show that the proposed design is reliable,
secure and authentic according to different test experiments and
a case study of the Markov model. Moreover, a 99.3% availability
probability has been achieved after analyzing the case study.

Index Terms—IoT, security, embedded system, health care.

I. INTRODUCTION

Cloud computing has been integrated with the Internet of
Things (IoT) to enable the network devices to provide resilient
services to all users and applications over the world. This
integration helps to simplify the access of the IoT-enabled
devices by all kind of users and applications, e.g., physical
devices [1]. IoT is able to connect ubiquitous systems (includ-
ing physical devices) using different network infrastructures to
provide efficient services all the time [2].

The physical devices that are linked to the (IoT) are
continuously increasing and emerging, which put a burden
on the IoT service providers to provide secure and efficient
services [3]. Physical devices are allowed to mimic human
being’s senses through various software and hardware that are
connected together using the IoT. For example, the use of a
smart home as an IoT-based application can turn on and off
the air conditioning system when sensing the home residents
leaving or coming their home [4]. Moreover, IoT-enabled
devices can be controlled using a web page or smartphone
applications, in the presence of Internet [5].

To utilize the IoT more efficiently, the industrial world has
moved toward the use of IoT in small board and chips. For
instance, manufacturers enable the internet connection on their
small boards by adding the internet accessibility option to their
products [6]. Moreover, different primitives can be connected
together through IoT-based applications, and they can access
a shared medium between them in the presence of IoT-cloud,
e.g., the health care records that are shared between the patient,
hospital, and eligible users can be accessed over the cloud
through mobile applications [7].

The security and authenticity of the IoT-based applications
become crucial, because many entities joined the world of
IoT, and the possibilities of attacks and collisions have in-
creased [8]. Therefore, the term of "Cyber-Physical System"
(CPS) emerged to provide the integration between physical de-
vices and cyber security [2]. Particularly, the integration of the
IoT-base health care records where the health records are saved
on the cloud and shared with different entities. Moreover,
recent improvements in the IoT designs help with the support
of health care systems, e.g., the tracking patient's records and
bio-medical devices using the IoT applications [9][10].

Medical devices for diabetic care have also joined the world
of IoT by supporting versatile design options [11]. However,
security issues need to be addressed to ensure device security
and the patient's privacy [12]. A system with an authentic
security mechanism is required to guarantee the integrity and
security of patient's records. One of the existing methods that
can be easily implemented in hardware is the Secure Hash
Algorithm (SHA) [13]. The SHA is an official hash algorithm
standard that was standardized by the National Institute of
Standards and Technology (NIST) [14].

SHA is compatible with hardware-level implementation,
which makes it the most desirable methods for hardware
designers to implement their reliable architectures [15]. The
implementation of IoT technology in hardware has become
crucial for high-performance applications [16]. The hardware
allows a high-speed computation to manipulate and retrieve
health records where health records are increasing day after the
other. Therefore, medical-hardware designers have moved to-
ward the use of IoT hardware-units in their designs to support
high-speed computation power for IoT related functions [17].

This paper introduces an IoT-based embedded scheme for

50

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a diabetic insulin pump. The proposed design elaborates
the mechanisms of data acquisition and monitoring between
different parties (patient, cloud, hospital, and legitimate users).
This design helps to share health data that are related to a
patient's diabetes disease along with other health records on
the cloud. All these data need to be secured and authenticated
when they are retrieved from the cloud. We use the SHA
algorithm to provide the security and authenticity terms for
our proposal.

The rest of the paper is organized as follows. Section II
provides preliminaries about the used components in this
paper. Section III presents a literature review about the related
work. The proposed methodology is presented in Section IV.
Results and discussions are detailed in Section V. Section VI
concludes the paper.

II. PRELIMINARIES

Before going through the details of our proposal, brief
descriptions about SHA-256, health care system components,
and performance characteristics are presented in the subse-
quent text.

A. Brief Description of the SHA-256

SHA-256 is employed in our design to provide data integrity
and authenticity. SHA-256 takes a message with an arbitrary
size then, through message compression operations, produces
a message hash of size 256-bit. Equation (1) shows how to get
the hash (h) from a message (M) using compression function
(H).

h = H(M), (1)

where M is the input message and h is the digest generated
using the hash algorithm H .

The secure hash algorithm is used to make sure that the
data have not tampered during transmission. For instance, the
message hash is computed at the sender side and appended
with the transmitted message, then at the receiver side the
received message hash is recomputed again and compared with
the appended hash value. For the unchanged message, the hash
values on both sides are equal, which means that the message
has not tampered during the transmission.

Figure 1 depicts the general procedure that is used to
compute the SHA-256 hash for any given message. The input
message of size less than 264 is padded first by adding 1 at the
end of the message then add the least number of zeros to make
it congruent to 448/512. then the message size is appended
to the end of the message as a 64-bit. At the end of the pre-
processing phase, the final message size becomes multiple of
512-bit. Afterward, each message block is processed using the
Initial Hash Value (IHV0) and SHA-256 compression function
(F). The output of each block is fed as IHV to the next block
calculations.

At the end of the process, the hash value that is generated
from the last block produces the final 256 bits hash. A detailed
description of the secure hash algorithm can be found in [15].

Unlike the secure hash algorithm, the keyed-hash message
authentication code (HMAC) involves a secure hash algorithm
and a secret cryptography key. But, the (HMAC) algorithm is
vulnerable against the length extension attack, which gives
the attacker an opportunity to access the secret data [18].
Therefore, we avoid using the HMAC algorithm in our design.
Though, data encryption functionality is the responsibility of
the employed hardware and the encrypted SSH connection.

B. System Components

The proposed design consists of components that integrate
together to form the overall architecture.

• Micro-controller unit. It is used to manage and control the
medical devices according to a predefined procedure. This
includes: delivers the control commands, daily patient's
readings, and provide the secure connection layer. In our
design, we use the Cortex-M LPC-1768 Keil board.

• Infusion Pump. It delivers the medical liquid (insulin) to
the patient on a timely basis. In our design, Alaris-8100
infusion pump module is used.

• IoT-based cloud storage. In our proposal, we use the IoT-
cloud as a medium between distributed medical institu-
tions, patients and caregivers.

• Security components. They include a secure communica-
tion path using the secure socket layer (SSL/TLS), and
cryptography mechanism to ensure the security of all
system components.

• Legitimate users. The list of all authorized users to use
the system according to predefined privileges.

C. Performance Characteristics

Today, some medical liquids are delivered programmatically
without human intervention, e.g., insulin [19]. With medical
devices that include embedded systems, a number of condi-
tions need to be met to consider them as reliable and secure
systems.

• Availability. The property that gives the probability of the
system being in the normal state for a period of time.

• Confidentiality. The property that ensures the patient's
information and system data are unavailable to unautho-
rized third parties.

• Integrity. All system data that can affect the treatment
of the patient must not be altered without the patient's
knowledge.

• Authentication. It means, only authorized parties or com-
ponents should be able to act as a trusted user of the
system.

• Authorization. The property of providing the verification
of certain actions before execution.

These characteristics will be discussed in Section V.

51

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Padding to block boundary (N * 512)
Message || 1 || 0's || Message-length

Message
 < 2^64

Padded
Message

Block 0
512 bit

Block 1
512 bit

Block 2
512 bit

Block N

512 bit

IHV0 F F F F
Hash

256 bits

Fig. 1. General architecture to compute the SHA-256 hash function.

D. Contributions

The proposed design aims to provide the following con-
tributions to the health care system, particularly diabetic
patients. We use an external micro-controller (Kiel LPC1768)
to program Alaris-8100 infusion pump. This design helps to
solve current problems in the infusion pump.

• On-time medication, where a patient can get all his
prescribed doses on time.

• Simplicity, affordability and the ease of use.
• Remote health record management through mobile appli-

cations or web browsers.
• Provide health service on the time of Off-Service physi-

cian.
• Provide secure and authentic health care service by em-

ploying cryptography and security approaches.

III. RELATED WORK

Recently, the IoT-based applications have involved in all
fields that influence Human life, especially, medical devices.
The use of IoT in health monitoring and control is employed
by different publications [9][13][20][21][22]. A novel IoT-
aware smart architecture for automatic monitoring and tracking
of the patient, personnel, and biomedical devices, was pre-
sented in [9]. The proposed work built a smart hospital system
relying on three components: Radio Frequency Identification
(RFID), Wireless Sensor Network (WSN), and smart mobile.
The three hardware components were incorporated together
through a local network to collect the surrounding environment
and all related parameters to a patient's physiology. The
collected data is sent to a control center in a real-time manner
where all data are available for monitoring and management by
the specialist through the Internet. The authors implemented a
Graphical User Interface (GUI) to make the data access more
flexible for the specialist.

To exploit the bridging point between the IoT and health
care system, Rahmani et al. proposed a smart E-health care
system for ubiquitous health monitoring [20]. The proposed

work exploits ubiquitous health care gateways to provide a
higher level of services. This work studied significant ever-
growing demands that have an important influence on health
care systems. The proposed work suggests an enhanced health
care environment where control center burdens are transferred
to the gateways by enabling these gateways to process part of
the control center jobs. The security of this scheme was taken
into consideration as the system deals with substantial health
care data. The security scheme provides data authenticity and
privacy characteristics.

A personalized health care scheme for the next gener-
ation wellness technology was proposed in [21]. The se-
curity of patient's records was addressed in case of data
storage and retrieval over the cloud. The proposed work
established a patient-based infrastructure allowing multiple
service providers including the patient, service providers, spe-
cialists, and researchers to access the stored data. Their work
was implemented on a cloud-based platform for testing and
verification where a customized and timely messaging system
for continuous feedback is tested. Moreover, multiple service
providers are supported with an information infrastructure to
provide unified views of patient's records and data. The use of
special encryption schemes was also explored in [22], [23]. Liu
et al. presented a scheme for secure sharing of personal health
records in the cloud. The health records are ciphered before
they are stored in the cloud. The proposed work uses Cipher-
Text Attribute-Based Signcryption Scheme (CP-ABSC) as an
access control mechanism. Using this scheme, they were able
to get fine-grained data access over the cloud [22]. While
Zhang et al. proposed a cloud storage scheme for electronic
health records based on secret sharing. The proposed design
consists of four phases, namely, the preprocessing phase,
distribution phase, reconstruction outsourcing phase, and re-
covery and verification phase. In the preprocessing phase, each
health record is uploaded to the cloud as a set of m blocks.
Then in the distribution phase, the blocks are distributed over
different storage locations in the cloud. In the reconstruction
phase, the record’s blocks are gathered from different storage

52

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

locations. Lastly, in the verification phase, the gathered blocks
are verified to determine whether if they belong to the accurate
record or not [23].

With the emerge of IoT-enabled micro-chips, the researchers
got benefited from this property by implementing embedded
systems that provide IoT capabilities [24]. Different publi-
cations explored the use of embedded micro-controllers in
medical devices. Particularly, the use of Keil LPC1768 micro-
controller [13][17]. In [13], an online design for monitoring
patient's data was presented. The proposed work employed an
Advanced RISC Machine (ARM) architecture where Cortex
M3 microprocessor is embedded in Keil LPC1768 board. In
their work, the authors used pulse, temperature, and gas sen-
sors to collect the patient's medical parameters. The LPC1768
board was used as a hardware layer between the Internet and
the medical sensors. Each time the sensors’ values change,
the corresponding values on the Internet change immediately.
However, their design was only used to monitor the surround-
ing environment without any interaction with the patient.

To have an embedded system with monitoring and con-
trol capabilities, Boppudi et al. proposed a data acquisition
and control system using the ARM Cortex M3 microproces-
sor [17]. The proposed design send the monitored sensor data
to the Internet using an Ethernet-controlled interface, which
was built using Keil LPC1768 board. The proposed work em-
ployed two sensing devices temperature and accelerator-meter.
Both sensors were used to collect data from the surrounding
environment. The collected readings are sent to the Internet
through the Ethernet interface. According to the uploaded
readings, a specialist can change the behavior of the device
through the Internet browser.

With the distributed components of the IoT-based health
care systems, the need to verify and evaluate the integration of
these components is crucial. The verification and evaluation of
health care systems over the cloud is investigated by different
researchers [25], [26]. Macedo et al. proposed a model to
evaluate the IoT-based data redundancy. They employed a
Markov model to test the probability of failure of one of
the IoT components during the run time. They calculated the
probability of failure of one of the cloud storage, then transfer
the data store burden to less probability storage devices. The
proposed design investigates the failure probability of the
cloud storage components using the failure and recovery factor
of each component. They were able to build a Markov model
that describes the transition between the redundant storage
locations at any given time [25]. However, Anastasiia et al.
extended their work to build a model for IoT health care
system [26]. The proposed work establishes a Markov model
considering the failure of components for the IoT health care
system. In their work, they gave the case study of Markov
model to test the availability of health care components if any
failure has happened at any time or location.

In the subsequent section, the integration between different
components of the IoT health care system and the conjunction

Alaris Infusion Pump Authorized Person

Research Centers

Research Group

Patients’ Records

Hospital

Keil Board

Cloud

Patient

SHA

Fig. 2. General architecture of the proposed scheme.

between the diabetic insulin pump (Alaris 8100) and Keil
LPC-1768 board will be discussed in details.

IV. PROPOSED METHODOLOGY

In the proposed methodology, all system components that
were mentioned in Section II will be integrated together to
form the general architecture of the embedded IoT health care
system. The proposed design comprises three main operations:
monitoring, storing, and control, which are connected together
to form the overall system. In this section, a case study of
Markov model will be presented to test the availability of the
proposed design.

For secure communication, the Secure Socket Shell proto-
col is employed. The SSH is the worldwide highest quality
level for remote framework organization and secure document
exchange. SSH is utilized in each datum focus and in each
real endeavor. One of the highlights behind the enormous
prevalence of the SSH is the solid verification utilizing SSH
keys [27].

A. General Architecture of the Proposed Scheme

The proposed design employs the Alaris 8100 infusion
pump to deliver insulin to the patient. The infusion pump is
controlled using LPC-1768 board that contains the Cortex-M3
micro-processor. Figure 2 shows the general architecture of
the proposed design.

The diabetic patient is attached to the infusion pump to
get prescribed insulin doses. The Infusion pump is connected
to the micro-controller unit (Keil LPC-1768 board) through
a serial connection. A secure connection between the micro-
controller and the cloud is established using the Secure
Socket Shell (SSH) protocol and supported by the SHA-
256 mechanism to authenticate the data exchange between
cloud and micro-controller. Cloud computing provides the
required infrastructure to handle all communications between
the local and remote entities and reserves the desired amount
of storage to store all health records and patient's data. The

53

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

proposed architecture allows the authorized remote entities
(e.g., medical and research institutions) to access the stored
health records and monitor the patient's vital signs. Moreover,
the proposed architecture provides the ability to control the
infusion pump, remotely, through privileges that are given to
an authorized physician.

Figure 3 shows the hardware setup of the proposed archi-
tecture. The Alaris-8100 infusion pump was disassembled to
reach out the infusion components inside the pump. Then
we built the interface between the Keil LPC-1768 board
and the pump. Afterward, we used Keil µ-Vision Software
Development Kit (SDK) to program the micro-controller.

Fig. 3. Connection of Alaris Infusion Pump 8100 with Keil 1768 PCB board.

The hardware setup operations and system deployment
were integrated together at the North Dakota State University
(NDSU)-Electrical and Computer Engineering laboratories.

B. Monitoring, storing and controlling IoT health care system

The proposed design categorizes the IoT-health care system
into three operations, which are the monitor, store, and control
operations. The monitor operation involves the process of
monitoring the status of the patient at any time and broadcasts
the recorded data to the legitimate parties. The monitoring
operation is accomplished by the micro-controller and insulin
pump sensors. The store operation responsible for storing
the collected data in local and remote databases, which is
accomplished by the micro-controller. The control operation,
which is accomplished by the micro-controller, changes the
insulin pump schedule according to predefined or modified
schedules. The schedule of the insulin pump is only generated
by an authorized physician. Each operation is a complement
to the other where the micro-controller operates as a common
part between them.

1) Monitor health records: The process of health record
monitor is accomplished according to Algorithm 1. The Secure

Socket Shell (S) connection is initialized between the legiti-
mate user and the cloud. Then the legitimate user receives
the desired patient record appended with its SHA-256 hash
value (Hp). The hash value (Hq) of the received record (Pq)
is computed at the user side then, compared with the appended
hash value (Hp). If both hash values are equal then the received
health record is valid and contains the last updated health data.

Algorithm 1: Monitor patient's records
Input: Query (Q)
Output: Q + Hash(c)

1 for q ← 0 to n do
2 S = Init(SSH)
3 Receive(Pq +Hp)
4 Hq = Hash(Pq)
5 Compare(Hq, Hp)
6 Case(equal) ← Valid

2) Store health records: Each health record has a desig-
nated SHA-256 value that is appended to the health record
at the time of generation. Algorithm 2 shows the general
procedure that is carried out to store the newly generated or
updated health record. The hash value (Hp) of health record
(P) that is related to the patient (i) is computed using the SHA-
256 hash function. The computed hash (Hp) is appended to the
patient record (Pi). An SSH connection between the micro-
controller and the cloud is initialized to send the combination
of hash and record (Ap) to the cloud for storage. Moreover,
the new health record is stored in a Local Storage (LS) unit
for quick data access.

Algorithm 2: Store health records
Input: Health record (P)
Output: P+Hash(P)

1 for i← 0 to n do
2 Hp = Hash(Pi)
3 Ap = Append(Pi, Hp)
4 S = Init(SSH)
5 LS(Ap)
6 Send(Ap, S)

As health records are sensitive information, the SSH uses a
symmetric encryption mechanism to ensure the data privacy
between different parties. This is accomplished after initial-
ization of the SSH connection between client and server. The
client initializes the connection by contacting the server, then
the server responds to the client by sending the server’s public
key. Figure 4 shows the construction of data record (Pi).
The data record is signed using the SHA algorithm, then the
produced hash value (Hp) is appended to the end of the data
record. Afterward, The SSH connection is used to transfer data
record to the cloud.

3) Prescription control command: The prescription control
command is generated by a remote caregiver. Algorithm 3

54

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Data Record (Pi)

SHA

HpData Record (Pi) HpData Record (Pi)Ap

LSLS cloudcloud

Encrypted SSH

Fig. 4. Construction of data record.

shows the general procedure to send a new control command
to the insulin pump. The prescription control command (C)
is generated and appended with its corresponded SHA-256
hash value (Hc) to form the appended control command (Ac).
A secure Socket Shell (S) is initialized between the remote
caregiver and the micro-controller through the cloud. Then the
new control command is sent through the SSH Chanel. At the
receiving side, the micro-controller verify the received control
command by following steps 3− 6 of Algorithm 1 where the
received message is C+Hc. If the received prescription control
command is valid, then the micro-controller will forward it to
the insulin pump to start the new schedule.

Algorithm 3: Send prescription control command
Input: Prescription control command (C)
Output: C + Hash(c)

1 for i← 0 to n do
2 Hc = Hash(Ci)
3 Ac = Append(Ci, Hc)
4 S = Init(SSH)
5 Send(Ac, S)

Figure 5 shows the connection between different com-
ponents of IoT health care system. The embedded micro-
controller controls the insulin device and collects the required
health information. This is accomplished using a serial connec-
tion (6.25Mbps) between the micro-controller and the infusion
pump. The Cortex-M3 micro-controller, which is embedded in
the LPC1768 board, uses a universal asynchronous receiver-
transmitter (UART) that supports 8 bits communication with-

out parity and is fixed at one stop bit per configuration.
The Keil LPC1768 board is programmed using micro-vision-
5 software development kit (SDK) under windows 10 and
implemented under C software stack.

The micro-controller collects data and stores them on local
storage (LS) and remote storage (Remote DB) through the
SSH connection. The IoT-cloud takes the responsibly to pro-
vide a replica for the stored data, it is considered as one of
the great benefits of using the IoT-cloud. The data between
the IoT-cloud and local storage are synchronized all the time
to provide quick local access for the patient's health records.

The insulin device receives the doses schedule and delivers
insulin to the diabetic patient. A local caregiver (CG) is
responsible for a group of patients in emergency situations. A
patient using the Alaris 8100 infusion pump will take preset
insulin doses regularly [28]. The Alaris infusion pump is
controlled and monitored by the Keil Cortex M3 board through
a serial connection. All dosages related records are sent to the
cloud through the Keil board using the Ethernet connection.
To ensure the security and authenticity, the recorded data
are digitally signed using the SHA-256 compression function
and encrypted using a symmetric key encryption mechanism.
Moreover, the The signature and patient's records are stored
together in the cloud.

In the cloud, a Secure Socket Shell (SSH) is provided to
authorized entities to access the health records. For instance,
a physician can follow up with a patient's case using a
mobile application or a web browser. Furthermore, research
institutions are given the authorization to access health records
upon agreements made between patient, medical centers, and
research institutions.

The integrity of the health care records is verified using
the SHA-256 signature. While the authenticity is ensured by
the encryption mechanism and SSH connection. The SHA-
256 value is computed after the health records or prescription
commands are generated. Then the generated SHA-256 is
appended to the corresponding data (health record or preset
control command). The health record and its signature remain
correlated in all places (cloud, hospital, and patient's side). For
instance, the physician in the hospital confirms that the record
is received without altering using the SHA-256 signature.
When the health record is received at the hospital, SHA-256
computation will be carried out. The resultant SHA-256 value
will be compared with the appended SHA-256 value. Once
both values are equal, the record will be confirmed to their
corresponding patient. Otherwise, the health record will be
discarded as it does not belong to the patient. Bearing in mind
that all connections and data transfer are carried out using an
encrypted SSH connection.

In the case of the preset control command, this command is
generated from the hospital and appended with its correspond-
ing hash value. The preset control command and the SHA
signature are sent through the cloud to the infusion pump. At
the patient's side, the hardware takes the responsibility to check

55

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. General architecture of the proposed scheme.

the genuineness of the received control command by SHA-
256 computation and comparison. The Keil micro-controller
computes the SHA-256 value for the received preset control
command and then compares the result with the appended
SHA-256 value. Once authorized, the preset control command
is passed to the infusion pump for a new schedule.

In the case of a fault exception, all Cortex-M processors
(including Keil LPC-1768) have a fault exception mechanism
embedded inside the processor. If any fault is detected, the
corresponding exception handler will be executed [29].

C. Case Study: A Markov Model of proposed scheme

In IoT health care system, the failure of one or more
components may lead to system failure. In our design, we
have four main components: 1) Insulin Pump. It is represented
by the Alaris 8100 infusion pump. 2) Micro-controller. It is
represented by the LPC-1768 Keil board. 3) IoT-cloud. It
provides infrastructure and medium. 4) Authority failure that
represents the loss of security. Figure 6 shows the Markov
model that connects the main components during system
failure. The failure rate is represented by the symbol λ and
the recovery rate is represented by the symbol µ.

The case study depicts 12 states that represent the transition
from one state to another with the corresponding failure rate
and recovery rate. However, some states are represented by the
failure rate only because they are unable to recover. Thereby,
the states are defined as follows: 1) Normal operation where
all components work as required. 2) Insulin pump failure due
to hardware defects. 3) IoT-cloud failure due to connection
failure. 4) Failure due to data delivery between Insulin Pump
and micro-controller. 5) Failure due to the power supply.
6) IoT-cloud software failure. 7) IoT-cloud hardware failure.
8) Insulin pump software failure. 9) insulin pump hardware
failure. 10) IoT-cloud failure due to the failure of cloud
components. 11) Insulin pump failure due to the failure of
insulin pump components. 12) Failure of the system.

The Markov model depicted in Figure 6 can be represented
as a system of Kolmogrov differential equations, as shown
by equations (2)-(13). The probability (Pi(t)) represents the
probability to find the system in state i. In our design, we
chosen the initial conditions as follows: P1(t) = 1, Pi(t) = 0
for i = 2, .., 12.

To collect the failure components and build our case study,
we analyzed references [19][30][31][32][33][34][35]. All kind
of failures are caused by software or hardware failures that
might affect the main system components and cause the system
failure. To further help other researchers, We list the values of
failure and recovery rates in Table III.

dP1/dt = −(λ1,2 + λ1,3 + λ1,4 + λ1,5)P1(t)+

µ2,1P2(t) + µ3,1P3(t) + µ4,1P4(t) + µ5,1P5(t)

+µ11,1P11(t) + µ12,1P12(t)

(2)

dP2/dt = −(µ2,1 + λ2,9 + λ2,8)P2(t)+

λ1,2P1(t) + µ9,2P9(t) + µ8,2P8(t)
(3)

dP3/dt = −(µ3,1 + λ3,6 + λ3,7)P3(t)+

λ1,3P1(t) + µ6,3P6(t) + µ7,3P7(t)
(4)

dP4/dt = −µ4,1P4(t) + λ1,4P1(t) (5)

dP5/dt = −(µ5,1 + λ5,11)P5(t) + λ1,5P1(t) (6)

dP6/dt = −(µ6,3 + λ6,10)P6(t) + λ3,6P3(t) (7)

dP7/dt = −(µ7,3 + λ7,10)P7(t) + λ3,7P3(t) (8)

dP8/dt = −(λ8,11 + µ8,2)P8(t) + λ2,8P2(t) (9)

dP9/dt = −(µ9,2 + λ9,11)P9(t) + λ2,9P2(t) (10)

dP10/dt = −λ10,12P10(t) + λ6,10P6(t) + λ7,10P7(t) (11)

dP11/dt = −(µ11, 1 + λ11,12)P11(t) + λ9,11P9(t)+

λ8,11P8(t) + λ5,11P5(t)
(12)

56

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1

2

45

3

67

8 9

λ1,2 µ2,1

λ1,3 µ3,1

λ1,4

µ4,1

λ1,5

µ5,1

λ2,8

µ8,2

λ2,9

µ9,2

λ3,7

µ7,3

λ3,6

µ6,3

10λ7,10 λ6,10

12

λ10,12

µ12,1

11λ8,11 λ9,11

λ11,12

λ5,11

µ11,1

Fig. 6. Markov model graph for the IoT health care failure.

dP12/dt = −µ12,1P12(t) + λ10,12P10(t)

+λ11,12P11(t)
(13)

In the subsequent section, we show the performance char-
acteristics and their applicability to our proposal.

V. RESULTS AND DISCUSSION

Our proposal has been tested toward the five performance
characteristics that are mentioned in Section II.

A. Availability

As mentioned earlier, the availability property ensures that
the system is available all the time. Our design is tested for
availability by solving the system of Kolmogorov differential
equations and compute the probabilities of system states. The

values of system sates probabilities, after calculations, are as
follows:

P1 = 0.9925712 P2 = 0.0002091

P3 = 0.0005966 P4 = 0.002998966

P5 = 0.00009805 P6 = 1.09E−06
P7 = 2.99E−05 P8 = 0.0019989

P9 = 0.00049866 P10 = 4.24E−07
P11 = 0.0009958 P12 = 3.00E−07

The availability function is represented by the probability
value of P1(t), which means that the system has a probability
of ≈ 99.26% to stay at the normal state. The calculated
probability proves the availability property of the IoT health
care embedded scheme. Through this value, the proposed
design ensures a high level of availability.

B. Confidentiality

To provide a confident system for data on transit, our design
uses the SSH tunnel that is only given to the authorized
entities. The SSH connection is initialized only by a legitimate
user and supported by "private-public key pair authentication"
scheme that ensures the connection is established between the
designated two parties.

C. Integrity

The proposed design has been tested and verified for in-
tegrity using sample data from [36]. The sample data contains
glucose levels in the patient's body during a 24 hour period,
a patient's profile information, and the patient's medical in-
formation. A snipped portion of the sample data is shown in
Figure 7, the figure shows the glucose levels in the patient's
body after two meals (breakfast and dinner). To test the
integrity property, the sample data is modified as shown in
Figure 8. When both figures are compared, the only difference
between them is the "AC breakfast Mean", it is equal to 142
in the original sample and 144 in the modified one.

Fig. 7. Snipped health record from the original sample.

The proposed design considers that the SHA-256 value
is computed every time a health record is requested. The
sample data is stored in the cloud and appended with the

57

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 8. Snipped health record from the modified sample.

corresponding SHA-256 value. If the patient's side requests
the same health record, the micro-controller will compute
the SHA-256 value of the record and compares it with the
appended SHA-256 value. If both hash values (cloud and
patient) are equal then the received record is valid and never
been tampered during the transmission. Table I shows the
SHA-256 value of the sample record on both sides where the
sample record has not tampered.

However, any tiny modification to the health record will
produce a totally different SHA-256 hash value. Table II
shows two different hash values for the original sample that is
requested from the cloud side and the modified sample at the
patient's side. Both SHA-256 values are different because the
received record on the patient's side has been altered during
transmission. Then, the micro-controller at the receiver side
will detect the alteration after comparing both hash values.

TABLE I. SHA-256 HASH VALUES OF THE SAMPLE DATA ON BOTH
SIDES.

Cloud side: 14b93acf-ccdcbe40-ea3795be-c1073498-
51a96c90-6cedfc9c-49d8e2cf-a141befb

Patient side: 14b93acf-ccdcbe40-ea3795be-c1073498-
51a96c90-6cedfc9c-49d8e2cf-a141befb

TABLE II. SHA-256 HASH VALUES OF THE ORIGINAL AND
MODIFIED SAMPLE DATA ON BOTH SIDES.

Cloud side: 14b93acf-ccdcbe40-ea3795be-c1073498-
51a96c90-6cedfc9c-49d8e2cf-a141befb

Patient side: 358c4f29-f0e2bb60-8efa35d4-a88a6b3b-
58939ffd-deebf824-8065c195-b834b8cd

On another hand, to ensure the integrity of prescription
control command, the same procedure is carried out between
the sender (corresponding physician) and receiver (micro-
controller). At the patient's side, the micro-controller detects
the alteration and discard the tampered control commands.

D. Authentication

To provide an authentic system, the SSH protocol is em-
ployed to ensure that only legitimate users are eligible to
access the health records. Moreover, in the case of the pre-
scription control command, special users are given a special

SSH tunnel and a public-private key pair to ensure the security
and authenticity of the communication medium between the
Caregiver (CG) and micro-controller.

E. Authorization

The authorization and verification of certain actions before
execution are accomplished by the encrypted SSH connection
and the SHA, respectively. The encryption of health records
ensures that only the authorized entities can decrypt and
read the data contents. Moreover, if any certain action is
tampered or modified before reaching the destination, then the
corresponding hash value will determine whether the action
is authorized. Moreover, the patient is given some privileges
to change the schedule according to a predefined prescription
from the corresponding physician.

F. Speed

The processing speed of the proposed design is tested using
70 samples of diabetic’s records [37]. Figure 9 shows the time
elapsed (in second), mean and standard deviation of the 70
samples. The elapsed time to process the samples depends on
different factors, including, sample size, connection speed, and
system utilization. The figure shows how the processing speed
changes according to the aforesaid factors. The average time
to process these samples is equal to 5.8e − 04-second, while
the standard deviation value shows the amount of variation of
the elapsed time for all samples.

G. Final Remarks

Our design provides a set of benefits to the health care
systems, particularly, diabetic patients. We list these benefits
as follows:

• Patients can access their health records easily and com-
municate with their caregiver instantly.

• Caregivers and physicians can control the insulin infusion
pump remotely according to reliable information deliv-
ered through the proposed design.

• The security and integrity of patient’s records are guar-
anteed by the encrypted SSH and the SHA.

However, the limitation of this approach can be seen in the
case of a successful attack on the used security components.
Until now, there is no successful collision attack for the SHA-
256 that is used in this design. The collision attack allows
an adversary to tamper the data contents and produce the
same hash (signature) of data before and after modification.
Moreover, the length extension attack is a kind of attacks that
targets the keyed hash algorithms (HMAC). Therefore, we
avoid using the (HMAC) in our design and keep the authen-
ticity requirements to the symmetric encryption mechanism of
the SSH connection.

58

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0e+00

2.0e-04

4.0e-04

6.0e-04

8.0e-04

1.0e-03

1.2e-03

1.4e-03

1.6e-03

1.8e-03

2.0e-03

2.2e-03

 0 10 20 30 40 50 60 70

Mean = 5.8e-04
Standard deviation = 4.4e-04

T
im

e
el

ap
se

d
/ s

ec
on

d

Diabetic Samples

Mean + Standard Deviation
Mean

Time elapsed

Fig. 9. Time elapsed to process 70 diabetic samples.

VI. CONCLUSION AND FUTURE WORK

In this paper, a reliable embedded health care system based
on the Internet of Thing is presented. The proposed design
employs secure hash algorithm SHA-256, Secure Socket Shell
(SSH), Keil LPC-1768 board, Alaris 8100 infusion pump,
and IoT-cloud to build the health care system. The proposed
design showed that the reliability characteristics of availability,
confidentiality, integrity, authentication, and authorization are
accomplished. Moreover, the results showed that the proposed
design has a 99.3% probability to stay in the normal operation
stage and an average speed of 5.8× 10−04 seconds to process
the health records.

The scope of reliable IoT-based health care system is open.
In the future, further analysis of the health care system to
develop a generalized reliability model of the health care
system including handheld medical devices.

ACKNOWLEDGMENTS

This publication was funded by a grant from the United
States Government and the generous support of the American
people through the United States Department of State and the

United States Agency for International Development (USAID)
under the Pakistan - U.S. Science & Technology Cooperation
Program. The contents do not necessarily reflect the views of
the United States Government.

Computing services, financial and administrative support
from the North Dakota State University Center for Compu-
tationally Assisted Science and Technology (CCAST) and the
Department of Energy through Grant No. DE-SC0001717 are
gratefully acknowledged.

APPENDIX

The values of failure and recovery rates, which were used
in the case study, are listed in Table III.

REFERENCES

[1] Z. A. Al-Odat, S. K. Srinivasan, E. Al-qtiemat, L. D. Mohana Asha,
and S. Shuja, “Iot-based secure embedded scheme for insulin pump
data acquisition and monitoring,” in The Third International Conference
on Cyber-Technologies and Cyber-Systems. IARIA, 2018, pp. 90–93.

[2] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A survey
on internet of things: Architecture, enabling technologies, security and
privacy, and applications,” IEEE Internet of Things Journal, vol. 4, no. 5,
pp. 1125–1142, 2017.

59

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. FAILURE AND RECOVERY RATES PARAMETERS

Failure (λ) Value Recovery (µ) Value

λ1,2 1.857E-09 µ2,1 99.57E-2

λ1,3 2.499E-07 µ3,1 95.08E-2

λ1,4 3.331E-07 µ4,1 98.76E-2

λ1,5 4.985E-07 µ5,1 92.37E-2

λ2,8 2.50E-07 µ6,3 2.12E-3

λ2,9 2.50E-07 µ7,3 4.07E-3

λ3,6 7.50E-3 µ8,2 4.20E-4

λ3,7 3.56E-05 µ9,2 2.93E-4

λ6,10 1.28E-2 µ11,1 1.23E-6

λ7,10 1.63E-2 µ12,1 1.857E-8

λ8,11 2.00E-4

λ9,11 3.11E-5

λ10,12 2.70E-3

λ11,12 25.87E-3

[3] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 4, pp. 2347–2376, 2015.

[4] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[5] R. Kazi and G. Tiwari, “Iot based interactive industrial home wireless
system, energy management system and embedded data acquisition
system to display on web page using gprs, sms & e-mail alert,” in
Energy Systems and Applications, 2015 International Conference on.
IEEE, 2015, pp. 290–295.

[6] I. Ungurean, N.-C. Gaitan, and V. G. Gaitan, “An iot architecture for
things from industrial environment,” in Communications (COMM), 2014
10th International Conference on. IEEE, 2014, pp. 1–4.

[7] D. Hinge and S. Sawarkar, “Mobile to mobile data transfer through
human area network,” IJRCCT, vol. 2, no. 11, pp. 1181–1184, 2013.

[8] M. Conti, A. Dehghantanha, K. Franke, and S. Watson, “Internet of
things security and forensics: Challenges and opportunities,” Future
Generation Computer Systems, vol. 78, pp. 544–546, 2018.

[9] L. Catarinucci et al., “An iot-aware architecture for smart healthcare
systems,” IEEE Internet of Things Journal, vol. 2, no. 6, pp. 515–526,
2015.

[10] J. Yu, K. Ren, and C. Wang, “Enabling cloud storage auditing with ver-
ifiable outsourcing of key updates,” IEEE Transactions on Information
Forensics and Security, vol. 11, no. 6, pp. 1362–1375, 2016.

[11] K. Gai, M. Qiu, L.-C. Chen, and M. Liu, “Electronic health record error
prevention approach using ontology in big data,” in High Performance
Computing and Communications (HPCC), 2015 IEEE 7th International
Symposium on Cyberspace Safety and Security (CSS), 2015 IEEE 12th
International Conferen on Embedded Software and Systems (ICESS),
2015 IEEE 17th International Conference on. IEEE, 2015, pp. 752–
757.

[12] X. Chen, X. Huang, J. Li, J. Ma, W. Lou, and D. S. Wong, “New
algorithms for secure outsourcing of large-scale systems of linear
equations,” IEEE transactions on information forensics and security,
vol. 10, no. 1, pp. 69–78, 2015.

[13] G. Harsha, “Design and implementation of online patient monitoring
system,” International Journal of Advances in Engineering & Technol-
ogy, vol. 7, no. 3, p. 1075, 2014.

[14] Q. Dang, “Changes in federal information processing standard (fips)
180-4, secure hash standard,” Cryptologia, vol. 37, no. 1, pp. 69–73,
2013.

[15] F. PUB, “Secure hash standard (shs),” FIPS PUB 180, vol. 4, pp. 1–27,
2012.

[16] S. Salinas, C. Luo, X. Chen, W. Liao, and P. Li, “Efficient secure

outsourcing of large-scale sparse linear systems of equations,” IEEE
Transactions on Big Data, vol. 4, no. 1, pp. 26–39, 2018.

[17] L. P. Boppudi and R. Krishnaiah, “Data acquisition and controlling
system using cortex m3 core,” International Journal of Innovative
Research and Development, vol. 3, no. 1, pp. 29–33, 2014.

[18] “HashPump - A Tool To Exploit The Hash Length Extension Attack
In Various Hashing Algorithms,” Sep 2018, [accessed 04. May 2019].
[Online]. Available: https://www.prodefence.org/hashpump

[19] N. Paul, T. Kohno, and D. C. Klonoff, “A review of the security of insulin
pump infusion systems,” Journal of diabetes science and technology,
vol. 5, no. 6, pp. 1557–1562, 2011.

[20] A.-M. Rahmani et al., “Smart e-health gateway: Bringing intelligence
to internet-of-things based ubiquitous healthcare systems,” in Consumer
Communications and Networking Conference (CCNC), 2015 12th An-
nual IEEE. IEEE, 2015, pp. 826–834.

[21] P.-Y. S. Hsueh, H. Chang, and S. Ramakrishnan, “Next generation well-
ness: A technology model for personalizing healthcare,” in Healthcare
Information Management Systems. Springer, 2016, pp. 355–374.

[22] J. Liu, X. Huang, and J. K. Liu, “Secure sharing of personal health
records in cloud computing: ciphertext-policy attribute-based signcryp-
tion,” Future Generation Computer Systems, vol. 52, pp. 67–76, 2015.

[23] H. Zhang, J. Yu, C. Tian, P. Zhao, G. Xu, and J. Lin, “Cloud storage
for electronic health records based on secret sharing with verifiable
reconstruction outsourcing,” IEEE Access, vol. 6, pp. 40 713–40 722,
2018.

[24] G. J. Joyia, R. M. Liaqat, A. Farooq, and S. Rehman, “Internet of
medical things (iomt): applications, benefits and future challenges in
healthcare domain,” J Commun, pp. 240–247, 2017.

[25] D. Macedo, L. A. Guedes, and I. Silva, “A dependability evaluation
for internet of things incorporating redundancy aspects,” in Networking,
Sensing and Control (ICNSC), 2014 IEEE 11th International Conference
on. IEEE, 2014, pp. 417–422.

[26] S. Anastasiia, K. Vyacheslav, and U. Dmytro, “A markov model of
healthcare internet of things system considering failures of components,”
in 4th International Workshop on Theory of Reliability and Markov
Modelling for Information Technologies. CEUR-WS, 2018, pp. 530–
543.

[27] S. C. Williams, “Analysis of the ssh key exchange protocol,” in IMA
International Conference on Cryptography and Coding. Springer, 2011,
pp. 356–374.

[28] K. L. Grant and B. D. Tracey, “Infusion pump assembly,” Sep. 16 2014,
uS Patent 8,834,429.

[29] E. Alkim, P. Jakubeit, and P. Schwabe, “Newhope on arm cortex-
m,” in International Conference on Security, Privacy, and Applied
Cryptography Engineering. Springer, 2016, pp. 332–349.

[30] M. U. Farooq, M. Waseem, A. Khairi, and S. Mazhar, “A critical analysis
on the security concerns of internet of things (iot),” International Journal
of Computer Applications, vol. 111, no. 7, 2015.

[31] P. A. Kodeswaran, R. Kokku, S. Sen, and M. Srivatsa, “Idea: A
system for efficient failure management in smart iot environments,” in
Proceedings of the 14th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2016, pp. 43–56.

[32] E. Solaiman, R. Ranjan, P. P. Jayaraman, and K. Mitra, “Monitoring
internet of things application ecosystems for failure,” IT Professional,
vol. 18, no. 5, pp. 8–11, 2016.

[33] M. Hassanalieragh et al., “Health monitoring and management using
internet-of-things (iot) sensing with cloud-based processing: Opportuni-
ties and challenges,” in 2015 IEEE International Conference on Services
Computing. IEEE, 2015, pp. 285–292.

[34] J. H. Abawajy and M. M. Hassan, “Federated internet of things and
cloud computing pervasive patient health monitoring system,” IEEE
Communications Magazine, vol. 55, no. 1, pp. 48–53, 2017.

[35] A. Guenego et al., “Insulin pump failures: has there been an improve-
ment? update of a prospective observational study,” Diabetes technology
& therapeutics, vol. 18, no. 12, pp. 820–824, 2016.

[36] “Sample Medical Record: Monica Latte | Agency for Healthcare
Research & Quality,” Oct 2018, [accessed 1. Oct. 2018]. [Online].
Available: https://www.ahrq.gov/professionals/prevention-chronic-care/
improve/system/pfhandbook/mod8appbmonicalatte.html

[37] “UCI Machine Learning Repository: Diabetes Data Set,” Feb 2019,
[accessed 3. Feb. 2019]. [Online]. Available: https://archive.ics.uci.edu/
ml/datasets/diabetes

60

International Journal on Advances in Internet Technology, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/internet_technology/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

www.iariajournals.org

International Journal On Advances in Intelligent Systems

issn: 1942-2679

International Journal On Advances in Internet Technology

issn: 1942-2652

International Journal On Advances in Life Sciences

issn: 1942-2660

International Journal On Advances in Networks and Services

issn: 1942-2644

International Journal On Advances in Security

issn: 1942-2636

International Journal On Advances in Software

issn: 1942-2628

International Journal On Advances in Systems and Measurements

issn: 1942-261x

International Journal On Advances in Telecommunications

issn: 1942-2601

