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Abstract—The gap between technology readiness level in Co-
operative Intelligent Transport Systems (C-ITS) and its adoption
and deployment has caused a phenomenon where conventional
drivers have to coexist with intelligent vehicles. Furthermore,
intelligent vehicles are also a heterogeneous fleet of cars with
different levels of connection and automation. For the connection
part, at least two types of network access technologies have to
coexist. Furthermore, for the case of the European Telecom-
munications Standards Institute (ETSI) Intelligent Transport
Systems protocols, work is being completed in Release 2 of the
specification while Release 1 deployments are still underway. In
the automation side, levels of automation differ from Levels 1–3,
when human drivers are needed at least for backup driving tasks,
to Levels 4–5, where full automation is in place. This, coupled
with industry and consumer trends in the vehicle industry, is
bound to cause a scenario where fully C-ITS-enabled vehicles
have to coexist with non-C-ITS road users and, at the very least,
with different versions of C-ITS. In this paper, we analyze this
phenomena from the connection side by performance in terms of
efficiency and safety of two releases of the ETSI GeoNetworking
protocol, and from the automation side, by assessing the coexis-
tence of conventional drivers with fully intelligent vehicles. Our
results show that it is partial homogeneity (coexistence of two
types of vehicles) that affects safety and efficiency. Finally, we
discuss possible paths to tackle the upcoming compatibility and
coexistence problems.

Index Terms—Cooperative Connected and Automated Driving;
Coexistence; Contention Based Forwarding; ETSI

I. INTRODUCTION

The problem of coexistence between different generations of
intelligent vehicles is arriving at least in the form of different
releases of Layer 3 protocols [1]. This problem might hinder
the use of C-ITS to maximize road safety and traffic efficiency,
which has been one of the cornerstones upon which future
mobility is built. The final stage of Cooperative, Connected
and Automated Mobility (CCAM) depends on the presence of
C-ITS on all roads and at all times, exchanging information
and coordinating their maneuvers [2]. Thus, having intelligent
vehicles that cannot talk to each other prevents them, by
definition, from cooperating.

The road to CCAM is divided in three different fronts:
connection (the ability to exchange information through net-
works), cooperation (the protocols that define how intelligent
vehicles react to information and each other’s actions), and
automation (the level of human intervention on the driving
task). These fronts have particular stages (e.g., levels of
automation [3]), but they share common stages, such as the
Days in Vision Zero [2]. These Days (1–4) are incremental
steps toward the realization of full CCAM:

• on Day 1, awareness starts, and vehicles share their status
using messages like Cooperative Awareness Message
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(CAM) and Decentralized Environmental Notification
Message (DENM) (i.e., in the framework established by
the ETSI);

• on Day 2, cooperation starts, and vehicles exchange
information from their sensors using, e.g., Collective
Perception Messages (CPMs);

• on Day 3, road users communicate their intentions; and
• on Day 4, road users execute coordinated maneuvers.
These days take into account the evolution of technology.

For example, in the connection front, Day 1 considers the
use of Vehicular ad hoc Networks (VANETs) supported on
cellular communications (i.e., LTE) or in WiFi (e.g., ETSI ITS-
G5, based on IEEE 802.11p). From Day 2 onward, C-ITSs
expect the use of evolved technologies (e.g., 5G, 802.11bd, and
technologies beyond these two). The choice between cellular
or WiFi is the first hurdle towards the harmonic coexistence
of different types of intelligent vehicles, and ETSI develops
media-dependent protocols for both approaches [4], [5]. Thus,
manufacturers and transportation authorities are given the
chance to select one or many technologies.

However, industry and consumer patterns are likely to cause
a scenario where vehicles that are produced in 2023, with the
technological features present this year, will share the road
with fully CCAM-enabled vehicles in 2050 [6]. Even now,
figures from the industry show that the average age for a
vehicle in Europe ranges from 12 to 14.7 years for cars and
trucks, respectively, and some countries have even larger mean
values [7]. This means that is highly likely to have a fleet with
1) different technological capabilities, and 2) different versions
of the same technology.

In this paper, we present the effect of the coexistence of
different levels of intelligence in vehicles. First, we assess
the coexistece of two versions of one safety-critical protocol:
Release 1 of ETSI Contention-Based Forwarding (CBF) [8],
and the changes proposed to Release 2, which were originally
presented in [9] and [10]. We evaluate efficiency metrics
such as the number of transmissions and its variation with
larger penetration rates of the newer protocol in scenarios
where a message has to be distributed within a Destination
Area. Secondly, we evaluate the coexistence of conventional
drivers and automated vehicles in a suburban setting. Here,
our metrics are safety (number of collisions and emergency
breaking events) and efficiency (the effect on the traffic flow).
Finally, we discuss the likely scenarios for coexistence and
possible compatibility between two versions of one protocol.

The rest of the paper is organized as follows: in Section II,
we present the two releases of the ETSI CBF protocol; in Sec-
tion III we explain briefly the levels of automation expected for
Future Mobility; in Section IV, we perform an experimental
assessment of the penetration rate of the updated CBF protocol
on effectiveness and efficiency; Section V presents a study on
the coexistence of different combinations of conventional and
highly automated road users; Section VI presents a discussion
on scenarios and alternatives to palliate the problem of having
a mixed fleet; and finally, conclusions and future work are
presented in Section VII.
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Fig. 1. ETSI ITS Architecture.

II. CONNECTED VEHICLES

A. ETSI ITS Architecture

Fig. 1 shows the layers and entities of the ETSI ITS
architecture. At the very top, the Application layer hosts
systems that pursue the goals of all C-ITSs — road safety and
traffic efficiency — as well as other functions (e.g., related
to infotainment). These applications are supported by the
Facilities layer, e.g., by safety-critical Day 1 services like the
Cooperative Awareness (CA) and Decentralized Environmen-
tal Notification (DEN) basic services. These services exchange
messages with other nodes (vehicles and the infrastructure)
that allow applications fulfill their roles: for example, a DENM
warns road users about roadworks ahead of the road, and an
application can suggest or take a new route.

Messages are generated by services at the Facilities layer
and then get sent down the stack to the Networking &
Transport layer. Depending on the use case and requirements
from applications, a message can be broadcast to neighbors
one hop away (i.e., Single-Hop Broadcasting (SHB)), or
towards a specific area of interest (Destination Area). The
latter is achieved through GeoNetworking [8]. In either case,
packets are encapsulated and sent down to the Access layer
for transmission.

The Access layer executes Medium Access Control as well
as Congestion Control functions. This layer accommodates
both WiFi-based and cellular-based access technologies. For
the case of WiFi-based access (i.e., ETSI ITS-G5), channel
occupation (i.e., Channel Busy Ratio (CBR)) is measured
at this layer and, using Decentralized Congestion Control
(DCC) [11], each station calculates the share of the medium
it can use, which ranges from 0.06% to 3% of the medium,
or a message rate between 1 and 40 Hz. This means that, even
in extremely low congestion conditions, consecutive messages
must wait in the DCC queues for at least 25 ms between each
dequeuing. From these queues, frames are then sent to the
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Enhanced Distributed Channel Access (EDCA) queues where
they wait for their time to contend for access to the medium.

The road a message takes from generation to transmission
and the possible bottleneck or sinkhole effects that different
phenomena, e.g., at the Access layer, can have on protocol
performance is accounted for by ETSI protocols. E.g., a CAM
can only be generated if the message rate is less or equal to
the one allowed by DCC. However, the appearance of new
services and the expected effect of having a high number of
nodes in proximity of each other has prompted the research
community to study these effects continuously [12].

B. GeoNetworking in ETSI ITS

Routing protocols in conventional computer networks rely
on Layer 3 addresses to send data between hosts in remote
locations. This is typically achieved through IP addressing. In
the context of VANETs, where use cases sometimes require
the dissemination of information to a given area, geographical
awareness is required for a routing protocol. Hence, GeoNet-
working functionalities are included, e.g., in the Network-
ing & Transport layer of the ETSI ITS protocol stack [8].
GeoNetworking allows for messages to reach a Destination
Area without the need of maintaining a record of the network
addresses of nodes in that area, which would be difficult due
to the dynamic nature of vehicular networks.

ETSI defines mechanisms to broadcast information to a
geographical Destination Area when:

• the source is outside the Destination Area and the mes-
sage has to arrive in it (e.g., using Greedy Forwarding or
CBF); or

• the message originates from or arrives into the Desti-
nation Area and is disseminated using CBF or Simple
Forwarding.

Non-Area mechanisms are out of the scope of this paper, but
we can summarize Greedy Forwarding as a mechanism where
each hop selects its farthest known neighbor and determines
it as the next hop toward the Destination Area. These type of
mechanisms have been widely studied, and the ETSI-defined
version of Greedy Forwarding is evaluated in-depth in [13]
and [14].

Regarding Area forwarding mechanisms, Simple Forward-
ing can be described as a brute-force mechanism where every
node that receives a message forwards it immediately (i.e.,
simple flooding). CBF, on the other hand, makes receivers
start a contention timer that is proportional to their distance
from the last hop before they decide to forward the message.
If they listen to a forwarding while they are waiting for their
timer to expire, they cancel the timer and drop their copy of
the packet.

1) Inefficiencies in Release 1 of ETSI CBF: Efforts from
the research community have evaluated the performance of
ETSI CBF. While the theoretical frame which supports CBF
makes it more optimal than, e.g., simple forwarding, the way it
interacts with other layers in the ETSI ITS architecture causes
phenomena that affect its efficiency.

The interaction between ETSI CBF and the DCC mech-
anism at the Access layer causes an undesired effect: even
if the CBF timer expires, and the decision to forward the
packet is made, if there is congestion in the channel or
if another packet has just been transmitted, the forwarding
is stopped at the DCC queues (for ETSI ITS-G5) or the
scheduler (for C-V2X). This means that the actual transmission
may not occur when CBF has decided, and this phenomenon
can occur in any station, so even if a copy of the message
is received during contention, it is not guaranteed that it
comes from an optimal forwarder. Furthermore, Release 1
of ETSI GeoNetworking relies Duplicate Packet Detection
(DPD) to CBF, so, if a backlogged message from a DCC-
affected forwarder is received at a neighbor which had already
forwarded or even cancelled its copy will enter the loop once
again.

2) ETSI CBF Release 2: The issues with DPD and the
effect of DCC on Release 1 for ETSI CBF had been studied
widely in the literature [13], [15], [16]. Yet, it was the work
in [9] and [10] that was presented to ETSI as a change request
that was iterated and matured before it reached the necessary
consensus to be Release 2 of ETSI CBF.

The differences in Release 2 of Area CBF are:

• The inclusion of DPD inside the CBF algorithm.
• Interfacing with the cross-layer DCC mechanism to of-

fer awareness of the time before DCC allows the next
transmission, and account for it when calculating the
contention timer (optional for cellular-based communi-
cations).

• A procedure to determine if a copy received during
contention actually comes from a better forwarder.

• An updated timer formula to account for receptions
beyond the maximum expected distance.

However, since Release 2 services might have different
requirements and characteristics, it is not clear if Release
1 nodes will be able to receive messages originating from
Release 2 nodes, even for safety-critical applications. If this is
the case, and nodes executing Release 2 of ETSI CBF coexist
with nodes executing Release 1, there might be effects on
awareness and efficiency metrics. In Section IV, we evaluate
these effects in Area CBF in a highway scenario.

III. AUTOMATED VEHICLES

The Dynamic Driving Task (DDT), whether it is performed
by a conventional driver or an automated vehicle, refers to
the to operational and tactical functions. Operational functions
consist of motion (e.g., steering and brake/throttle control,
for lateral and longitudinal motion respectively). Tactical
functions relate to Object and Event Detection and Reaction
(OEDR), e.g., following a route, avoiding obstacles and risks.
With automation, several sub-tasks of the DDT are offloaded to
the automated driving system (ADS). The level of automation
of an ADS is defined by the tasks it can offload from human
operators [3]:
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• Level 1: the ADS controls either longitudinal or lateral
motion. The rest of the DDT remains under control of
the driver in the vehicle.

• Level 2: the ADS controls both longitudinal and lateral
motion. The rest of the DDT remains under control of
the driver in the vehicle.

• Level 3: the ADS controls all of the DDT within an
Operational Domain (e.g., only in highways). The driver
in the vehicle is required for fallback (e.g., when the ADS
fails to solve a problem).

• Level 4: the ADS controls all of the DDT and only
requires human input to solve situations it cannot handle
by itself (e.g., tactical operations).

• Level 5: the ADS controls all of the DDT and only
asks for authorization from a human operator to perform
tactical operations.

In theory, Levels 4–5 do not need a driver to be present in
the vehicle, and only require humans to control the vehicle’s
motion. These operators can potentially be away from the
vehicle [17]. This implies that, even from Level 3, the driving
style of a vehicle depends also on how they are programmed
to react in a given scenario. Just as human drivers have dif-
ferent driving styles [18] depending on their goals, automated
vehicles can potentially be programmed to become more or
less compliant [19], thus, to be more competitive or more
cooperating.

This means that, even if vehicles are fully connected and
automated and can understand each other, the way they react
to events can vary greatly even within the CCAM fleet. Just
as the problem of coexistence between solely conventional
vehicles with drivers of different styles, this might become an
issue with different penetration rates, heterogeneous levels of
automation, and varying responses to similar stimuli.

In Section V, we assess the coexistence of conventional
drivers and full-CCAM vehicles. In order to perform a better
analysis, the CCAM fleet is homogeneous within itself. In
Section VI, we discuss in more detail what implications
CCAM fleet heterogeneity has in the ability for agents to
cooperate.

IV. EXPERIMENTAL EVALUATION OF COEXISTENT
RELEASES OF NETWORK LAYER PROTOCOLS

A. Simulation Scenario
We evaluate the effect of different ratios of nodes executing

Releases 1 and 2 of ETSI CBF in a highway scenario where a
vehicle is stationary on the shoulder of a road. It starts sending
DENMs [20] at 1 Hz with a Destination Area covering 4 km
of a road with 4 lanes per direction. The vehicular density is
30 veh/km on each lane. We take measurements for 30 s after
a warm-up period of 120 s. We evaluate:

1) Packet-delivery Ratio (PDR): the number of successful
individual receptions of a message in the Destination
Area divided by the total number of vehicles in the area
at the time of DENM generation.

2) Number of transmissions: how many transmissions
(i.e., from the source and forwarders) have occurred.

Our toolkit consists of the OMNET++-based simulator
Artery [21], which implements the ETSI ITS protocol stack
using Vanetza and Veins [22] for the physical model of ETSI
ITS-G5. Mobility is controlled by SUMO [23]. A set of
vehicles execute ETSI CBFRelease 1 [8], and an increasing
number of vehicles (see the penetration rate parameter) execute
the improvements included in Release 2 as described in [10].
In our set-up, and due to the nature of the message (i.e., Road
Hazard Warning (RHW)), we consider Release 2 and Release
1 messages to be mutually understandable. The rest of the
parameters are specified in Table I.

TABLE I
SIMULATION PARAMETERS: HETEROGENEOUS CONNECTIVITY

Parameter Values
Access Layer protocol ITS-G5 (IEEE 802.11p)
Channel bandwidth 10 MHz at 5.9 GHz
Data rate 6 Mbit/s
DCC ETSI Adaptive DCC
Transmit power 20 mW
Path loss model Two-Ray interference model [24]
Maximum transmission range 1500 m
CAM packet size 285 bytes
CAM generation frequency 1–10 Hz (ETSI CAM [25])
CAM Traffic Class TC2
DENM packet size 301 bytes
DENM Traffic Class TC0 (Source) and TC3 (Forwarders)
DENM lifetime 10 s
DPL size 32 packet identifiers per Source
Default Hop Limit 10
Rel. 2 penetration rate 0, 25, 50, 75, 100%
SUMO car-following model Krauss (default settings)

B. Results
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Fig. 2. Number of transmissions in different Release 2 penetration rates.

Fig. 2 shows the effect of even a minority portion of nodes
executing a non-optimized protocol. There is beyond an order
of magnitude in executed transmissions between the 0% and
the 25% penetration rate for Release 2. From there, there is a
linear increase until the almost 30:1 ratio between Releases 1
and 2 in line with the results in [9] and [10].
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However, this issue is not reflected in awareness. Fig. 3
shows the PDR over the distance in the 4 km-long Destination
Area. Lines overlap for most of the distance, up to the last
segment where they fan out in favor of higher penetration
rates. However, this phenomenon is due to an unbalance in
the turnover rate (i.e., the ratio between vehicles entering and
exiting the Destination Area after the DENM was generated).
These extra vehicles are accounted for since the message is
still within validity, and it is relevant to newcomers into the
Destination Area.

The main takeaway of this experiment is that, as long
as Releases 1 and 2 GeoNetworking messages are mutually
intelligible, there is an effect on efficiency but not in safety
(for the case of multi-hop DENMs from a single source).
However, inefficient forwarding will occupy the medium with
unnecessary repetitions of messages. Thus, in scenarios where
there is more than one source trying to disseminate safety-
critical messages, unnecessary transmissions are bound to
cause collisions or, at least, to block access to the medium
for more necessary messages waiting to be forwarded. Further
work needs to be performed on how non-mutually intelligible
messages affect performance, since Release 1 is likely to reach
higher PDR using brute force, while Release 2 will either
yield access to the medium or might find a path to transmit
immediately. What is sure is that, in that scenario, safety will
be compromised.

V. EXPERIMENTAL EVALUATION OF COEXISTECE
BETWEEN CONVENTIONAL AND AUTOMATED ROAD USERS

A. SUMO simulation scenario

We use a map of the City of Halmstad, in Sweden. Fig. 4
shows the road section we chose — roundabout in a suburban
section of the town where pedestrians, cyclists, buses, and
passenger vehicles have to interact with each other. The full
description of the map and its characteristics can be found
in [26].

Fig. 4. SUMO map of the suburban road in Halmstad

The challenge to simulate different types of road users
in SUMO comes from the very nature of the simulator —
vehicles follow a modelled behavior within certain limits
defined by parameters. One of these SUMO parameters, for
example, is driver imperfection. This parameter that goes from
0–1, defines how a vehicle will act to keep speed limits,
minimum distances, acceleration and deceleration. By default,
it is set to 0.5, while a value of 0 indicates a perfect driver.
Thus, one can assume that a fully automated vehicle would
have a perfect driver, which is the assumption we follow in
one part of our experiments and also in [26].

However, the literature offers following models that emulate
the behavior of cooperative intelligent vehicles. The authors
in [27] have implemented a car-following model that identifies
different phases in driving and relies on experimental data.
This offers an opportunity to test out how the SUMO default
model compares to a data-driven model based on cooperative
vehicles.

Thus, our simulation will allow us to 1) compare the models
to simulate CCAM in SUMO, and 2) to measure the effect
of intra- and inter-model heterogeneity on mobility metrics,
which are:

1) Road Safety: collisions, emergency braking events.
2) Traffic Efficiency: average speed, time loss.
The rest of the simulation parameters are included in

Table II.

TABLE II
SIMULATION PARAMETERS: CONVENTIONAL AND AUTOMATED DRIVING

Parameter Values
Number of vehicles 200
Vehicle flow Poisson, average 0.2
Number of pedestrians 29
Pedestrian flow 0.01
Runs (time) 100 (3000 s)
Model for Automated Driving Krauss (perfect driver), CACC
Model for Conventional Driving Krauss (0.5 imperfection)
Automation penetration rate 0, 25, 50, 75, 100%

B. Results

This set of experiments offer a chance of measuring two
types of heterogeneity: intra-model (when we use perfect and
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Fig. 5. Safety Events (emergency braking, collisions) for different penetration
rates

imperfect drivers within the Krauss model), and inter-model
(when we use the CACC model from [27] and the Krauss
model with default settings for automated and conventional
drivers respectively). We denote these two measurements as
Krauss and CACC in our figures.

Fig. 5 shows the average of the sum of emergency braking
and collision events. There is a zone of instability when
the penetration rate increases. We attribute this to previous
findings in the literature [19], [28]: it is not only the proportion
of intelligent (or compliant) vehicles that affects safety, but
also the order in which they are placed in the flow. Even
one single non-compliant driver can affect a large number
of more-compliant, more-cautious drivers and push them into
emergency braking events or even into a collision. The effect
is however, different in the inter-model comparison. with
the mixes showing different types of variations and Krauss
increasing linearly in the region between 25 and 75% of
automation penetration.

In terms of efficiency, Figs. 6 and 7 show the effect of
increasing the number of perfect drivers (for Krauss) and
CCAM vehicles (for CACC). In here, the effect of inter-model
homogeneity is clearly visible. To help us situate, the Krauss
line shows vehicles following the same strategy, and increasing
the proportion of vehicles that are able to stick to that strategy
increases efficiency (higher speeds, less time losses). On the
other hand, the CACC line shows how partially-compliant
vehicles affect the efficiency of the whole C-ITS since highly-
compliant vehicles are more cautious by definition (i.e., they
aim to complete a trip as safely as possible, even if there is a
trade-off in time consumed). The difference, however, between
a fully-perfect driver fleet and a fully cooperative fleet is of
slightly over 1 km/h.

In conclusion, we consider that 1) heterogeneity will affect
C-ITSs and that the problem will only get worse in reality

Fig. 6. Average speed for different penetration rates

Fig. 7. Average time loss for different penetration rates

since both Cs and the A in CCAM can potentially represent
different generations of communication technologies, diverg-
ing cooperation strategies, and varying automation levels; and
2) that inter-model heterogeneity is a better representation
of these diverging strategies and approaches to the DDT.
However, further work needs to be done in order to represent
full CCAM, i.e., by being able to represent different levels
of compliance, and how compliance can be hindered by
unreliable communications.

VI. DISCUSSION

In this section, we discuss the upcoming challenges to
Future Mobility stemming from fleet heterogeneity. First, we
present a study of how the coexistence of two different releases
of a protocol, one being an incremental improvement of the
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other, affects efficiency. For our case, packets were compatible,
and Release 1 nodes could understand Release 2 messages
and vice versa. However, the road to full CCAM is long, and
this might not be the case even in the near future. Secondly,
we present a discussion on the actual possibility for full
cooperation in highly-automated scenarios.

A. The upcoming Tower of Babel

Vehicles equipped with ETSI ITS nodes are already on the
road communicating with large deployments. Just in the first
three quarters of 2023, more than 250,000 C-ITS-equipped
Volkswagen ID. cars were delivered [29]. These cars can
communicate with each other, with other ETSI ITS-compatible
vehicles, and with current deployments such as the one cov-
ering the entire Austrian motorway network [30].

However, these vehicles and deployments all use Release
1 services. While some Release 2 features are software-
dependant, e.g., new services such as the Vulnerable Road
User awareness (VA) basic service, and can be installed during
car services or using over-the-air updates, some others will
likely require a deeper update (e.g., compatibility with Multi-
channel Operation (MCO)).

While backwards-compatibility is a common issue in com-
puter networks, the characteristics of the vehicular market and
industry make it especially more difficult. This is one of the
first cases where a massive number of legacy nodes will likely
share spaces with nodes up to 20 years more modern [7]. This
will create a scenario where pockets of segregated nodes are
bound to destabilize the system, at the very least make it more
inefficient, while compromising efficacy and safety.

1) Past experiences with backwards compatibility: One
example of backwards compatibility is the jump between
Transport Layer Security (TLS) 1.2 and 1.3. The 1.3 version
was released in RFC 8446 in August 2018 [31]. Its benefits
over past versions have been widely studied [32], but there are
known examples of problems with its adoption [33].

The main problem with TLS 1.3 is protocol ossification.
This phenomenon occurs when deployed equipment (e.g.,
middleboxes) does not recognize new protocols or even exten-
sions to known protocols that were released after they were
installed. This causes them to interrupt packets that are valid,
but unrecognizable for the middlebox.

The solution for TLS 1.3, and for other examples of
ossification, was to encapsulate new messages so that the
wire image of the packets is acceptable for older middleboxes.
This could be a path to follow with safety-critical messages
exchanged by nodes executing different releases of ETSI ITS.

At the Access layer, 802.11p (upon which ETSI ITS-G5 is
based) and its evolution 802.11bd are somewhat compatible.
One of the main differences between 802.11bd and 802.11p
is the channel bandwidth — 20 MHz up from 11p’s 10 MHz.
However, 11bd can also work in 10 MHz, and does so if it
detects nodes using only 10 MHz, thus, falling back into 11p
when needed. However, this approach might not be efficient in
Future Mobility scenarios, when 11p’s channel capacity might

not be able to accommodate the myriad of applications that
will try to use the medium.

The foreseeable scenario if nodes cannot process packets
from newer releases (i.e., if Release 1 nodes cannot handle
Release 2 GeoNetworking traffic) can cause a disruption in
Non-Area GeoNetworking [8] if Greedy Forwarding is used.
Since it is likely that beacons (e.g., CAMs) will always be
compatible, a Release 2 node can select a Release 1 neighbor
as the next hop for a message. The next hop will not process
the message, and thus it will not reach the Destination Area,
since there are no fallback nodes in ETSI Greedy Forwarding.
This phenomenon can be avoided, for example, using CBF,
where multiple nodes become the next hop and contend to
forward the message, increasing the chances of nodes from
both releases hearing the forwarded message. Further work
will address the impact of this phenomenon on Non-Area
forwarding.

2) Nodes with different technologies: In the network
side, even at Day 1, there is an identified risk of non-
interoperability [34]. Since ETSI ITS is media-independent,
it does not mandate that one access technology shall be used.
Thus, there are vehicles and road-side equipment that use, e.g.,
LTE or 802.11p. ETSI recognizes the scenario and proposes
co-existance methods [35] where, for example, vehicles using
different technologies share the time domain. This means that
cellular-based nodes occupy the C-ITS band for a fraction of
the time and WiFi-based nodes use it for the complement.
This, however, is not full inter-operability, since nodes using
different access technologies will not ”listen” to each other,
and this approach compromises every metric: efficiency (di-
minishing the amount of resources), efficacy (messages are not
delivered to all connected road users), and thus, safety.

Further work has to be performed within the research and
industry communities to 1) determine whether WiFi and cellu-
lar can possibly inter-operate, and 2) whether inter-operability
is possible, search for a path to evolve in a way that newer
versions of access technologies account for older nodes. One
possible approach is to adopt approaches such as Software-
Defined Radio (SDR), which would allow equipment to be
updated over the air as long as hardware supports newer
features, such as different modulation and coding schemes.

This phenomenon will be aggravated when technologies
from different Days coexist. For example, a legacy node that
cannot interpret or even receive intention-sharing or maneuver-
coordination message exchanges will likely affect the way
CCAM-enabled vehicles converge to a solution. Once again,
this will affect traffic efficiency and might hinder road safety.
Further work is being performed to assess the effect of a mixed
fleet in the optimal performance in CCAM.

For the specific phenomenon in this work, the differences
between ETSI CBF Releases 1 and 2 are purely software-
based. There is no need for extra fields in the headers,
or new values in the existing fields. The main differences
come in what the algorithm does with information it already
used, namely, the position vector from the last hop and the
source. It also uses an existing interface to the Management
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entity to consult the cross-layer DCC mechanism and account
for transmission rate control information when calculating a
contention timer (although this feature is optional).

We foresee two simple solutions: 1) existing equipment that
is able to receive an update adopts Release 2, or 2) Release
2 GeoNetworking messages are encapsulated as Release 1, as
was the case for TLS 1.3. Both approaches will ensure safety
in given scenarios, but approach 1 guarantees more efficiency,
and thus, more availability of resources for other applications.

B. (Non) Cooperative Connected and Automated Mobility

Cooperation, and cooperative games specifically, is widely
studied in the context of autonomous systems. Coming from
mathematics and with applications in social analysis, game
theory is divided into two categories: cooperative and non-
cooperative games. The difference between these two resides
in the ability of agents to exchange goals and tactics [36].
Therefore, communication is paramount, since cooperation
relies in the quality and availability of information about
other agents. In vehicular communications, this is reflected
on how Day 4 (coordination) is an incremental step over Day
3 (intention sharing).

However, even if communications are 100% reliable (likely
at the expense of efficiency, as we confirmed in our ex-
periments), there will be differences in reactions to events
not only between human-driven and automated vehicles, but
likely among the fully automated fleet. Even if the final goal
of all C-ITSs is to ensure road safety and traffic efficiency,
the strategies and tactics might differ depending on human-
influenced factors, not only humans-in-the-loop, but also the
influence of decision makers in the design of ADSs.

In a parallel way on how humans have different driving
styles [18], brands also have personalities that are reflected in
marketing and positioning strategies. In conventional driving,
manufacturers have models that drive into different styles and
demographics, which are correlated according to the work
in [18]. A vehicle that is designed to trigger thrilling emotions
will likely allow a driver to operate at the edge of the rules
(e.g., speed limits). On the other hand, a vehicle that is
designed to tap into the demographic seeking for safety and
control will trade-off power for stability. Brands, consequently,
try to appeal to these different personalities at every stage of
the product’s life cycle: design, manufacturing, marketing and
positioning, selling, and maintenance.

Therefore, it is safe to assume that these trends will continue
when manufacturers adopt Levels 4–5 of automation, when
the DDT is performed by the ADS in its entirety. This means
that automation will have a personality or a driving style that
matches its branding and its intended market. Thus, strategies
to reach the final goal of C-ITSs will also be affected by these
marketing decisions.

Regarding the effect of personality in mediation and conflict
management, the Thomas-Kilmann conflict model categorizes
responses to stimuli depending on two dimensions of a per-
son’s style: assertiveness and cooperativeness. Fig. 8 shows
our adaptation of the Thomas-Kilman model where we rename
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Fig. 8. Adaptation of the Thomas-Kilmann conflict model

assertiveness as ”Self Interest” and cooperativeness as ”Interest
for Others”. This allows us to refer to the top right quadrant
as cooperation instead of collaboration. Regardless of these
semantic changes, it is clear from the model that the way
an agent is programmed to balance self interest and collective
interests will affect the manner in which it will react to stimuli
such as learning other agents’ strategies.

Let us imagine a trio of vehicles in a road segment. They
are all heading in the same direction for a considerable time,
and they are all CCAM-enabled. The first one is a heavy-duty
vehicle (HDV), the second one is a family-oriented passenger
car, and the last one is a sports car. They all know each other’s
intentions (drive straight for several kilometers), and they can
form a platoon. This would allow the smaller vehicles to draft
safely behind the HDV and save energy. However, the sports
car might not be programmed to save fuel and decides not to
enter the platoon.

Other scenarios, where vehicles are not programmed to
act assertively, might also cause efficiency problems. We
see this in the results of our experiments, where the full
CACC scenario drives at slower speeds than scenarios with
conventional drivers or even the Krauss scenario with only
perfect drivers. This last scenario could reflect the cooperation
quadrant of the conflict model, since everyone has the same
strategy and is programmed to drive at the maximum allowed
velocity, while the CACC algorithm trades off efficiency for
safety.

Finally, and outside of the context of technology itself, it
is this sort of stakeholder decisions that prevent the arrival
of even Level 3 automation into the market. As explored
in [17], liability is a major issue in the deployment of fully
automated vehicles. In case of an accident, the owner, the car
manufacturer, and even product and services providers could
be liable. However, we see this also as an opportunity to
reach agreements and regulations that would force these brand
personalities be overriden in cooperative mobility scenarios.

VII. CONCLUSIONS AND FUTURE WORK

In this extension to the work in [1] not only we present the
study of the coexistence of two releases of a GeoNetworking
protocol in the context of ETSI ITS — Releases 1 and 2 of
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ETSI CBF, but also on how automated vehicles coexist with
conventional drivers. So, we explore the phenomenon of het-
erogeneity and coexistence in the networking and automation
domains of C-ITSs.

In the networking part, we have proved that, as long
as releases are compatible and nodes can understand each
other, safety metrics stay high even if resource efficiency is
compromised. Then, we presented a discussion of possible
settings that are likely to happen when Future Mobility is
completely mature (i.e., Day 4 of Vision Zero), where a Tower
of Babel scenario might occur, and road users are segregated
into pockets of nodes speaking different languages (and some
not speaking at all). Even when the first C in CCAM stands
for cooperative, this cooperation is not likely to occur when
agents are not able to hear and understand each other.

For the mix of automated and conventional driver, we found
that even if automation is homogeneous, the presence of
conventional drivers in the mix alters safety and efficiency
metrics. Furthermore, homogeneity does not guarantee more
efficiency, and it also depends on automation strategies. We
show that when automation pushes for higher speeds, it is
also prone to more safety-related events. However, when its
strategy is to prime safety, it compromises efficiency, and then
the average speed of the system with full automation is slightly
decreased from that with zero automation.

Future work includes a more in-depth analysis of the effect
of multi-modal road users (e.g., disconnected users, legacy
fleet) in the optimal performance of the CCAM-enabled fleet
(i.e., connected and automated vehicles). For this, work in
simulation setups is currently being performed, in order to
account for network reliability issues in cooperation.
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Abstract—Painting classification is a challenging interdisci-
plinary research problem in computer vision. With more fine-art
paintings being available in the form of high-resolution digital
scans, the development of effective classification algorithms has
become vital. Such algorithms would have numerous applications,
including but not limited to museum curation, several different
industries, painting theft and forgery investigation, and art
education. While some progress has been done in this field,
accurately identifying the painter or the artistic style from the
painting remains a complex task. Towards that end, we present
an enhanced image dataset comprising high-resolution painting
images from 100 diverse artists across 14 distinct styles. This
dataset builds upon the Painting-91 dataset originally created
by Khan et al. Our main contributions in this work are three-
fold. First, we improve the older dataset by correcting errors,
enhancing image resolution, and expanding it with more images,
artists, and styles. Second, we perform an extensive evaluation
of this newly constructed Paintings-100 dataset using several
different convolutional neural network (CNN)-based classification
techniques for both artist and style recognition tasks. Finally, we
explore the different stylistic characteristics that the networks
focus on to recognize the specific artists and styles of paintings,
and demonstrate that our proposed and improved dataset is
more suitable for patch-based models than the earlier published
Painting-91 dataset due to larger image resolutions.

Keywords—painting classification; image dataset; style classifi-
cation; artist classification; CNN ensemble.

I. INTRODUCTION

The current work expands upon our previous work [1],
where we present a new high-resolution dataset of paintings,
and explore image classification on it.

In the last decade, a significant quantity of artwork has been
digitized. That fact, combined with the substantial progress in
the area of computer vision, has opened up the interesting
research area of automated painting classification [2]. Auto-
mated painting classification can be broken down into two sub-
tasks: artist identification and style categorization. The former
task involves identifying a painting as the work of a specific
artist, while the second task involves labeling paintings by
art movement or style. Identifying artists and styles in fine-art
paintings has numerous applications in several industries, such
as tourism and movie-making, art education, and investigation
of art forgery (though the system proposed here does not claim
to be suitable for this last application). For instance, a user may
take the photo of a painting or reproduction somewhere and
want to know more about the painting, such as the artist’s
name and style. A system that can autonomously classify
art is, therefore, of great interest. However, both tasks pose

Figure 1. Some errors that exist in the old Painting-91 dataset.
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Figure 2. Some paintings of the newly added nine artists that are included in the Paintings-100 dataset.

significant challenges due to the complexities of artistic styles,
subjectivity in the interpretation of paintings, varied image
quality, lack of fine details, and context of the visual images
due to the presence of stylistic variations that can occur even
within a single artist’s work [3] [4] [5].

In the current work, our contribution is threefold: first,
we do a detailed discussion of the new Paintings-100 image
dataset curated by us [1], highlighting our improvements
to the Painting-91 Dataset [3]. Second, we have done an
extensive evaluation of this rich and varied dataset using
several convolutional neural network (CNN)-based methods
on whole images as well as random image patches for both
the artist and style classification tasks, finally showing that an
ensemble of multiple models performs best. Last, but not the
least, we attempt to identify the salient features of some of
the style classes by examining the CNN response maps, and
also identify the points of confusion between classes.

The rest of this paper is organized as follows. Section II
lists some of the other work in this field. Section III and
its subsections outline in detail the construction of the new
dataset used in this work. Section IV describes our proposed
methodology in detail, and Section V reports the classification
performance on this dataset, the experiments performed, the
results obtained, and discusses the outcomes. Finally, we
list our conclusions and directions for future research in
Section VI.

II. RELATED WORK

Painting styles encompass the unique techniques, methods,
and characteristics artists use to express themselves. Over
the last two decades, computer vision, machine learning,
and artificial intelligence have been successfully applied to
analyzing and interpreting fine-art paintings and drawings [6]
[7] [8] [9], offering innovative tools for art experts and schol-
ars. Unlike artist categorization, which focuses on individual
artists, style classification recognizes that multiple painters can
share a common style, making it a distinct and challenging
problem [3].

The traditional computer vision techniques for image clas-
sification use either color [10], shape [11] or texture [12]
features. But feature extraction also results in the loss of
semantic information from the painting image, thus increasing
the challenge of identifying its style [13]. Techniques such as
detecting and recognizing the artist’s signature are not univer-
sally applicable due to the signature often getting cropped out
of digital reproductions. That is why in recent years, computer
vision researchers have explored the painting style recognition
problem using CNNs, which are better at preserving semantic
information. One of the major challenges of being able to
effectively use CNNs for painting classification is the need
for large hand-labeled datasets [5]. The limited availability of
training data has led to a reliance on pre-trained models. Thus,
instead of training a neural network from scratch, existing
approaches either fine-tune pre-trained models, utilize them
for feature extraction, or opt for non-neural network-based
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methods altogether.
In [5], the authors explored the applicability of CNNs for

art-related image classification tasks by performing extensive
CNN fine-tuning experiments and consolidating the results
for five different art-related classification tasks. They also
showed that fine-tuning networks pre-trained for scene recog-
nition and sentiment prediction produced better results than
those pre-trained for object recognition, demonstrating the
effectiveness of leveraging scene and sentiment knowledge
for style recognition. Rodriguez et al. [7] used a weighted
sum of the individual-patch classification outcomes to provide
the final stylistic label of the analyzed painting. Lately, [14]
employed a framework to compare the performance of six pre-
trained CNN architectures (Xception, ResNet50, InceptionV3,
InceptionResNetV2, DenseNet121, and EfficientNet B3) for
style classification using transfer learning, and studied the
effect of different optimizers with learning rates on each
model.

In our previous work [15], we explored the use of pre-
trained CNN models as a feature extraction tool for painting
classification. Some of the popular painting datasets that are
available publicly for artist and style classification include the
Painting-91 dataset by [3], the WikiArt dataset [16], and the
Painting dataset consisting of ten classes of fine-art paintings
from the PASCAL VOC [17]. But even though these datasets
exist, the number of hand-labeled paintings available for ef-
fectively using CNNs is very limited [5]. To that end, we have
worked on expanding the existing Painting-91 dataset [3] to
construct a bigger dataset called the Paintings-100 dataset [1].
While constructing this dataset, we worked on improving the
existing Painting-91 dataset [3] to not only include newer
artists and painting styles, but also carefully remove different
mis-attribution and other human errors that existed in that
dataset. Some of these errors are shown in Figure 1. We also
enhanced image resolutions from the previous dataset, and
augmented certain artist categories, which had fewer images
in the previous dataset, with more images. Finally, we did
extensive experiments with several CNN models to address
both the artist classification and style classification tasks.

III. DATASET CONSTRUCTION

When we worked on [15], we realized that the images in
the original Painting-91 dataset [3] are too small for learning
meaningful features using deep learning. While trying to
replace the images with their high-resolution versions, we
found several kinds of human errors and other limitations in
the original dataset which needed to be fixed. These issues,
some of which are shown in Figure 1, are described in the
subsections below, along with the improvements made by us.

A. Low Resolution

This was the main motivation for constructing the new
dataset. The mean size of an image in the Painting-91 dataset
is 268 × 263 pixels. These dimensions are smaller than the
input sizes of many modern CNN models. So, to improve the

Figure 3. Some paintings of the 14 different style categories that are included
in the Paintings-100 dataset.

quality of the data, we started replacing the images with high-
resolution versions downloaded from the Internet via Google
Reverse Image Search [18]. We were successful in this task
for about 97% of the images, but we also ran into other errors
as detailed next.

B. Mis-Attributions

These are images labeled with a painter’s name that are not
painted by that painter. Some of these mis-attributed images
are deliberate attempts to copy the attributed painter’s style,
some are created using image editing software by making
collages of existing paintings, and some others have simply
been downloaded from a source on the Internet, which also
had the wrong label.

C. Duplicates

Several of the images in most artist classes are duplicates of
other images also in the class. The number of images per class
varies from 30 to 51, which is already very small for training
deep learning models, and the presence of duplicate and
mislabeled images further reduces this number. For instance,
the painter class Hieronymus Bosch has 50 paintings, out of
which 25 are duplicates (exact or slightly variant copies), and

TABLE I
NEW ARTISTS WHOSE PAINTINGS WERE ADDED TO THE DATASET, ALONG

WITH THEIR NATIONALITY AND STYLE.

Artist Nationality Style
Amrita Sher-Gil Hungarian-Indian Several
Jamini Roy Indian Indian folk art
Julie Mehretu Ethiopian American Several
Katsushika Hokusai Japanese Ukiyo-e
Kitagawa Utamaro Japanese Ukiyo-e
Rafiy Okefolahan Cape Verdean Contemporary multimedia
Raja Ravi Varma Indian Indian realism
Utagawa Hiroshige Japanese Ukiyo-e
Zhang Xiaogang Chinese Surrealism
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a further 5 are wrongly attributed, thus bringing the actual
number of usable images down to 20.

D. Cropped Images

These are images which show only part of a painting, the
whole of which may or may not be present in the dataset.
Since the overall composition bears as much information about
a painter’s identity or style as details do, just having a small
cropped portion of a painting in the dataset is not ideal.

E. Color Variations

These are also copies of other images in the dataset.
However, instead of being exact duplicates, these images
have a different color palette. There is no way of knowing
which of the copies has a more accurate color palette, and
so, color cues lose their significance in classification. To
further complicate matters, some artists (such as Andy Warhol)
themselves produced multiple copies of the same painting with
slight differences in details and color, which count as different
images in the dataset.

F. Lack of Diversity

While the original dataset contains an impressive collection
of works from 91 painters and 13 style categories, this collec-
tion focuses exclusively on Europe and the Americas. There
are no painters representing the rich artistic heritage of Asia
and Africa. This is not exactly an error, but an omission in the
dataset that needed to be addressed for overall improvement.

G. Improvements

We took several steps to address the above issues. First,
we replaced most images with their high-resolution versions
wherever such a version was available in the public domain.
The mean image size in the new dataset is 1, 523 × 1, 493
pixels. This amounts to a 32-fold increase in the number of
pixels per image, on average. Second, we replaced wrongly
labeled images with their correct counterparts, or new images
by the same artist. Third, wherever possible, we also added
new paintings to all artist categories that had less than 50
paintings. Fourth, we reduced the number of duplicates by
replacing them with new paintings wherever possible. Last,
but not the least, we added 50 paintings each by 9 more
painters spanning a diverse array of styles representing Asian
and African art (shown in Figure 2 and Table I). This makes
our new Paintings-100 dataset a more diverse, inclusive and
representative database of fine-art paintings. The presented
Paintings-100 dataset has 5, 357 images which is an impressive
25% increase from the 4, 266 image Painting-91 dataset.

We also added the style movement Ukiyo-e, into this new
collection for style classification task. Examples of paintings
from each of these 14 style classes is shown in Figure 3.
Table II displays a list of the various painting styles used by the
different artists that are included in the Paintings-100 dataset.

Figure 4. For artist classification task, we used both whole images as well
as random patches from the images to feed into different CNN models.

IV. METHODOLOGY

The original Painting-91 dataset, and by extension, the
proposed Paintings-100 dataset, are both designed for two
classification tasks. These tasks are artist classification and
style classification. The first task is straightforward as every
image has an artist class label, and the artist classes are roughly
equal in size. For the second task, the dataset contains 14
style class labels in addition to the 100 artist class labels.
This is a slight increase from 13 style classes in the Painting-
91 dataset (Ukiyo-e is the new style class introduced). Each
style class contains works from more than one artist, but not
all artists have a style class label [3]. In the current work, we
have analyzed the dataset with respect to both these problems.

A. Artist Classification

While CNN-based models have largely outperformed other
techniques for various classification tasks, the artist classi-
fication problem is somewhat challenging for these models.
This is mainly due to two reasons. Firstly, deep learning is
data-hungry, and very few artists manage to paint more than a
few dozen completed paintings in their lifetime. This severely
limits the images available for training. Secondly, CNN models
take fairly low-resolution images as their input. This means,
we either need to downsample the images and lose all detail, or
crop the images and lose all sense of composition and context.
Since neither solution was fully acceptable to us on its own,
we decided to use a bit of both.
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TABLE II
DIFFERENT PAINTING STYLES INCLUDED IN THE PAINTINGS-100 DATASET.

Style Artists # Images
Abstract Expressionism Jackson Pollock, Mark Rothko, 167

Willem De Kooning
Baroque Caravaggio, Diego Velazquez, 304

Jan Vermeer, Nicolas Poussin,
Peter Paul Rubens, Rembrandt Van Rijn

Constructivism El Lissitzky, Kazimir Malevich, 153
Wassily Kandinsky

Cubism Fernand Leger, Georges Braque, 157
Piet Mondrian, Picasso

Impressionism Claude Monet, Edgar Degas, 205
Edouard Manet, Pierre-Auguste Renoir

Neo-classical Jacques-Louis David, 106
Jean-Auguste-Dominique Ingres

Pop Art Andy Warhol, David Hockney, 153
Roy Lichtenstein

Post Impressionism Amedeo Modigliani, Georges Seurat, 255
Paul Cezanne, Paul Gauguin,
Vincent Van Gogh

Realism Camille Corot, Gustave Courbet, 256
James McNeill Whistler,
Jean Francois Millet, Raja Ravi Varma

Renaissance Raphael, Sandro Botticelli, Titian 172
Romanticism Caspar David Friedrich, Eugene Delacroix, 310

Francisco De Goya, John Constable,
Joseph Mallord William Turner, William Blake

Surrealism Georgia Okeefe, Joan Miro, 314
Max Ernst, Rene Magritte,
Salvador Dali, Zhang Xiaogang

Symbolism Gustave Moreau, Gustav Klimt 105
Ukiyo-e Katsushika Hokusai, Kitagawa Utamaro, 150

Utagawa Hiroshige

1) Preprocessing: To address the problem of too few im-
ages and too much detail, we used an ensemble of multiple
CNN models that use both downsampled whole images and
full-size patches cropped out of the high-resolution images.
These patches were randomly selected square patches of size
224×224 pixels or larger. In both cases (downsampled whole
image and cropped patches), we used 24 images per class with
augmentation (variations created by slight rotation, translation,
shear, scaling, and horizontal mirroring) for training, 6 per
class for validation, and the rest for testing. The whole and
cropped images were histogram normalized and preprocessed
for their corresponding CNN models.

However, using only whole images for training poses an-
other problem. Even though each style class has three or more
artists, the total number of training images is still quite low
for training CNNs properly. Because of this, we use image
augmentation techniques to increase the size of our training
set. We use translation, rotation, shear, zoom and horizontal
flip operations on our images for augmentation. The images
are also resized to 224 × 224 pixels. Finally, each image is
passed through a preprocessing function specific to each pre-
trained network before passing through the network itself.

2) Model Selection: Classifying whole images and classi-
fying patches are two different problems. For classifying the
patches, we designed our own CNN from scratch and trained

it using 25 random square patches from each training image.
For the whole image classification, we fine-tuned the VGG-
16 network [19] trained on the ImageNet image dataset [20]
since we had far fewer images. These two models are shown
in Figure 4. The models were chosen empirically. We used
decision fusing based on the labels predicted by the two
models.

Although the style classification task takes the same input as
the artist recognition task, it has a different output. Specifically,
here the challenge lies in comprehending the artistic style
of the artwork, which is often more complex and subtle
than merely recognizing the painting’s content or the artist.
For this task, we use deep learning as well. The styles
present in our dataset are Abstract expressionism, Baroque,
Constructivism, Cubism, Impressionism, Neo-classical, Pop
art, Post-impressionism, Realism, Renaissance, Romanticism,
Surrealism, Symbolism and Ukiyo-e. Each of these styles
offers a unique perspective on how artists interpret the world
and their experiences. For example, abstract expressionism
that flourished in the mid-twentieth century, emphasizes spon-
taneous, automatic, or subconscious creation, with Jackson
Pollock and Mark Rothko as key figures. On the other hand,
Ukiyo-e is a genre of Japanese art that flourished from the 17th
to the 19th centuries, admired for its beauty, craftsmanship,
and cultural significance. All the style categories being used
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Figure 5. The internal architecture of DenseNet201 [21].

Figure 6. Our proposed method for style recognition. We employ an ensemble of four DenseNet201 models to do style classification in two stages.

for this work are listed in Table II. It should be noted that
only 55 out of the 100 artists are included in this task since
some of the other artists painted multiple styles, or were sole
representatives of their style.

B. Style Classification

In this section, we discuss our experiments regarding the
style classification task and our results in detail.

1) Preprocessing: While addressing the artist recognition
problem previously, we found that dividing the image into

small patches and using them for training the classifier worked
well [1]. However, that technique did not work well with the
style recognition task. Our intuitive understanding of this is,
the style class of an image is much more dependent on the
whole image rather than finer details. That is why, our models
cannot reliably learn the style patterns with small patches of
the images.

However, using only whole images for training poses an-
other problem. Even though each style class has three or more
artists, the total number of training images is still quite low
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Figure 7. Confusion Matrix of Style Classification using DenseNet201. The
rows indicate actual class labels while the columns indicate predicted class
labels.

for training CNNs properly. Because of this, we use image
augmentation techniques to increase the size of our training
set for fine-tuning pre-trained networks (as detailed in the
next section). We use translation, rotation, shear, zoom and
horizontal flip operations on our images for augmentation.
The images are also resized to 224× 224 pixels. Finally, each
image is passed through a preprocessing function specific to
each pre-trained network before passing through the network
itself.

2) Model Selection: The lack of labeled training images
that makes painting classification so challenging for CNNs
is somewhat less acute for style classification, but it is still
very much present. The limited number of training images
makes this problem particularly suited for transfer learning.
For this work, we test five well-known CNN architectures on
our data. Out of the five, three performed well on the style
classification problem. All CNN models were pre-trained on
ImageNet data [20].

Since the number of images, even after augmentation, is
not sufficient to train a deep neural network from scratch,
we did not create our own model for this task. We tried
several pre-trained CNN models and compared their per-
formance. The models that performed reasonably well were
the VGG16 network [19], the DenseNet121 network [21],
and the DenseNet201 network [21]. The tested models that
did not perform well were the InceptionV3 [22] and the
EfficientNetB3 [23] models. Their performances are detailed
in Section V. Since the DenseNet201 was our best-performing
model, we selected this model for all further classification
experiments.

DenseNet201 [21] is a deep convolutional neural network
with 201 layers, where each layer is connected to every other
layer in a feed-forward manner. It connects all its 201 layers

Figure 8. The confusion matrix for the artist classification experiment using
the combined decision of two CNN models. The rows indicate actual class
index values while the columns indicate predicted index values.

directly, without skipping any connections. This allows each
layer to learn not just from the previous layer, but also from all
the layers that came before, mitigating the vanishing gradient
problem and enhancing feature propagation. Additionally, it
promotes feature reuse while achieving a compact architecture
with a reduced parameter count. The internal architecture of
this network is shown in Figure 5.

3) Ensemble-based Classification: Now, we will discuss
the ensemble-based classification method shown in Figure 6.
The confusion matrix of the style classification task as done
by the DenseNet201 model is shown in Figure 7. As can
be seen in the matrix, there are several areas of inter-class
confusion. The biggest of these is between Impressionism
and Post-impressionism. Other large confusion rates are be-
tween Realism and Romanticism, and between Baroque, Neo-
classical and Renaissance. To handle these particularly difficult
classification problems, we train three more DenseNet201
models. The first of these is trained only on Impressionism
and Post-impressionism images, the second only on Baroque,
Neo-classical and Renaissance images, and the third only on
Realism and Romanticism images. While testing, we first
pass each test image through the network trained to classify
between all 14 classes. If the output label is one of the
classes with high confusion, that image is passed through the
CNN model specialized for that class and the output label
from this second model is assigned to it. So, if the first
model outputs one of the labels shown in the green circles
in Figure 6, the image in question is passed through a second
CNN model which assigns the final label to it. This leads
to considerable improvement in the classification accuracy as
detailed in Section V-B.
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Figure 9. Painting by Edgar Degas. When the whole image is used for artist
recognition, the CNN identified it as a Frans Hals painting, whereas by using
random patches, it is correctly classified as an Edgar Degas artwork.

V. EXPERIMENTS AND DISCUSSION

In the following subsections we describe the two sets of
experiments that we performed on the Paintings-100 dataset.
These two sets of experiments were done for the artist recog-
nition and style recognition tasks, respectively.

A. Artist Classification Experiments

For the artist classification task, our initial results were
promising, with the patch-based model yielding a 32% accu-
racy on the test set, the whole image model yielding 33%, and
the fused accuracy at 38%. The confusion matrix for this result
is shown in Figure 8. Figure 9 illustrates the effectiveness
of such a fusion. In this example, although the whole image
classifier predicts the label to be Frans Hals, different patches
vote for different labels and the true artist, Edgar Degas, gets
the most votes.

We also did a visualization of the responses from the
last convolutional layer of our patch-image classifying CNN
using the Grad-CAM technique [24]. This ”heatmap” analysis
highlights the regions of an image that are key identifiers for
artist recognition. While this is a work in progress, the results
demonstrated in Figure 10 show some of the characteristics

Figure 10. A few paintings and their Grad-CAM response maps showing
regions of interest for artist recognition as detected by the CNNs.

of artists that the network can identify correctly. For example,
bold outlines are a signature characteristic of Indian painter
Jamini Roy and these outlines are highlighted in the topmost
example in Figure 10. Similarly, dotted patterns and certain
kinds of brush strokes are recognized as characteristic features
of Roy Lichtenstein and Vincent Van Gogh, respectively.

B. Style Classification Experiments

For the style classification task, we first ran the same
experiment once for each CNN architecture that we tested.
This was a single 14-class classification of all style images.
Out of the total number of images shown in Table II, we
used 80% from each class for training and the rest for
testing. 80% of the 80% used for training are used for true
training and the other 20% are used for validation. The models
that performed reasonably well on this experiment were the
VGG16 network [19], the DenseNet121 network [21], and the

Figure 11. A comparison of the validation and test set accuracies of the three
different CNN architectures that we tested, along with the ensemble accuracy
on the test set.
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Figure 12. Confusion Matrix of Style Classification using our ensemble-based
method. The rows indicate actual class labels while the columns indicate
predicted class labels.

DenseNet201 network [21]. Since the DenseNet201 with a
validation accuracy of 71.20% was the best performer, we pro-
ceeded to the next stage with this as our primary architecture.
The validation and test set classification accuracies of all the
models we tested are shown in Figure 11. It should be noted
that the validation accuracy is not shown for our proposed
ensemble model since we are combining the decisions of
different trained models to get this result, and the concept
of validation is not meaningful here.

For the next stage, we trained three more DenseNet201
networks. The first was trained on Impressionism and Post-
impressionism images and gave us an accuracy of 92.16%. The
second model was trained on three classes, namely, Baroque,
Neo-classical, and Renaissance, and gave us a validation
accuracy of 77.42%. The last model was trained on images
from two style classes - Realism and Romanticism, and yielded
a validation accuracy of 82.22%.

Subsequently, we created a two-level ensemble of CNN
models as described in Section IV and passed all test images
through this ensemble. This method gave us a test accuracy
of 76.85%, which was an improvement of about 6% over a
single DenseNet201 handling all 14 style categories on the test
set. It should also be noted that this result is even higher than
the results shown by [14] on the Painting-91 dataset [3] which
contains one style class and five artists less (for this specific
problem) than our Paintings-100 dataset. A comparison of
the class-wise classification accuracies using the proposed
ensemble method can be found in Figure 12.

Next, we used the Grad-CAM method [24] to view the
response maps of a classification network. For this experiment,
we used the VGG16 network instead of the DenseNet201
since VGG16 is a linear model and easier to combine with
Grad-CAM. A small sample set from the results is shown in

Figure 13. A few paintings and their Grad-CAM response maps showing
regions of interest for style recognition as detected by the CNNs.

Figure 13. This gives us some insight into what the networks
are looking for to correctly classify the images. For instance, in
Figure 13(a), the network clearly recognizes the Baroque style
by focusing on the three human figures in the painting. In (d)
and (e), the network focuses on the faces of the human figures
to recognize their respective styles, while in (f), the focus is
primarily on the eyes of the subject. These black eyes are a
defining characteristic of surrealist painter Zhang Xiaogang,
and the network learns to recognize them during training.

Figure 14 shows some of the confusing images that were
misidentified by the system. But it is easy to see that these
images are actually confusing to label. While (a), (c), and
(f) are labeled as Surrealism, Cubism, and Constructivism,
respectively, all of them look somewhat similar to the post-
impressionist pastoral landscapes by Van Gogh or Paul Gau-
guin. Similarly, (b), (d) and (e) have features of the style they
are labeled as by the network, along with the style they are
originally annotated with.

Finally, we wanted to see how good our model was in

Figure 14. Some confusing images that were misclassified for style recogni-
tion as detected by the CNNs.
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Figure 15. A few samples of images from outside this dataset, whose styles were accurately predicted by our system.

recognizing the styles of images from outside the dataset. To
test this, we created a second small dataset of 140 images (10
from each style class). All of these images were by artists who
were not among our style recognition training data. In fact,
most of these artists are not even in the Paintings-100 dataset.
Our system performed quite well with this completely unseen
data as well, predicting 44.28% of the styles correctly. Some of
the correctly predicted images from these external images are
shown in Figure 15, and some of the wrongly classified images
are shown in Figure 16. It should be noted that classifying
painting style often involves a subjective decision and the same
painting may sometimes reflect the properties of two or more
different styles, which makes classifying the work of unseen
artists very challenging.

VI. CONCLUSION AND FUTURE WORK

In this work, we expanded our experimentation upon the
large scale diverse high-resolution image dataset that we
recently presented for artist and style classification. While this
was based on the existing Painting-91 dataset, the improve-
ments were significant enough for the Paintings-100 dataset to
be considered a new dataset. We have explored both the artist
recognition and the painting style classification problems by
conducting extensive experiments using several CNN architec-
tures, and found that ensembles of CNN models showed more
promising results for both tasks. As the experiments show,
our proposed ensemble methods perform better than any one
single CNN model tested by us. Some of these methods cannot
be applied on the original Painting-91 dataset because of low-
resolution images. The focus of our work was exploring the

suitability of the newly introduced Paintings-100 dataset for
the artist and style classification problems, and we can safely
say that it is indeed suitable for these tasks.

There are many different ideas that we would like to try out
on this dataset in the near future. Currently, we are selecting
the patches for the artist recognition task randomly. In future,
we want to try selecting patches with face detectors and object
detectors to see how that affects our results. Photographic
conditions such as ambient lighting and camera model create
big differences in the color maps of the digitized paintings.
We plan to use some color normalization techniques to reduce
the effect of photographic conditions on the paintings. In a
later work, we would like to extend this work by including
other painting datasets and other CNN models, since the
generalization performance of our method still has room for
improvement. We would also like to expand upon the response
maps portion of this work to better understand and explain the
functioning of our models.
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Abstract—Emergency Departments (EDs) are complex systems
that require coordination of medical personnel and resources
to manage situations effectively. This research addresses the
basic principles for designing a modular system that allows the
creation of computational models to improve service quality using
available resources. Based on the accumulated knowledge of
experts in the field of ED, the modular system ensures that each
component accurately reflects the particular features present in
various emergency healthcare settings, ensuring its adaptability.
By applying Agent-Based Modeling and Simulation (ABMS),
an analysis of the agents involved—such as patients, doctors,
resources, and computer systems—is considered. ABMS, known
for its ability to individually adapt to each agent, allows the
design of customized environments that meet the unique needs
of various regions and healthcare structures. Inspired by the
modularity and versatility of Lego® blocks, this ABMS system
seeks to transform a monolithic approach into an adaptable
tool. Through the introduction of a metasystem, modular agent
definitions, and a testing platform, the proposed "agent box" fa-
cilitates the construction and validation of computational models.
These enhancements ensure easier adaptation, scalability, and
robustness, potentially improving emergency care quality and
facilitating strategic decision making in this critical service.

Keywords-Agent-Based Modeling and Simulation (ABMS);
Emergency Department (ED); Emergency Healthcare Systems;
Modular System; Automated Testing; Model Validation; Decision
Support Systems (DSS); Healthcare Simulation.

I. INTRODUCTION

The Emergency Departments (EDs) currently face an in-
creasingly complex landscape due to the saturation experi-
enced in recent years, a phenomenon that highlights both
the growing demand for emergency medical care and the
need to provide quick and efficient responses in a pressured
environment [1][2].

Simulation stands out as a compelling tool in the context of
EDs, allowing us to perform analyses of hypothetical scenarios
through "what if" questions [3]. This technique enables antic-
ipation and preparation against potential adverse situations,
helping to improve response capacity to the increasing de-
mands these services may face, especially in critical situations
such as pandemics or flu outbreaks, which have recently
tested their capacity [4]. For example, through simulation, it is

possible to assess the impact that increasing patients’ arrival in
the ED would have on waiting times and service quality, thus
allowing us to devise effective strategies to reduce saturation
and ensure adequate care.

In the realm of EDs, simulation techniques are crucial
for the analysis of complex processes. Among these, Dis-
crete Event Simulation (DES) and Agent-Based Modeling
and Simulation (ABMS) stand out for their effectiveness.
DES focuses on the analysis of discrete events over time,
allowing evaluation of how each event impacts the flow and
operation of the emergency system. It enables us to understand
sequences and resource use, but might not capture all human
interactions. In contrast, ABMS offers a more dynamic and
detailed perspective by modeling the behavior and interactions
between multiple individual agents, such as patients, doctors,
and nurses, as well as their environment. One of the important
characteristics of ABMS is the "emergent properties", in other
words, "the higher-level system properties emerge from the
interactions of lower-level subsystems (Agents)", making it
the ideal choice according to various studies [5][6].

It is important to differentiate our simulation system from
machine learning and artificial intelligence techniques, which
often operate as "black boxes" [7]. These systems depend on
opaque algorithms and large volumes of data to "learn". We
work on another aspect, where we collaborate with experts
to precisely define the variables that influence the system and
the behavior of each element. In this way, we can understand
the operation of the simulator with total transparency, as if
we had a "God mode" that lets us to interpret each result and
understand the reason for each event.

The variability in the operation of EDs is clearly manifested
in the differences in regulatory systems and certifications,
e.g., in the field of phlebotomy, we observe a regulatory
divergence between the United States and Spain [8]. In the
former, certification is a mandatory requirement, while in the
latter, it is not required. When considering the implementation
of simulation techniques to improve EDs, these structural and
regulatory variations must be taken into account. Therefore,
it is necessary to adapt simulation solutions to the specific
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characteristics of each emergency system.
Models and simulators developed up to date by the Research

Group of the Universitat Autonoma de Barcelona (UAB)
"High Performance Computing For Efficient Applications and
Simulation" (HPC4EAS) and other researchers operate in a
monolithic manner, which creates certain limitations in terms
of adaptability. A monolithic system, by definition, is one
in which different components of the software are tightly
integrated or unified into a single program developed for a
specific case, which can complicate its adaptation to new
contexts. Faced with this situation, two initial solutions are
presented: modify the existing monolithic model to adapt it to
new needs, despite the difficulties this may entail, or develop
a new simulator from scratch.

Given the application of the ABMS concept in these systems
and inspired by the modularity and versatility of Lego R⃝

blocks, a third proposal emerges: to disaggregate those mono-
lithic simulators to create an "agent box." This box would
contain all agents that could be involved in the ED, including
medical personnel, patients, administrative staff, and physical
resources. This strategy allows the simulator to be fluidly
adapted to different ED environments and also to expand the
agents and their interactions within the system, a solution that
will allow handling the complexity of these environments.

To achieve this, agents must be individually defined and
modularized into separate files or libraries, facilitating reuse
and simplifying future modifications. In addition, incorporat-
ing an external Python-based metasystem to automate testing
and validation will guarantee modularity, early error detection,
and robustness of each component. This structured approach,
complemented by a clear separation of agent behavior from
their interactions, ensures greater scalability and adaptability,
thus supporting continuous improvement and expansion of the
ED simulator.

The remainder of this article is structured as follows:
Section II provides a concise summary of the previous works
carried out by the HPC4EAS group; Section III examines the
fundamental properties of the proposed metasystem; Section
IV reviews similar research, Section V explains how the
metasystem is working and the changes to make it, Section
VI decomposes the actual and specific agents in the simulator,
and analyzes the role of the agents, and Section VII describes
conclusions and future plans for the research work.

II. PREVIOUS WORK

This section presents the results of projects carried out
by HPC4EAS, research group from the Department of Com-
puter Architecture and Operating Systems at the Universitat
Autònoma de Barcelona (UAB). The work has been conducted
in collaboration with the staff of the ED at Sabadell Hospital
(Corporació Sanitària Parc Taulí), a reference center in the
Catalan health system. In addition, various studies related to
the topic are integrated.

The research group has developed both a conceptual model
and a computational model (we can consider that the simulator
is the implementation of the computational model) that utilizes

the ABMS technique, distinguishing between active and pas-
sive agents. Active agents are capable of making decisions
and acting autonomously, representing individuals, such as
doctors, nurses, and patients, who interact and respond to the
dynamics of the ED. On the other hand, passive agents do not
take initiatives on their own but are essential for executing
predetermined processes and enabling interactions, such as
hospital information systems, communication networks, and
laboratory services. These agents interact within a virtual
environment that simulates the areas and processes of an
ED, managing different levels of urgency and priority in
patient treatment. The interaction between these agents and
the modeled environment allows for the replication of the
particularities of a real emergency service [9].

The project has evolved through several key phases, starting
with the development of a conceptual model derived from a
meticulous analysis of the elements of the ED, including the
triage system that stratifies urgency into five severity levels,
specifically the Manchester Triage System [10], with level I
being the most critical and level V the least. In addition, to
mapping other operational aspects and examining the inter-
actions among agents to reproduce the system behavior, the
simulator also distributes patients in the ED into two zones,
Zone A and Zone B, according to this severity classification,
assigning patients with levels I to III to Zone A for priority
care, while those with less severity, levels IV and V, are
placed in Zone B, designed for less urgent situations. This
segmentation is important for the management of patient flow
[11].

Figure 1. Simulator of the Sabadell Hospital ED, created with NetLogo.

After establishing the conceptual model and understanding
the mechanisms of the ED operation, the next step was the
creation of the computational model. This model translates
the theory and observations of the conceptual model into
algorithms and data structures that can be processed by
computer systems. In this phase, the behaviors of both active
and passive agents are programmed, and the interaction rules
and operational procedures, such as the triage system, are
encoded. The goal of the computational model is to faithfully
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Figure 2. Diagram of the design process of a simulator using a modular system for a specific ED.

reflect the dynamics of a real ED, allowing the simulation
of different scenarios and their possible outcomes as can
be seen in Figure 1. This model becomes a sophisticated
tool to predict the behavior of the ED at Sabadell Hospital.
This scenario was represented using NetLogo software [12],
a modeling environment designed for ABMS, which provides
the possibility to accurately design and simulate the operations
of a hospital ED.

The system also incorporates stochastic elements, such as
variability in patient arrival times and treatment durations, to
account for the unpredictability of ED operations. Further-
more, the simulation outcomes align closely with actual data,
providing insights into potential bottlenecks or inefficiencies
in resource allocation. By testing different scenarios, such as
increasing staffing levels during peak hours or reallocating
resources between zones, the simulator serves as a decision
support system for hospital managers.

In the work conducted by various members of the research
group, the simulator has been adapted and applied to analyze
how to optimally use the limited resources available in the
ED [13], to generate information about specific scenarios that,
while possible, rarely occur in reality [14], and thus learn about
the best way to manage them, or also to analyze, model, and
simulate the transmission of the Methicillin-resistant Staphy-
lococcus Aureus (MRSA) virus [15], and its effects on the
operation of the ED, in order to explore the potential benefits
of adopting preventive measures.

III. GENERAL CHARACTERISTICS OF THE METASYSTEM:
LEGO R⃝ SYSTEM

Building on existing work and advancements in the sim-
ulation and modeling of EDs using ABMS techniques, we
propose the creation of a metasystem, named the Lego R⃝

System. This system aims to manage the modularity of ABMS
to develop an adaptable simulation environment.

The metasystem will originate from a conceptual model
developed with the collaboration of ED specialists and the
disaggregation of current simulators, which will facilitate the
definition of standard modules that can be used in various
health environments. This will allow for an efficient transition
from a specific conceptual design to a computational configu-
ration within the metasystem when it is necessary to develop
a computational model for any ED. With the computational
model ready, the necessary calibration and validation process

must involve the use of specific data that the hospital can
offer, and discussions should be held with them to determine
the available data to guide this calibration to conclude with a
specific simulator. The calibration process uses data that the
hospital can provide, such as the number of patients arriving
per hour, the approximate average time required to perform
certain tasks, the number of nurses, doctors, and so on. With
all this information, high-performance computing is used to
test the different combinations and see which one is closest
to reality, and whether it is a valid enough approximation.
It is important to understand that large volumes of data are
not used, nor is data that cannot be understood. The entire
simulation process is based on the experience and knowledge
of ED experts. In Figure 2, the process of the actual ED is
detailed. The section to be analyzed is highlighted in red, while
the specific areas of an ED intended to be modeled with the
metasystem are highlighted in green. Dotted lines denote the
new flow of requirements for the Modular System in blue,
which produces a Computational Model.

The goal is to develop a platform that facilitates the cre-
ation of computational models of EDs, through an interface
functionally similar to Lego R⃝, which allows us to work
with "blocks". These blocks represent the various agents and
processes involved in the operation of ED and are designed to
be customizable. Flexibility is a key point; the system must
allow for the combination of blocks in multiple ways, thus
adapting to the operational particularities of various EDs. For
example, it is possible to explore the impact of variations in
staff roles, e.g., analyzing the consequences of assigning more
or fewer responsibilities to a nurse or simulating scenarios
where another team member assumes these tasks. With mono-
lithic systems, such adaptations are costly; consequently, when
different hospitals need to be analyzed, it becomes expensive.

To carry out the disaggregation of these components, it is
important to analyze the state variables that will characterize
the different agents, as well as define how transitions between
these states will occur. In this context, three main categories
are established: two corresponding to active agents and one to
a passive agent, which will allow us to explore differences in
their operation.

Among the active agents, we find common elements that all
of them share, such as:

• Identifier: Each agent has a unique identifier that allows
the system to recognize it in each temporal iteration.
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• Location: Records the current location of the agent in
the ED, which can vary from admission to the treatment
area or specific tests.

• Action: Agent actions, such as waiting to be called,
receiving instructions, or moving between different areas
of the ED. These actions will vary by agent.

Arrival

In ambulance? AdmissionTriage done?

Triage Waiting Room

Severity Level?Zone A Zone B*

Needs
medical tests?

Needs
medical tests?

Medical Tests

Clinical Evaluation

Additional tests? Final Clinical Evaluation

No
Yes

No

Yes

I,II,III

IV, V

Same as zone A

Yes

No

No

Yes

Figure 3. Diagram of the process patients go through in the ED.

For the particular case of patients, there are complex state
variables and transitions. We can distinguish three specific
state variables; personal details, priority level, and communi-
cation level. Patients are recognized as one of the most crucial
agents in the ED. Their personal details, such as age, gender,
culture, and religion, are collected and considered to provide
tailored treatment. The assignment of a priority level based
on triage determines the urgency of medical attention, while
the communication level between the patient and the ED staff
is an indicator of the effectiveness of the interaction.

The diagram showed in Figure 3 illustrates the process a
patient undergoes upon arrival at an ED. It begins with their
arrival, a critical point where their unique identifier is assigned,
and their initial location or time of arrival is recorded. If they
arrive in a medicalized ambulance, triage has already been
conducted on-site; otherwise, if they arrive on their own or
in a nonmedicalized ambulance, the process starts with their
admission.

Priority level assignment occurs during triage, guiding the
patient through the system to either to treatment areas, a
separated zone (Zone B in the figure) with one specific waiting
room and attention boxes for less severe cases (patients with
priority level IV or V) or directly to a carebox (Zone A) for
patients with more critical conditions (patients with priority
level I, II or III).

The level of communication is important at each stage, from
assessing whether medical tests are needed for taking decisions
about additional treatments. An evaluation cycle of treatment
and possible re-evaluation continues until a resolution point
is reached: the patient is discharged or further measures are
taken based on their needs.

Each step of the process reflects the interaction between the
patient’s state variables and the actions of the ED system.

Start

Are there patients?

Review Data

Initial Consultation

Tests?Send for Tests

Diagnosis

Treatment Plan Discharge

Yes

Yes

No

No

Figure 4. Diagram of the process that doctors undergo in an ED.

Continuing with our investigation of active agents in the
ED, doctors are a key player whose state variables reflect
their role in the care environment. In contrast to patients,
doctors’ actions are defined by a series of clinical steps
and defined tasks that are dictated by the patient’s priority
level. While specifics of each patient’s condition are important
for individual care, they are less important for large-scale
simulation purposes, where the emphasis is on overall patient
flow and resource allocation.

Doctor’s actions in the ED range from being inactive, which
could mean waiting for the next patient, to more interactive
actions, such as asking a patient to come forward, requesting
detailed information, making a preliminary diagnosis, and
ordering specific tests or treatments. A doctor may also be
in an active waiting phase, awaiting the results of tests they
have ordered, then making decisions based on those results,
such as ordering the patient’s discharge from the ED or making
a final diagnosis to be entered into the Computer System, as
evidenced in Figure 4.
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The level of experience of the doctor, classified as low,
medium, or high, influences their actions, and is a critical
component that impacts the efficiency of work within the ED.
A highly experienced doctor may be able to make quicker
diagnoses or handle more complex cases in less time. For this
reason, the metasystem incorporates a state variable to manage
such issues. This is not reflected in the schema because the
process remains the same; however, it depends on the state of
each agent.

The operation of the Information System (IS) in an ED
is essential for efficient and accurate care. It is part of an
interactive process where the key decisions that the IS makes
are in response to the received requests. Initially, the system
checks for pending requests and, based on this, proceeds
to obtain reports, register patients, and issue medical alerts.
Decisions about whether patient data already exist lead to
further actions, such as registering new data or adding them to
the existing system. The workflow facilitates the processing of
information and the continuous updating of medical records.

As a passive agent, the IS depends on interactions with
active agents, such as the medical or administrative staff of
the ED, to change state. The system’s propensity for errors
is categorized into low, medium, and high levels, which can
affect the operability of the ED.

The IS, as a passive agent within the ED, plays a significant
role in coordinating between the different components of the
healthcare system. The ability to process and issue information
accurately is necessary to maintain a smooth workflow and to
ensure that patients receive the necessary care at the appro-
priate time. It is a component that supports all the operations
of the ED, from admission and triage to the patient being
discharged.

The interaction between doctors and patients, mediated by
the information system, is a delicate dance of consultations,
diagnostics, and decisions that advance the patient through the
care process, as reflected in the discussed figures.

IV. RELATED WORK

The adaptability of simulation models to various health
systems seeks to improve EDs. This flexibility will allow the
implementation of the proposed modular metasystem, which
can be adjusted to the specifics of different emergency care
settings.

There are initiatives by research groups that have used sim-
ulation to enhance the effectiveness of EDs. The 3S Research
Group and the Shelford team in England have conducted
simulations at the University Hospital of Dublin [16] and in
specific cases of the ED in London [17] respectively, offering
valuable reference models for our proposal.

Moreover, it is important to analyze health systems in their
social and economic context, as factors such as funding and
access to health services vary significantly between countries
[18].

Analyzing how health systems function provides a more
global perspective, it is necessary to evaluate the different
health models found in each country. According to the World

Health Organization, there are four main models [19] that
have their distinctive characteristics regarding funding, man-
agement, and coverage.

The Beveridge model, implemented in countries like Spain,
Portugal, and Finland, is characterized by its funding through
income taxes, with the government assuming total control of
healthcare management and providing universal coverage. This
approach contrasts with the Bismarck model, prevalent in Aus-
tria, Germany, and Switzerland, where funding comes from
mandatory contributions to social insurance funds. Although
the state regulates healthcare entities, coverage depends on the
individual’s employment status, and copayments are included
for certain services.

On the other hand, the National Health Insurance Model,
found in Japan, Canada, and South Korea, combines elements
of both previous models that offer universal and equitable cov-
erage, regardless of employment affiliation [20]. This model
allows a greater choice of healthcare providers. Lastly, the Out-
of-Pocket model is distinguished by the absence of collective
funding, leaving individuals to face healthcare costs without a
financial safety net, which limits universal access to health.

Each model reflects a different philosophy regarding the role
of government, individual responsibility, and the principles
of social solidarity. While the Beveridge and National Health
Insurance models focus on universal coverage guaranteed by
the state, the Bismarck and Out-of-Pocket models present
a more segmented or individualized approach to healthcare
coverage, which causes different types of ED operations in
each case. These differences are reflected in Table I.

These factors can lead to different roles and internal func-
tioning aimed at optimizing available resources. For example,
the approach to phlebotomy in the United States, where there
is specific training for this skill, differs from other countries
with different training approaches, such as in Spain, where
nurses are responsible for this process. With the new modular
"Lego R⃝" system, the need to adapt the simulator to these
variations is no longer a problem, as the modules can be
customized and reconfigured to reflect any health system.

There are tools seeking something similar like VisualizER,
a DES tool that exemplifies how simulation can be applied
to optimize EDs [21]. Although it allows effective simulation
of emergency operations, it does not offer the capability to
model the individual behavior of agents, which is a crucial
component for anticipating unforeseen events.

Our proposal for an ABMS-based metasystem advances
beyond existing DES solutions by leveraging the advantages
of ABMS for creating modules that allow the result to emerge
from the individual interaction of agents. This feature enables
understanding and managing the often unpredictable dynamics
of EDs, thus providing an adaptable system for healthcare
professionals.

V. OPERATION OF THE METASYSTEM

In the metasystem for modeling EDs, it is crucial to have
an interface or set of tools that facilitate customization of the
system to the specific needs of different hospital environments.
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TABLE I. COMPARISON OF HEALTHCARE MODELS

Model Funding Control and Management Coverage and Features

Beveridge Income taxes Government Universal, public
Bismarck Social insurance State regulates Employment-dependent, copayments
National Insurance Taxes and insurances Mixed Universal, greater choice of providers
Out-of-Pocket Private Individual Limited access, no financial protection

This functionality allows users to manipulate and redefine the
stages and agents involved in the process easily.

Each component of the health system, represented by an
agent, can be selected, configured, and placed within a work-
flow. The proposal is to drag and drop components, thus
modeling the flow of the care process according to the criteria
of each ED. Through this interface, for example, a new
triage procedure specifically designed to respond to pandemic
emergencies could be integrated, adjusting the metasystem to
reflect changes in protocols. To achieve this, it is necessary
to establish a basic form of communication between agents
through primitives that are easily interchangeable among them
and capable of adaptation. Examples of such primitives in-
clude conversing and utilizing objects, which are essential for
defining each agent’s own internal mechanism.

There will always be a need for a series of forms or
commands that allow specifying and modifying the properties
and behaviors of each agent. This functionality is relevant
when wanting to add a new agent, e.g., a ’pandemic triage
agent.’ Here, the person in charge has the opportunity to access
a library of predefined agents and select the one that fits
their needs. Subsequently, the functions of this agent can be
customized by adjusting parameters and behaviors.

In the event that a necessary agent is not predefined, tools
are provided for users to create one from scratch. This allows
the system to be adaptable, enabling each healthcare center
the ability to mold the metasystem to their operational reality.

Figure 5 shows the structure of an ED. At the bottom, the
set of "agent box" can be observed, a collection of roles and
functions from which one can choose to assign to the different
phases of the care process. For example, during the admission
phase, a distinction is made between a process for a public
ED and a private one. In the triage phase, a nurse specialized
in this task is required. However, if the situation demands
the incorporation of a triage nurse with greater experience
due to an increase in the complexity of cases or the need
to expedite the process, this new type of professional could
be added. This process would be carried out by duplicating
the configuration of the existing triage nurse and adjusting
her parameters of behavior and performance according to the
additional experience she brings to the process.

Consider the scenario where an ED in Spain is public, in
such a case, this specific setting can be selected to work
within the system. Similarly, settings for other stages, such
as Triage, Waiting Room, and Performing Additional Tests
can be customized to specify the capabilities and processes for

each element of the system. This customization process allows
the system to transition smoothly from the general agent-
based configuration shown with the box to a more specific
configuration that can be shown with the selected agent boxes
in the diagram of the Figure 5.

This tailored approach ensures that each component of the
ED could operates optimally according to the defined roles
and requirements, enhancing both efficiency and patient care.

VI. DECOMPOSING THE ACTUAL SIMULATOR

This section gives a detailed discussion of the design ideas,
modular structure, and important implementation details used
in the creation of the ED simulator in NetLogo. The goal is to
show how an ABMS methodology combined with the simple
programming environment of NetLogo results in a versatile
and reliable system for simulating and evaluating ED activities.

The current configuration of each agent in the NetLogo
model, such as a patient or a member of the medical staff,
contains a incoming-queue variable that keeps track of all
messages received to that agent. This queue-based system is
the foundation for how agents coordinate actions and exchange
information. This method ensures that all communication
remains within the local queue of each agent, preventing direct
connections between agents and preserving a loosely con-
nected architecture. The simulation can handle messages more
simply and scale to accommodate more actors by breaking
interactions up into discrete time increments.

The simulator’s communication infrastructure will become
more modular and adaptable in the future, keeping the queue-
based method while adding additional features like a “guarded-
send” mechanism that will handle the cases in which a recipi-
ent is no longer active or is temporarily unavailable, preventing
silent failures or lost messages and keeping the main idea with
the “Lego®-style” modularity principle, the new system will
allow for interchangeable communication styles (e.g., point-to-
point messaging, publish-subscribe broadcasts) so that compo-
nents can be replaced or upgraded independently. This would
allow agents, in high-traffic simulations, to prioritize messages
and filter messages by content so important information is
handled first. This layer, an optional layer, allows agents to
"subscribe" to particular events; these might include lab results
or patient arrivals. These enhancements aim to preserve the
original simulator’s advantages—loose coupling, transparent
debugging, and straightforward implementation—while offer-
ing a more dependable platform for simulating increasingly
complex ED scenarios.
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Figure 5. Example of Modules Utilized in an ED.

A. Role of Agents in an ED

The functioning of an emergency department is a complex
process that involves teams and resources in coordination,
well-timed, and appropriate care for patients. Table II shows
the various ED agents and their relation to the whole func-
tioning within the context of the actual simulator.

Admissions staff are those who first report on the arrival
of patients as they come in the ED, documenting necessary
information about such a patient. This is an important step,
as it forms the basis for triage and further care. Once these
patients have been registered, the Triage Nurses take on the
process of ensuring proper use of resources and timely care of
patients. At this stage, your symptoms are evaluated and the
prioritization of the treatment order is created.

It is designed based on a digital platform for data manage-
ment and real-time communication that forms the very basis
of the ED: the Information System. It interlinks various roles
within the ED, with a view to managing patient flow, improv-
ing resource tracking, and assisting well-informed decision
making.

The doctors and nurses have their zones of operation in
the ED. Physicians in Area A usually see patients who
have conditions that are urgent but not life-threatening, while
physicians in Area B are more concerned with patients whose
cases are less serious or highly specialized. Similarly, nurses
in each area provide care specific to the needs of the area,
such as medication administration, assisting with procedures,
and coordinating activities within the zone.

Key facilities such as careboxes and testing rooms play a
critical role in diagnosing and treating the patient. Careboxes
refer to individual facilities for patients, where clinical diagno-
sis and care would be provided; the Test Room is a specialty
room intended to house specific tests and examinations of the

patient that will be performed, such as imaging and laboratory
tests. Each one of these facilities helps ensure that delays do
not occur, allowing timely delivery of care.

Auxiliary Staff play a supporting role for the ED nurse
in managing all behind-the-scenes logistical work of moving
patients around, replenishing supplies, among others. This
complements the care process at each juncture where waiting
occurs to facilitate patient flow.

Ambulances are the modes of transport that meet the needs
within the ED, especially in the transport of critically ill pa-
tients and the transfer of patients to specialized care facilities.
Outside the ED, Hospitals play an important role in providing
extended care for patients who require inpatient services. How-
ever, the availability of beds and policies regarding admissions
may directly impact ED operations.

B. Metasystem for NetLogo

The current simulator developed with NetLogo has certain
characteristics that make new adaptations complex. One of
them is the limitation of having all the code in a single file,
which makes it very difficult to adapt new agents or change
interactions due to the interdependence generated in the code.
While it is true that the tool works effectively with ABMS
principles, for complex systems it is easy for the code to
become disorganized and monolithic.

If we look again at the bottom of Figure 5 we see how
these "boxes" and these agents could be the structure of the
system, where we can configure the corresponding agents in
each box. This concept, if we transfer it to the computing
world and specifically to the programming world, we could
consider that we have a series of libraries or folders that
contain the specifications of each of the elements, in this
case the agents. It is clear that the agents will continue to
have an interdependence between them because they have
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TABLE II. DESCRIPTION OF AGENTS IN AN EMERGENCY DEPARTMENT

Agent Description
Admissions Staff in charge of receiving new arrivals and collecting the necessary information to start each patient’s journey in the

ED. They ensure that everyone is documented appropriately.
Triage Nurses Personnel who perform quick assessments on patients upon arrival, determining treatment priority based on symptoms

and severity. Their evaluations guide the sequence of subsequent treatments.
Information System A central platform that keeps patient information updated, handles staff requests, and monitors resource usage in real-

time. It smooths communication among various roles in the ED.
Patients Individuals with varying medical conditions who come to the ED. They go through the processes of admission, triage,

testing, treatment, and, if necessary, further hospitalization or discharge.
Doctors in Area A Physicians responsible for handling moderate to urgent cases. They diagnose patients, establish treatment plans, and

collaborate with nurses, technicians, and other support staff as necessary.
Doctors in Area B Physicians stationed in a different section of the ED, typically managing lower-acuity or specialized groups of patients,

but with the same responsibilities of evaluation and care coordination.
Nurses in Area A Nurses who carry out direct patient care in a designated zone, administering medications, assisting with procedures,

and ensuring a smooth overall workflow.
Nurses in Area B Nurses dedicated to a separate section of the ED, responsible for patient care tasks similar to those in Area A but often

focusing on less critical cases.
Careboxes Treatment cubicles or rooms where patients receive clinical assessments and interventions. Each carebox is typically

operated by a specific nurse or care team.
Test Rooms Specialized areas (imaging, laboratory, etc.) where patients undergo diagnostic procedures. Efficient management of

these rooms helps reduce testing delays and bottlenecks.
Auxiliary Staff Personnel handling vital support functions, such as transferring patients from one location to another, restocking

supplies, and assisting in non-clinical tasks.
Waiting Rooms Spaces where patients remain before receiving care or while awaiting results. Proper supervision here is essential for

patient comfort and timely redirection to the next step.
Ambulances Vehicles dedicated to bringing critical cases to the ED and transporting patients out when they require specialized

services elsewhere. Their availability can significantly impact system flow.
Hospitals Broader facilities that provide inpatient care for individuals requiring extended treatment beyond the immediate scope

of the ED. Bed availability and admission policies often influence ED throughput.

to communicate, but in this way the essence of an ABMS
is preserved, with strictly the definitions of the agents and
without unrealistic adaptations for the functioning of the
system, thus being definitions faithful to reality.

Furthermore, it is important to differentiate the internal
behavior of the agent and the interactions with other agents.
In order to respect the proposed system in which everything is
segmented by pieces, it is necessary to create an independent
file that defines the interactions that these agents have to do
and that is easy to adapt to new systems.

To integrate all the information that NetLogo can interpret,
a program is needed to consolidate all the files. This process,
known as flattening, transforms the source code by eliminating
nested control structures and reducing it to a sequence of sim-
ple program statements. Although the literature, such as László
[22], applies this technique in the context of obfuscation to
hinder reverse engineering, in our case it is used to unify the
code and facilitate its interpretation.

C. Testing Metasystem

Each module of the metasystem, organized in independent
directories, requires a specific set of tests to validate its indi-
vidual behavior before integrating it into the full simulation.
To facilitate this task that is not yet implemented, Python
is proposed as an external environment that manages and
automates unit tests on components developed in NetLogo.

The procedure will consist of preparing specific scenarios
using Python scripts that invoke NetLogo in headless mode
(without a graphical interface). The initial data for the test will
be generated from Python in standard format (e.g., JSON or

CSV) and loaded into NetLogo, where the specific module will
be executed isolated from the rest of the system using mocks
when they are necessary. Finally, the results generated by
NetLogo will be retrieved again by Python, allowing automatic
validations to be performed through unit tests.

This modular approach facilitates early error detection and
ensures that each component meets the defined requirements,
significantly reducing the complexity of maintenance and final
integration of the system.

VII. CONCLUSION AND FUTURE WORK

Simulation in EDs is greatly beneficial in addressing the
increasing complexity and saturation these services currently
experience. The ability to analyze problematic situations in ad-
vance through the simulation of hypothetical scenarios allows
EDs to prepare and respond effectively to adverse situations,
especially in critical contexts, such as pandemics or disease
outbreaks. Simulation not only improves response capacity to
growing demand, but also contributes to strategic planning of
EDs.

ABMS stands out as the appropriate tool for simulating
EDs, surpassing DES in terms of the ability to model the
complexities of such systems. ABMS, with its "emergent
properties", allows for a detailed representation of interactions
among multiple agents, such as patients, doctors, and nurses,
and their environment, capturing the essence of human pro-
cesses.

The development of simulators using ABMS represents
a significant advance that allows models to be adapted to
different EDs. The transition from monolithic models to a
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LEGO-type modular system, known as an "agent box," fa-
cilitates the adaptation and expansion of simulators to meet
various configurations and needs of ED. This modularity al-
lows efficient customization and reconfiguration, reflecting any
health system and its operational particularities. Furthermore,
reorganizing the monolithic code structure of the simulator
into modular files for individual agents, combined with the
proposed flattening process, will facilitate easier adaptation
and scalability of the simulator. The introduction of an external
Python-based metasystem for automated testing will ensure
modularity and robustness, allowing early detection of errors.

This simulation proposal differs from other solutions, such
as DES and tools like VisualizER, in its focus on agent
adaptation and modeling. Through the "emergent properties"
of ABMS, it is possible to model individual behavior and
interactions between agents, a crucial component for managing
the often unpredictable dynamics of EDs. This provides an
adaptable system for healthcare professionals, allowing for
more effective ED management.

However, there are limitations and potential future directions
for the expansion of this technology. One is the number
of predefined modules in the "agent box," which could be
addressed by creating a common repository where modules
adapted to new needs and contexts are shared and updated. In
addition, expanding the use of modular systems in EDs to other
healthcare and geographic contexts could provide valuable
information and improve the efficiency of EDs worldwide.
Moreover, the test and validation of the metasystem proposal
have to be done.

In conclusion, the proposal of an ABMS-based metasystem
for ED simulation contributes to better understanding and
management of these services. Through the ability to model
the complexity of human interactions, this technology opens
new possibilities to prepare EDs for current and future chal-
lenges. The evolution towards modular systems and collab-
oration in the development of modules can further enhance
simulation capabilities, offering continuous improvement of
EDs.

In the future, the Delphi method, a process used to arrive
at a group opinion or decision by surveying a panel of experts
[23], will be necessary to build a comprehensive conceptual
model, develop the meta-model and a comprehensive testing
metasystem. This analysis will involve multidisciplinary col-
laboration with clinical expertise and the use of ABMS.
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Abstract—This work presents physically based simulation of
energy distribution and substance composition for dynamic fluid
transport problems. The main addressed problem is the stability
of the algorithms for solving the resulting systems of differential-
algebraic equations. The challenges encountered include system
degeneration, the appearance of stochastic degrees of freedom,
jumps in thermodynamic functions during phase transitions,
and proper scaling of equations. The proposed solution is the
identification and optimal configuration of solver parameters,
strongly affecting the stability and speed of the simulation.
Such parameters include regularizing and weighting constants,
dimensioning of dynamic terms and startup procedure, the size of
the integration step and their total number. The main output of
the paper is the optimal choice of these parameters that allows to
speed up significantly the dynamic simulation of fluid transport
for realistically large network scenarios.

Keywords-simulation and modeling; mathematical and numeri-
cal algorithms and methods; mixing flows; pipeline fluid transport;
stability.

I. INTRODUCTION

This work extends the results of our conference paper [1],
which considered modeling of mixing flows in dynamic fluid
transport simulation. The extension includes a more precise
implementation of heaters and coolers, as well as a detailed
stability analysis of dynamic simulation with mixing flows.

The contributions of the study: this paper continues a
series of our works on modeling of fluid transport networks.
Previous works presented stationary [2] and dynamic [3]
modeling of fluid transport networks limited to a single chem-
ical composition and constant temperature. In addition, some
aspects of stationary modeling of mixing fluids of different
compositions and/or temperatures were considered in [4]. In
this paper, flow mixing modeling will be considered in more
detail, with special emphasis on the thermodynamic layer
of the model. In particular, dynamic mixing equations and
algorithms for their solving will be presented. The developed
approach is implemented in our Multi-phYsics Network Sim-
ulator (MYNTS) [5], which is used to solve actual transport

scenarios for natural gas [6], hydrogen [7], carbon dioxide [8],
water [9] and other fluids.

State-of-the-art: fluid transport modeling is based on the
conservation of mass flows in the form of dynamic Kirchhoff
equations; Darcy-Weisbach pipeline pressure drop formula,
with empirical friction term by Nikuradse [11] and Hofer [12];
equation of state computation by simplified analytical models
by Papay [13], Peng-Robinson [14] and Soave-Redlich-Kwong
[15] or more complex ISO-norm models AGA8-DC92 [16]
and GERG2008 [17]–[19].

A number of previous studies [20]–[26] considered mod-
eling of pipeline fluid transport, both at the universal mathe-
matical level [20], and in various application scenarios. Such
scenarios include transport of natural gas [21] [23], steam
transport in oil refineries [22], carbon dioxide transport [24]–
[26]. All these works are characterized by the presentation
of transport equations as laws of conservation of mass, mo-
mentum and energy. In the presence of various substances,
conservation of molar flows is added, while the general
relations of thermodynamics of open systems [27] regulate
the relations of energy and temperature.

The main problem: a common drawback of existing
solutions is the closed nature of modeling within blackbox
systems. If it is necessary to change the modeling, modify
or introduce new equations and variables, the system must
be reprogrammed. In addition, existing systems experience
difficulties in solving large realistic network problems in
the presence of numerical instabilities. The novelty of our
approach consists in transparent modeling, where the user
can freely change the equations and experiment with different
forms of representing physical processes in fluid transport
networks. We also pay special attention to the stability and
performance of solution algorithms, which is especially im-
portant for realistic scenarios with a large number of elements.

The aim of this work: to extend transparent and numer-
ically stable modeling to mixing flows present in realistic
fluid transport scenarios. In our early works [2], [4]–[10] an
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implementation for a stationary solver was considered. The
main strategy for ensuring stability was a gradual sophisti-
cation of the modeling, from a pure pipe system with linear
equations for control elements, constant temperature and fluid
composition, to a full problem with nonlinear control elements
and physical distribution of temperature and fluid composition.
At each step, the solution was used as a starting point for
the next step. The disadvantage of this approach is that
simplified modeling does not always yield a physical solution
and sometimes gives a bad starting point for the next iterations.
Also, theoretically, direct solution of stationary equations does
not always yield a limit point of a stable attractive type, it
can also yield a repulsive or saddle point. Dynamic modeling
automatically finds stationary points of the attracting type,
and can also have richer asymptotics, including runaways,
limit cycles and random behavior. All this means that the
dynamic solver is advantageous, also for solving stationary
problems. The key point of our research is to understand
how to use the dynamic solver most optimally, in a stable
operation mode. Previously [3] we studied only the pressure-
massflow subsystem, with constant chemical composition and
temperature. Now we study the stability of the dynamic solver
for the full system, including mixing flows and temperature
modeling.

In this work, Section II presents the modeling of mix-
ing flows incorporating molar and temperature relationships.
Section III describes the numerical experiments performed
using the developed methods. Section IV considers extended
modeling of heaters and coolers. In Section V, extended
stability analysis of the full dynamical solver is performed.
Section VI summarizes the main results and conclusions of
the work.

II. MODELING OF MIXING FLOWS

This section describes the details of modeling of mixing
flows, consisting of modeling fluid molar composition and
temperature distribution.

A. Molar fluid composition

A fluid transport network is described by a directed graph
consisting of nodes and edges connecting them. The graph is
described by an incidence matrix Ine, in which each edge e
has nonzero entries for the nodes n that this edge connects;
−1 for the node that edge comes from, +1 for the node that
edge enters. Mixing fluid flows are described by following
equations

Vn∂ρn/∂t =
∑

e Ineme, (1)
Vn∂(ρnµ

−1
n )/∂t =

∑
e Inemeµ

−1
e , (2)

Vn∂(ρnµ
−1
n xn)/∂t =

∑
e Inemeµ

−1
e xe, (3)

where Vn is the volume assigned to the node; ρn represents
the mass density at the node; t denotes time; the sum applies
to all edges adjacent to the node; me is the mass flow in an
edge, considered positive if the direction of flow coincides
with the direction of the edge, and negative otherwise; µn/e

is the molar mass assigned to both the node and the edge;
xn/e are the mole fractions of the components that make up
the fluid.

Physically, the above equations describe various conserva-
tion laws. In particular, (1) is the dynamic Kirchhoff equation
and describes the conservation of mass. Here, Vnρn on the
left side, with Vn representing a time-independent volume,
describes the mass of fluid in the node. The sum on the right
side accounts for the mass flow into the node, minus the flow
out. Equation (2) describes the conservation of the total molar
amount of a fluid, where Vnρnµ

−1
n represents the number of

moles in a node, and the sum on the right side is the total molar
flow in the node. Finally, (3) describes the molar conservation
for each component, Vnρnµ

−1
n xn represents the number of

moles of a given component in a node, and the sum is the
molar flow of that component. Equations (1) and (2) are valid
in the absence of chemical reactions between the components
of the fluid.

The x-vector may also include other quantities to which
linear molar mixing applies, such as the molar heat value Hm,
and linear approximations (Tc, Pc) used in certain equations
of state for critical temperature and critical pressure, among
others. Alternatively, such quantities can be calculated in post-
processing as a linear combination over the molar composition.
Explicit inclusion in the mixing equation allows these quan-
tities to be calculated even when the determination of molar
composition is disabled.

The conservation equations of type (1)–(3) are standard, can
be found in a textbook, e.g., eq. (4.1) in [27]. Now we will
rewrite them in a more convenient form, resolved with respect
to derivatives:

Vnρn∂µ
−1
n /∂t =

∑′
e Ineme(µ

−1
e − µ−1

n ), (4)
Vnρnµ

−1
n ∂xn/∂t =

∑′
e Inemeµ

−1
e (xe − xn), (5)∑′

e =
∑

e,Ineme>0, (6)

where the sum is taken over the flows incoming to the node.
To prove it, it is necessary to perform the differentiation in (2)
and take into account (1), which will result in (4), in which
the sums are taken over all flows, incoming and outgoing.
Further, if one takes into account that µ−1

e for an outgoing
flow is equal to µ−1

n at a node, the sum can be reduced to the
incoming flows. The proof for (5) is similar. The condition of
equality of mixed quantities in the node and in the outgoing
flow can also be used to reduce the total number of variables.
Namely, one can completely eliminate the variables in the edge
e, replacing them with the values in the upstream node n′,
µ−1
e → µ−1

n′ , xe → xn′ . When time derivatives are set to
zero, these equations are reduced to stationary formula (see
eq. (13) in [4]).

Boundary conditions: µ = µset, x = xset are fixed to the
specified values in the network entry nodes. The system of (4)–
(6) and boundary conditions is closed. Its stationary part on the
right side of the equations is non-degenerate if all nodes are
connected to at least one entry node in the upstream direction.
A complete dynamical system can be non-degenerate even if
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this rule is violated, for example, if all flows are zero. In
this case, the dynamic term ensures the preservation of the
transported quantities, keeping them at the starting values.

Startup algorithm: at entry nodes, the transported values
are initialized to set values to satisfy the boundary conditions.
In all other nodes, values are initialized to default values,
which are either specified by the user or averaged over all
set values. As a part of the general procedure [3], the initial
pressures are set to a constant, the initial flows are set to zero
and all fluid composition-dependent quantities, such as density
ρ, are calculated from the appropriate equations of state.
This procedure provides a smooth startup, with all equations
initially satisfied. Then, fluid starts to propagate from entries to
the neighbor nodes with growing massflow, replacing default
values with current ones.

Vn-definition: in accordance with the discretization
scheme formulated in [3], each pipe contributes half of its
volume to the end nodes, and all other elements contribute a
nominally specified volume V0.

Linearity of the system: with known m-flows, the µ−1-
subsystem (4) is linear; also, for known m and µ−1, the
x-subsystem (5) is linear. This property is convenient for
controlling convergence, since each linear subsystem in the
non-degenerate case is solvable in one iteration. The following
algorithm is used to integrate the equations.

Algorithm (simulation workflow):

init;
repeat{ mumix; xmix; Tmix; PM; t+=dt; }

Here, init represents the initialization of all variables
according to the startup algorithm described above. mumix
is the solution of the µ−1-subsystem, xmix is the solution
of the x-subsystem, Tmix is the solution of the temperature
subsystem formulated below, and PM is the solution of the
pressure-massflow subsystem as formulated in [3]. In this way,
it is possible not only to find the dynamic evolution of the
system, but also to determine the stationary solution. For the
last goal, it is necessary to integrate the system with as large
steps as possible until stationarity is achieved. The most stable
method suitable for this purpose is time discretization of the
implicit Euler type: ∂v/∂t → (v− vprev)/dt, for all dynamic
variables v, where vprev is the value from the previous step,
dt is the integration step. For a detailed study of dynamic
processes, more sophisticated finite-difference schemes [28]
[29] can be used.

B. Temperature modeling

The starting point is the law of conservation of energy for
open systems (see, for example, eq. (4.14) in [27]):

Vn∂(ρnµ
−1
n Un)/∂t =

∑
e Inemeµ

−1
e He, (7)

where U is the molar internal energy, H = U + Pµ/ρ is the
molar enthalpy, and P is the pressure. The equation is similar
to the conditions of molar mixing in (3). The difference is that
the derivative of the nodal internal energy is on the left side,
and the total enthalpy flow in the node is on the right side.

Physically, with each flow, internal energy is introduced into
the node, as well as the work of the fluid against the pressure
in the node. This work can be combined with internal energy,
giving enthalpy on the right side of the equation. On the left
side, under the derivative, there is still nodal internal energy. In
general case, other terms can be present in the conservation
law, vanishing for simple mixing in the node. In particular,
no additional work is performed in the node, and due to the
assumed absolute thermal insulation of the node, heat transfer
becomes zero. Possible processes with additional work and
heat transfer are assigned to special edge elements and are
described below.

We rewrite equation (7) as follows:

Vnρnµ
−1
n ∂Hn/∂t− Vn∂Pn/∂t =

=
∑′

e Inemeµ
−1
e (He −Hn), (8)

the derivation is similar to (5), also here the nodal internal
energy is re-expressed in terms of enthalpy and pressure in
the node.

Boundary conditions: H = Hset, enthalpy is fixed to the
specified value in entry nodes. Alternatively, one can use the
condition T = Tset, which fixes the temperature at the entry
nodes.

In addition, according to eq. (4.14) in [27], gravitational
and kinetic terms can be added to the internal energy and
enthalpy: H → H+µgh+µv2/2, where g is the acceleration
of free fall, h is the height, and v is the speed of translational
motion of the fluid. To calculate the kinetic term, one needs
to know the diameter, which is not available for all types
of elements. For example, a compressor is a very complex
structure to be described by a single diameter. Also, at nodes
where many edges join, complex internal motion occurs,
which does not coincide with the simple translational motion
described by a kinetic term with a single diameter. On the other
hand, for the transport of gases, the kinetic term is usually
significantly less than the internal energy, for translational
velocities significantly lower than the speed of sound. In our
simulation, we made it possible to optionally turn off the
kinetic term in the temperature equations.

In (8), Hn represents the nodal value, and He represents the
edge downstream value. The difference from x-mixing is that
here the edge downstream value in the general case cannot be
replaced by the upstream nodal value, since there are elements
that change the enthalpy value. The system cannot be reduced
to a purely nodal one; in addition, the system also includes
the temperature T of the fluid.

HT -constraint:

H = Hmod(P, T, x), (9)
H = Hmod(P, Tprev, x) + cp(T − Tprev), (10)

where Hmod is the thermodynamic model for enthalpy, cp =
∂Hmod/∂T is the molar heat capacity calculated at point
(P, Tprev, x). Equations (9)–(10) and (H,T ) variables are
introduced per node and edge.
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The first equation relates enthalpy and temperature accord-
ing to the thermodynamic model used. We use GERG2008
[17]–[19] as a concrete implementation of such relation. For
software-technical reasons, it cannot be used directly; its call
once per internal iteration produces too many total calls of
GERG2008 module, resulting in significant slowdown. In ad-
dition, the equation is nonlinear, violating the desired linearity
property of the Tmix subsystem. The second equation is a
linearization of the first, it can be used in internal iterations,
with a less frequent update of the coefficients. When using
the workflow formulated above, (m,P, ρ) in all mix phases
are considered as fixed parameters, updated in PM-phase. For
Hmod and cp, updates occur immediately before the start of
the Tmix phase.

Default element equation:

He = me > 0?Hn1 : Hn2 (11)

formulates isenthalpic process [27], where the edge enthalpy
is taken from the upstream node, similar to x-mixing. In this
and further equations, the edge e goes from node n1 to node
n2, conditions are written in C-notation: x?y:z = if(x) then y;
else z. This model is applied to the most of element types, in
particular, to valves, regulators, resistors and shortcuts; while
the exceptional types are listed below.

Pipe equation:

(me > 0?(Hn1 −He)µ
−1
n1 : (Hn2 −He)µ

−1
n2 )|me| =

= πDLcht(Te − Tsoil), (12)

the change of enthalpy over the pipe is equal to a heat
exchange with the soil, eq. (33.3) in [30]. Here Tsoil is soil
temperature, D is pipe diameter, L is pipe length, and cht is
heat transfer coefficient. The pipe should have sufficiently fine
subdivision to model the heat exchange appropriately.

Compressor equation:

me > 0?(Te − Tn1((|Pn2/Pn1|(κ−1)/κ − 1)/η +

+1)zn1/zn2) : (He −Hn2) = 0, (13)

for positive flow, the change of temperature is described
by eq. (38.51) in [30], or a similar formula (eq. (13-31))
without z-correction from [31]; otherwise, isenthalpic process
is used. Here κ is isentropic exponent, η is efficiency, z
is compressibility factor. This basic model is designed for
gas transport, while for liquids, e.g., CO2 pumps, customer-
specific models can be used.

Coolers and heaters:

me > 0?(Aset > 0?(Te − Tset) : (He −Hn1))

: (He −Hn2) = 0, (14)

at the simplest modeling level, we implement these elements
by clamp formulas: Te = min(Tn1, Tset) for coolers and Te =
max(Tn1, Tset) for heaters. These formulas are piecewise-
linear. Their linearization leads to the common formula above
and the active set flag described by the following algorithm.

Algorithm (active set):

Figure 1. Test network N1.

cooler:
if(Aset==1&&He>Hn1) then Aset=0
if(Aset==0&&Te>Tset) then Aset=1

heater:
if(Aset==1&&He<Hn1) then Aset=0
if(Aset==0&&Te<Tset) then Aset=1

Here Aset = 1 corresponds to an active mode, Aset = 0 to
a standby mode. The algorithm is applied after Tmix-phase,
its convergence is tracked.

III. NUMERICAL EXPERIMENTS

We performed a series of simulations on networks of
different complexity levels to study in detail the effects of
flow mixing, integration stability, and iteration convergence.

N1 network: the network shown in Figure 1 contains 100
nodes, 111 edges and is used for numerical experiments with
the transport of natural gas and hydrogen. Detailed settings of
supplies in the considered scenario are presented in Table I.
Selected time discretization is dt = 3 · 104s, nsteps = 100.
The network has a simple Y-shaped topology, with two supply
nodes n99_gm and n56_gm, as well as a mixing node n89,
where the flows from the supplies come together, and the rest
of the network, ending with the most distant exit node n76.

Figure 2a shows the evolution of inverse molar mass. Fig-
ure 2b presents molar heat value, and Figure 2c demonstrates
molar fraction of CH4, representative for chemical compo-
sition in the considered test scenario. In all these plots, the
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Figure 2. Simulation results (see text for details).

values in supply nodes n99_gm and n56_gm are kept constant
at set values. In stationary solution, the simple topology of
the network leads to a single mixed state, formed in node
n89 and propagated downstream to the rest of the network.
In the evolution, the values in all nodes tend either to supply
values or to this mixed state. Interestingly, in the startup of
the evolution, the curves perform several large oscillations
between the boundary states, before they relax at the stationary
state. This happens due to a complex distribution of flows at
the startup phase.

Note that the graphs Figure 2a and Figure 2c have an
identical shape, and Figure 2b has the same shape vertically
reflected. This happens because there are only two supplies
in the network, and the default composition is a linear com-
bination of them. As a result, the trajectory of the system
in x-space is limited to a 1-dimensional subspace. Graphs
Figure 2a-c are projections of this trajectory to different
directions and therefore have the same shape.

Figure 2d shows temperature dependence in selected nodes.
During startup evolution, strong heating occurs due to the
inverse Joule-Thomson (JT) effect and the influence of the
∂P/∂t-term in (8). With further evolution, the temperature
in nodes close to supplies tends to the corresponding constant
temperature values of the incoming fluid. In more detail, in the
considered scenario, after each supply there is a compressor
station, the outlet temperature of which is regulated by a
cooler. The outlet temperature of the cooler is set to the same
value as that of the corresponding supply. The temperature
in network nodes remote from the supply tends to a constant
value, slightly below Tsoil = 283.15K, due to the influence
of the JT-effect.

N85 networks set: contains 85 realistic natural gas net-
works, obtained for benchmarking from our industrial partner.
The networks are highly resolved, containing up to 4 thou-
sands of nodes each. We used these networks for numerical
experiments testing the stability of simulation with a different
implementation of heaters. Unlike coolers, which usually
control their own output temperature, heaters must control the
temperature in an adjacent element, the regulator. In dynamic
formulation of the problem, especially at low flows, heaters

TABLE I
SUPPLY SETTINGS IN VARIOUS SCENARIOS

scenario entry composition temperature
N1 nat.gas n99_gm 87% CH4, 1% C2H6, 303.15K

1% C3H8, 1% CO2,
10% N2

N1 nat.gas n56_gm 85% CH4, 3% C2H6, 293.15K
1% C3H8, 1% CO2,

10% N2

dyn-pipe H2 n0000 95% H2, 5% N2 313.15K
dyn-pipe CO2 n0000 95% CO2, 3% N2, 313.15K

2% O2

TABLE II
TESTING VARIOUS IMPLEMENTATIONS OF HEATERS

ON N85 NETWORKS SET

implementation of heaters num. of divergent cases
disabled 3

local 0
nonlocal 85
joined 2

do not have time to regulate their temperature in order to
constantly ensure the set temperature values in the regulator.
This leads to divergences. We have tested several options for
implementation of heaters, shown in Table II. For disabled
heaters, 3 scenarios out of 85 are divergent. For the most stable
implementation option, when heaters control their own local
temperature, all scenarios are convergent. If the heaters try to
control the temperature nonlocally, in the attached regulators,
all scenarios diverge, making such implementation impossible.
For our selected option, the heaters are joined with regulators,
the unified element controls its own output temperature, 2
scenarios out of 85 are divergent, slightly better than the
complete disabling of the heaters.

Hydrogen and carbon dioxide pipelines: this is one of our
standard test cases, L = 150km, D = 0.5m horizontally laid
pipeline, transporting gaseous H2 or CO2 in liquid or super-
critical phase. The case supports variable spatial discretiza-
tion, for the considered scenario selected to nsubdiv = 50.
Time discretization is the same as for N1 network. Supply
setting is presented in Table I. The considered scenario has
a single fluid composition and is used mainly for testing of
the temperature modeling. The dynamic simulation starts from
Tsoil = 283.15K and a different Tset = 313.15K at the
pipeline entry. The simulation converges to stationary solution
with nearly exponential fall of temperature from Tset to Tsoil.
For CO2, an observed stronger deviation from the exponent
is due to JT-effect and the nonlinear enthalpy model.

Convergence of iterations: in our implementation, we
use the globally convergent Newton’s solver with Armijo
line search rule [32], applied at every time step. For linear
problems, it just forwards the solution to the underlying sparse
linear solver, that for non-degenerate problems converges in 1
iteration. Due to proper initialization, at the first time step
all phases converge in 0 iteration, just keeping the starting
values. This provides a good method to test that all variables
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are correctly initialized. At the second time step, all mix
phases also converge in 0 iteration, while in the last PM
phase the network filling begins, and PM phase starts to
increase its iteration number. For N1 network and H2/CO2

pipe scenarios, all mix phases are solved in 1 iteration on
intermediate timesteps, as it should be for non-degenerate
linear systems; and in 0 iteration at the last timesteps, due to
convergence to stationary solution. For large N85 networks,
Tmix phase can have intermediately 2-3 iterations, indicating
the remaining degeneracy or the disbalance of scaling factors
in Tmix system. This effect will be studied in more details in
Section V.

The numerical experiments performed show that the primary
purpose of this work has been fully achieved, the modeling
has been extended to include mixing flows and is working for
scenarios of varying complexity. The modeling in our system
is presented in open text form, as a list of variables and
equations, which both we and the users can freely modify.
This distinguishes us from the existing solutions, in which
the modeling is usually hardcoded within the system. We also
provide numerical stability of the modeling and the solution
algorithms, which allows us to solve large realistic scenarios
in fluid transport simulation.

IV. EXTENDED MODELING OF HEATERS AND COOLERS

The nonlocal control case is especially difficult to model,
when the point with the controlled temperature is not at the
heater or cooler output, but in another area of the network,
for example, when a temperature sensor is placed there. As
shown by the numerical experiments, a direct generalization
of the control equations to this case is unstable. At the same
time, there is a workaround with the transfer of the temperature
control function to the element for which the controlled tem-
perature is local. Although this approach works, it would be
desirable to obtain a more realistic modeling, in particular, one
that reproduces the correct intermediate temperatures between
the heater/cooler and the sensor position. In this section, we
consider the extension of modeling necessary for this.

The required diagram for the heater is shown in Figure 3a.
It consists of three branches: on – the temperature at the
controlled point is maintained at the required value: Tc = Tset,
the heater is on: Te > Tn1; standby – the temperature at
the controlled point exceeds the required value: Tc > Tset,
the heater is off: Te = Tn1; an additional max branch is
introduced – the temperature at the controlled point is less than
the required value: Tc < Tset, the heater operates at maximum:
Te = Tmax. The reason for introducing an additional branch
is that in some cases the set control goal is unachievable. An
example is a vanishingly small flow, when the contribution of
the heated fluid from the heater has virtually no effect on the
temperature at the controlled point. Also, due to a network
configuration error, the controlled point may be outside the
influence zone of the heater, for example, behind a closed
valve. If there is no max branch in the control equation, then,
in the case of a decrease in the controlled temperature below

Figure 3. Construction of minmax formulas for heaters and coolers (see text
for details).

the required value, the heater will try to heat the fluid more and
more, eventually leading to simulation divergence. Introducing
the max branch in this case gives a physically reasonable
alternative scenario with a limited temperature. For cooler the
modification is similar, here the min branch is introduced, as
shown in Figure 3i. Extended control equations are as follows:

heater:
max(min(Tset − Tc, Tmax − Te), Tn1 − Te) = 0, (15)

cooler:
max(min(Tc − Tset, Te − Tmin), Te − Tn1) = 0, (16)

where Te is the local temperature in the heater/cooler; Tn1 is
the temperature at the heater/cooler inlet; Tc is the temperature
at the controlled node/edge, at the sensor location; Tset is the
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set temperature at that location; Tmax/min are the temperature
limits at the heater/cooler, by default set to Tmin = 223.15K,
Tmax = 423.15K. Note that the formulas are now piecewise
linear rather than linear. It is not possible to preserve the
overall linearity of the simulation, but the new simulation is
more stable and does not require convergence of the active set
iterations.

We will now provide a detailed derivation of the minmax
formulas. Similar formulas are used in other parts of our
simulation, and their derivation uses a similar procedure.
First, let us consider the heater simulation, represented by the
diagram in Figure 3a. Next, in Figure 3b the zero level of the
function z = min(Tc − Tset, Te − Tn1) is marked with a bold
line, dividing the plane into regions of positive and negative
values of this function. In Figure 3c we break this line to the
desired shape of the diagram, consisting of two pieces:

(z ≤ 0&Te = Tmax)|(z = 0&Te ≤ Tmax). (17)

In Figure 3d we use the coordinates (−z, Tmax − Te), trans-
form it to the standard representation

(−z ≥ 0&Tmax − Te = 0)|(−z = 0&Tmax − Te ≥ 0), (18)

equivalent to the equation min(−z, Tmax − Te) = 0. After
substitutions and algebraic transformations we obtain

min(−min(Tc − Tset, Te − Tn1), Tmax − Te) = 0, (19)
max(min(Tc − Tset, Te − Tn1), Te − Tmax) = 0, (20)

hereinafter denoted as formula1.
Alternatively, in Figure 3e, we start constructing the diagram

from the other end, considering the zero level of the function
z = min(Tset − Tc, Tmax − Te); in Figure 3f we obtain the
form

(z ≤ 0&Te = Tn1)|(z = 0&Te ≥ Tn1); (21)

in Figure 3g in coordinates (−z, Te − Tn1) reduced to the
standard form

(−z ≥ 0&Te − Tn1 = 0)|(−z = 0&Te − Tn1 ≥ 0); (22)

or min(−z, Te−Tn1) = 0. Now, after trivial algebra we obtain
another formula:

min(−min(Tset − Tc, Tmax − Te), Te − Tn1) = 0, (23)
max(min(Tset − Tc, Tmax − Te), Tn1 − Te) = 0, (24)

hereinafter denoted as formula2.
It is interesting that these two formulas give an equivalent

representation of the diagram shape in Figure 3a, but are
not absolutely identical. In the special, physically important
case Tn1 > Tmax, when the input temperature exceeds the

maximum limit, these formulas give different results, shown
in Figure 3h. Indeed, in formula1:

max(min(Tc − Tset, Te − Tn1), Te − Tmax) = 0, (25)
Tn1 > Tmax ⇒ Te − Tn1 < Te − Tmax, (26)

case1: Tc − Tset ≥ Te − Tn1, (27)
max(Te − Tn1, Te − Tmax) = Te − Tmax = 0; (28)

case2: Tc − Tset < Te − Tn1, (29)
max(Tc − Tset, Te − Tmax) = Te − Tmax = 0, (30)

case1 and case2 produce the same answer. In formula2:

max(min(Tset − Tc, Tmax − Te), Tn1 − Te) = 0, (31)
Tn1 > Tmax ⇒ Tn1 − Te > Tmax − Te; (32)

case1: Tset − Tc ≥ Tmax − Te, (33)
max(Tmax − Te, Tn1 − Te) = Tn1 − Te = 0; (34)

case2: Tset − Tc < Tmax − Te, (35)
max(Tset − Tc, Tn1 − Te) = Tn1 − Te = 0, (36)

here we also get a horizontal line on Figure 3h, but a differ-
ent one. Physically, in the special case under consideration,
formula1: Te = Tmax < Tn1 leads to the fact that the heater
cools the fluid, so here we should choose the answer Te = Tn1,
described by formula2.

Let’s move on to considering cooler, with the diagram shape
shown in Figure 3i. Interestingly, it coincides with the diagram
for heater, up to the redesignations Tn1 → Tmin, Tmax →
Tn1. Thus, instead of repeating the derivation, we can make
such a redesignation in the answer for heater and obtain two
formulas:

formula1:
max(min(Tc − Tset, Te − Tmin), Te − Tn1) = 0; (37)

formula2:
max(min(Tset − Tc, Tn1 − Te), Tmin − Te) = 0. (38)

For the special case Tn1 < Tmin, formula2: Te = Tmin > Tn1

would mean that the cooler heats the fluid, so for physical
reasons the answer Te = Tn1 described by formula1 should
be chosen here.

V. EXTENDED STABILITY ANALYSIS

Stability analysis of fluid transport simulations was per-
formed in our previous works, for the stationary case in [2],
[10], for the dynamic case in [3]. In these works only the
PM phase of the simulation was analyzed. Stability analysis
for mixing flows modeling will be performed in this section.
The main challenge is the configuration of the dynamic solver
for solving stationary problems by integrating to a stationary
state, while ensuring the stability of the simulation for realistic
large-size networks. First, we present the main results for the
PM phase, then we move on to the analysis of mixing phases.

38International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4. (a)-(c): working diagrams for control elements; (d),(e): possible
degenerations of the system; reprinted from [3] by permission (copyright IOP).

PM phase: the main problem for the stability of the
simulations is represented by regulators, compressors and flap-
traps. The behavior of these elements is given by the diagrams
shown in Figure 4a-c. The polyhedral surfaces for regulators
and compressors are represented by complex minmax formulas
given in [2], the specific form of which is not important for us
now. What is important is that combinations of several such
elements can be located on certain faces of the surfaces that
conflict with each other. For example, in a stationary simu-
lation, two regulators in series on QH-face actually impose
the equation Q = QH twice, with one equation wasted, and
one unconstrained degree of freedom appears in the system.
This degree of freedom corresponds to the undefined pressure
at the intermediate point, P-undefined conflict, see Figure 4d.
Similarly, two regulators in parallel on PH-face impose the
equation P2 = PH twice, with one equation wasted, and
the balance of flows through the regulators is undefined, Q-
undefined conflict, see Figure 4e. The described conflicts are
not limited to series and parallel connections. The problem
is also represented by a long pipe, at the beginning and
end of which there are QH-regulators; Y-connection of 3
PH-regulators; conflict between the regulator and Pset/Qset
boundary condition at entry or exit; etc. In addition, during
the solution process, the working point can change the face
on the control diagram, so during the simulation, the described
conflicts can spontaneously arise in any part of the network.

For numerical simulations, these conflicts lead to degen-
eration of the system, the appearance of zero eigenvalues in
the Jacobian matrix [2], [10], which leads to divergence of
the solver. The general approach to solving this problem is to
regularize the equations, to reformulate them as follows:

freg = (1− ϵs)f + ϵs(P1 − P2 −RsQ)− ϵd∂m/∂t, (39)

where in the first term f are the original control equations.
The second term represents the linear resistor equation, the
coefficient 0 ≤ ϵs ≤ 1 is chosen so that the regularization

can be completely removed at ϵs = 0 or, conversely, the
control equation can be deformed to a linear resistor at
ϵs = 1. This type of regularization is static, independent of
time derivatives. The third term contains the time derivative
and represents dynamic regularization. When choosing the
implicit Euler finite difference scheme, this term takes the form
−ϵd(m − mprev)/dt, with ϵd > 0. Here Q and m represent
the flow in different normalizations and are proportional to
each other with a positive coefficient. The common signs in
this formula are chosen so that the derivatives of the result
with respect to the variables (P1, P2,m) have the signature
(+,−,−), which, according to [2], is necessary for the con-
vergence of the PM phase of the simulation.

The dynamic term in (39) contains only the m-variable
and effectively regularizes only the Q-undefined conflict. The
regularization of the P-undefined conflict is performed by the
dynamic term Vn∂ρn/∂t in the Kirchhoff equation (1). This
term is able to describe the evolution of the density and
the associated pressure even in situations where the control
equations do not capture them. The regularizing parameter
here is the nodal volume Vn > 0, which can also be replaced
by one freely adjustable value V1 > 0, without changing the
stationary result.

In practice, the use of static regularization leads to the
undesirable effect of shifting the solution from the faces of the
control equation, violating the control conditions Q = QH ,
P = PH . These violations are controlled by the regularizing
parameter ϵs; for small values, the equation is too singular to
solve, and for large values, the physically desirable conditions
will be violated. As a tradeoff value, we chose ϵs = 10−3,
corresponding to 0.1% violation of the control equations and
an acceptable level of convergence of the simulations. In the
case of divergences, if the cause can be traced back to the
control equations via residuals, the user is advised to increase
the parameter to ϵs = 10−2.

For dynamic regularization, the time derivatives vanish as
the stationary solution is reached. Therefore, the dynamic
regularizers are switched off in the stationary limit, and
no violations of the control equations occur. The limiting
factor here is the too slow convergence of the solution for
large values of the regularizer. Also, the equations include
combinations of ϵd/dt, V1/dt, so for integration with a large
step, it is also necessary to artificially increase the regularizing
parameters. In our numerical experiments, we varied the
described parameters in wide limits and investigated their
influence on the simulation stability.

The choice of regularizing parameters was carried out on
large natural gas simulations of the N85 type described above
and is illustrated by the graphs in Figure 5. At first, we
included only the PM phase and investigated its stability
separately. Figure 5a shows the idealized case of ϵs = 1, when
all control equations are replaced by linear resistors. In this
experiment, all nodal volumes were also replaced by a single
value of V1. As a result, very fast collective convergence of all
simulations below the nominal value res = 1% is obtained.
This numerical experiment shows that in the PM phase we
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Figure 5. Extended stability analysis (see text for details).

have taken all causes of divergence under control. In Figure 5b
we set the nodal volumes to their actual values. The result is
still acceptable, but the convergence rate varies from one test
case to another. This indicates the advantage of choosing one
value for all nodal volumes. In Figure 5c we chose the values
ϵs = 10−3, ϵd = 30bar/(kg/s2), V1 = 300m3, dt = 3 · 105s.
The configuration is still acceptable, with only 3 out of 85
cases diverged. In this figure, the two initial plateaus corre-
spond to the starting procedure [3] of changing the boundary
conditions, first raising all Psets from the starting one to the
desired values, then all Qsets. In the second part, we also
made a continuous deformation of the regularizing parameter
from ϵs = 1 to ϵs = 10−3. At the end of this interval, the
system approaches a singularity, so the characteristic residual
peaks are visible in the figure. In Figure 5c, we changed
ϵd = 3 · 103bar/(kg/s2), V1 = 30m3, and as a result, all

simulations went below the nominal threshold. This time, the
convergence is slower, but the peak after the starting procedure
that generated divergences has disappeared.

Mixing phases: instabilities are present only in the Tmix
phase, the others work without problems. Stabilization can be
done using dynamic regularization

freg = f + ϵH∂H/∂t (40)

with the coefficient ϵH > 0, when choosing the sign for the
original equation ∂f/∂H > 0. Due to the identity ∂H/∂T =
cp > 0, which relates this derivative to the heat capacity,
the regularizing term can be reexpressed in via temperature:
ϵH∂H/∂t → ϵT∂T/∂t, with a new regularizing parameter
ϵT > 0. A static regularizing term can also be added to this
expression, for example, ϵs(T − Tsoil). This term can lead
to physically undesirable effects, for example, a temperature
of Tsoil can be established at the output of a low-flow
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regulator, despite the existing thermal insulation. Therefore,
if dynamic regularization works, we try to refrain from using
static regularization. Note that for moderate-sized systems, the
described simulations very rarely lead to divergences and can
be used directly. For large systems, such as the N85 set used
in our tests, the problems are potentiated, and the simulations
require special stabilizing measures. Below, we will analyze
in detail the available equations and the instabilities associated
with them.

Enthalpy mix equation: it already has time derivatives
and does not require additional regularization. When switching
off the dynamic terms in (8), the remaining stationary system
can be degenerate. The problem occurs for m = 0, in particu-
lar, at the starting conditions. Also, since in this equation only
flows entering a node are included in the sum, the problem
occurs for all subgraphs not connected to Tset-nodes in the
upstream direction. Physically, this singularity means a T-
undefined state in the stationary limit for such subgraphs.
The dynamic terms resolve this ambiguity, however, for small
Vn/dt the regularization is weak, the system matrix is close
to singular. An important tuning factor is the nodal volume. It
is also possible to equip both dynamic terms in (8) with free
coefficients. This allows one to further strengthen the contri-
bution of the ∂Hn/∂t term, as well as to weaken or disable
the ∂Pn/∂t term. According to our numerical experiments,
removal of ∂Pn/∂t term improves overall stability.

Temperature equation: when using the linearized version
of the simulation, equation (10) has a new type of problem.
In fact, it describes a Newton iteration in the temperature
variable. Although Newton’s method is used in the inner
iteration, at each integration step, it has been specially stabi-
lized there [32], while the outer iteration described by (10) is
unstabilized. It is widely known that the unstabilized Newton’s
method produces divergences. As shown in Figure 5e above,
the sequence of tangents to the curve may go to infinity
if the starting point is chosen poorly. The simplest way to
overcome this problem is to increase the slope of the lines
above the tangent position, which is equivalent to introducing
a coefficient H = Hmod+c1cp(T −Tprev), c1 > 1. As shown
in Figure 5e below, this can enforce convergence. Although
the convergence rate of such an iteration may be slower than
Newton’s, it turns out to be more stable. Another way to
stabilize is to use the original nonlinear equation (9). In a case
when there is a closed analytical formula for this equation, it
can be used directly. Of course, this will lead to nonlinearity
of the Tmix phase and an increase in the number of internal
iterations for its solution, the advantage of this approach is
better stability of the simulation.

Compressors: in equation (13) a problem similar to
the temperature equation arises. In this equation, there is a
strong coupling with the PM-phase, in particular, through
the z-coefficients present in it. An increase in Te at a given
iteration leads to an increase in zn2 at the next iteration, which
through the formula (13) triggers a decrease in Te at the next
iteration. Under strong coupling, this iteration sequence can
loop or diverge. Figure 5f illustrates the possible behavior

of a one-dimensional iteration, showing prototypical examples
of instability. The simple solution proposed in [4] consists in
introducing a weighting procedure: T = Teqw+Tprev(1−w),
with a constant 0 ≤ w ≤ 1. In this case, the new value of
the variable is not taken directly from the equation, but is
weighted with the previous iteration. In practical applications,
this approach allows stabilizing looped or diverging iterations
that arise due to strong coupling. After rewriting the weighting
procedure as the equation (T−Teq)w+(T−Tprev)(1−w) = 0
and comparing the stabilizing terms (T −Tprev)/dt ∼ ∂T/∂t,
it becomes clear that the weighting method is completely
equivalent to both dynamic regularization and the stabilization
of the Newton iteration presented above, up to a redefinition
of the coefficients. Another method for stabilizing the com-
pressor equation is to substitute analytical expressions for z-
coefficients, if any, into (13).

Coolers and heaters: equations (15)-(16) have problems
similar to compressors. For example, if the heater was in
standby at the previous iteration and at the controlled point Tc

becomes slightly less than Tset, then the heater goes into max
mode. If the flow through the heater is small, this may lead
to a small increase in Tc over Tset, and the heater is forced
to return to standby. This may lead to iteration loops. The
solution here is also dynamic regularization or the equivalent
weighting procedure.

Pipes: equation (12) already contains a regularizing term
of the static type ∼ (T − Tsoil), so the temperature modeling
of pipes is stable. A necessary condition is the presence of a
physically reasonable heat exchange coefficient.

Default element equation: in the simple-looking equation
(11) the strongest instability is located. When passing through
the value me = 0, the edge enthalpy He jumps between the
nodal values Hn1 and Hn2. Changes in the sign of the flow can
occur both at intermediate steps and at the end of integration.
A specific example is small numerical fluctuation of the flow
in network sections with zero stationary flow. In this case, a
unique situation arises when in the final, physically stationary
state there are randomly fluctuating variables of undamped
amplitude. The jumps are experienced by both the variables
themselves and by the residuals of equations defining them,
see Figure 5g, which shows the residual of Tmix phase for
one scenario N85.1. The residuals use the maximum norm
over the equations, as a result of this definition, the jumps can
be separate or merging into a plateau. At the same time, the
residual of the PM phase shown in Figure 5h does not have
such jumps, and repeats the shape of the residual of the pure
PM phase shown in Figure 5c.

A detailed analysis shows that the stochastic edge degrees
of freedom (He, Te) formed in the system decouple from the
nodal (Hn, Tn). Indeed, coupling is carried out by means
of equation (8), in which He are multiplied by me. Thus,
the jumps of He at me = 0 are suppressed. The PM phase
includes only the nodal values of Tn, so the stochastic degrees
of freedom are decoupled from the PM phase as well. In
practice, the Tmix phase residual shown in Figure 5i for the
entire N85 set is so noisy that it becomes unusable. The PM
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phase residual, Figure 5j, can be used as successfully as for
the pure PM phase. Indirectly, the PM residual also controls
the nodal values of the Tmix phase, via the strong coupling
Tn/Pn in the equations of state. The edge values of the Tmix
phase undergo jumps around me = 0, which arise due to their
definition as edge downstream values and are not physically
important. Thus, our current recommendation is to ignore the
Tmix residual and use only the PM residual to control the
convergence of the simulation.

Looking at this issue in even more detail, jumps occur
in all edge equations where the separation into me > 0
and me < 0 branches is used, and they are also suppressed
by the me-factor in the nodal coupling. The introduction of
branches is necessary, otherwise degeneracies arise in the
system. As an example, consider the compressor equation
Te = Tn1a, a > 1, in the stationary limit. For me > 0,
the outlet temperature is further transferred to Tn2 = Te via
the nodal coupling (8). Negative flow through the compressor
is possible due to ϵs-regularization for infeasible solutions,
both at the intermediate and final integration steps. If the
compressor equation remains the same for me < 0, then nodal
coupling will lead to Tn1 = Te, an overdetermined equation
on Te, and no condition on Tn2. As a result, the stationary
system will become degenerate, and the stationary solver will
diverge. There are additional regularizers for the dynamic
solver, but their efficiency will be reduced if they have to
suppress a more degenerate stationary system. Introducing the
isenthalpic branch into the equations ensures non-degeneracy
of the system, and it also generates jumps in the solution. Note
that suppressing jumps in the edge equations by introducing
dynamic damping or weighting procedures does not work here,
it only reduces the amplitude of the jumps by a factor of w.
The value w = 0.5 is practically acceptable for stabilization in
our numerical experiments; for smaller values, the convergence
of integration becomes too slow.

Figure 5j shows the PM residual for simulations with values
ϵs = 10−3, ϵd = 30bar/(kg/s2), V1 = 0.3m3. Charac-
teristic is the loss of the collective convergence property,
which was present for pure PM simulations. This property
is a consequence of single-phase modeling, in which the
convergence of the solution at the previous iteration leads
to convergence at the next one, with small variations due
to small dynamic terms. In the full simulation, mix phases
are involved in the iterative process, and the convergence of
the outer iterative loop is decisive for the convergence of the
simulation. In Figure 5k, we increased ϵs = 10−2, which
resulted in the absence of the residual peak at the end of
the startup procedure, which also led to better stability of
the inner iterations and a decrease in runtime. In Figure 5l,
with ϵs = 10−3, ϵd = 3 · 103bar/(kg/s2), V1 = 30m3 were
increased. Here, as for the pure PM simulation, convergence
became slower, but the stability of the simulation has been
improved.

Phase transitions: should be considered, in particular, for
CO2 transport [8]. The problem is the presence of a jump in
the function W (T ) for pure substances or a rapid change in

this function in the presence of small impurities. This leads
to the failure of the Newtonian method, both in internal and
external iterations. Dynamic regularization or weighting do not
help here. In this case, jumps also occur in nodal variables,
propagate to the PM phase and break the convergence of
the simulation altogether. Usually, scenarios without phase
transitions are considered in applications, CO2 is transported
in a liquid/supercritical dense phase or in a gaseous phase.
In the absence of phase transitions, the simulation does not
have problems of the described type. In order to prevent phase
transitions also for all intermediate states on the integration
path, the simulation should be started with (Pstart, Tstart)
values in the region of the expected solution.

FE-nodes: Figures 5m-o show the behavior of FE-
nodes, Qset-supplies without specified mix quantities. For such
supplies, the mix quantities are assumed to be taken from
the incoming flow. The experiments are done on N1 test
network. In Figure 5m, a normal operation is shown, where
the added flow is less than for a downstream exit, and the mix
quantities are taken from the incoming flow. Figure 5n shows
an overflow scenario, where the added flow prevails, and there
are no incoming, but only outgoing flows. In this case, in
stationary problem, the mix value is undefined. The dynamic
modeling has the time-derivative term, making the problem
non-degenerate even in this case. The resulting mix values are
defined by the history of integration. Typically they remain at
the starting default values, different from the mixed state of
the normal operation mode. Figure 5o shows a boundary case,
when the added flow exactly equals the exit flow. In this case,
two different mixed states are formed.

Downstream mismatch: in the PM phase there is a
problem of a different type, see Figure 5p. The upper part
of the figure shows a pipe, with nodal values of pressure,
temperature, compressibility and density (P1, T1, z1, ρ1) and
(P2, T2, z2, ρ2). Consider the section of the pipe immediately
adjacent to the downstream node. By continuity, the pressure
at this point coincides with the nodal P2. Otherwise, the
pressure jump would create a non-zero force that would act
on a vanishingly small mass of the section and lead to infinite
acceleration. The temperature in the section, however, may
differ from the nodal one, due to a possible inflow of fluid
of a different temperature into the node. Compressibility and
density depend on temperature and may also not coincide with
the nodal values. As already mentioned, PM modeling uses
only nodal values for the mentioned quantities. In particular,
the PM equation for pipes includes their nodal average. The
described mismatch can lead to a local variation of the result
near the downstream node. One possible solution would be to
introduce edge quantities (T, z, ρ) and a state equation relating
them. In fact, this is not a very good idea, since these quantities
have random jumps around m = 0, and the stochastic behavior
would penetrate into the PM phase. Another, simpler solution
is shown in the lower part of the figure. To improve the
accuracy of the simulation, long pipes should be split into
smaller ones. This procedure can include two short segments,
say ∆L = 1m, at the beginning and end of the pipe. As a
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result, the downstream mismatch problem will be concentrated
in these segments. At the same time, since the pressure drop
on short pipe segments is negligible, the influence of the
described problem on the result will be excluded. In addition
to pipes, the problem can occur in compressors (13), if there
is z-correction in their equation. On the other hand, in real
scenarios, a cooler is usually installed immediately after the
compressor, and the described problem does not arise. When
using stand-alone compressors or pumps, it is recommended to
insert a short section of pipe immediately after them to avoid
possible downstream mismatch.

Scaling: Newton’s method, in particular the stabilization
algorithms [32] used in it, are sensitive to the scaling of
equations. For optimal operation of these algorithms, all our
equations were scaled so that their variation in the working
region of the variable change was of the same value, nominally
chosen as 100 units. As a result of such normalization, the
residuals of the equations become dimensionless quantities
measuring the current absolute value of the equation as a
percentage of its variation in the working region. Further, the
residuals are maximized over the equations and characterize
the convergence of the solution phases. For a detailed char-
acterization of the convergence, two residuals are introduced,
for the inner and outer iterations. The residual at the end of
the inner Newton iteration measures the convergence of each
integration step. The residual at the beginning of the inner
Newton iteration measures the convergence of the integration
steps to a stationary solution. When the stationary solution
is reached, the variables begin to converge to constant values,
and the equations also stop changing. In this case, the residual
at the beginning of the inner iteration becomes small, ideally
less than the stop-criterion tol = 10−5%, so that the inner
iterations should not even start, or less than the acceptable
threshold tol2 = 1%.

Clamping: is another technically necessary procedure.
In all equations, such quantities as v = (P, T, z, ρ) must
be clamped into the physical domain of change: v →
min(max(v, vmin), vmax). In the process of solving, such
quantities may go beyond the physical domain, for example,
become negative. This may happen for infeasible problems
that have no solution in the physical domain, as well as for
stationary feasible problems at intermediate iterations. Accord-
ing to the general strategy [2], we maintain convergence of
the solver in these domains as well, to ensure stability and
localize possible infeasibility. As an example, consider the
mixing equation (4) with a dynamic term ∼ ρn∂µ

−1
n /∂t.

If ρn becomes negative during the solution, this term will
effectively undergo a time reversal, which will immediately
lead to divergence of the integrator. Clamping ρn into the
positive domain solves the problem. Clamping should be
carefully introduced into all equations, however, one should
not overdo it. Consider the compressor equation Te = Tn1a,
a > 1. Here one can enter clamping to the Tn1, a, or a
combined Tn1a term. One cannot enter clamping to the Te

term, since this equation is the definition of Te. In the case of
Te clamping, when it is triggered, the Te dependence drops

TABLE III
FINE-TUNING PROCEDURE

id div1 div2 div3 runtime, s
235 3 14 3 73
239 1 5 3 67
240 0 3 0 78
258 4 14 3 47
259 5 14 7 32
260 1 14 6 43
261 9 21 15 34
262 4 17 2 73
263 2 13 6 72
266 1 14 6 32
267 4 17 6 52
268 4 17 9 32
269 2 13 6 47
270 2 13 7 33
271 2 16 6 45
275 0 9 0 55
276 1 2 2 49
277 13 46 16 109
278 2 9 11 38
279 1 1 11 31
280 22 44 58 44
281 0 13 0 37
282 0 12 1 31
283 9 40 17 56

TABLE IV
FINE-TUNING RESULTS

par id=281 id=282
n 25 25

dt, s 6 · 104 6 · 103
t1, s 3 · 105 3 · 104
t2, s 6 · 105 6 · 104

tend, s 1.5 · 106 1.5 · 105
ϵs 10−3 10−3

ϵd, bar/(kg/s
2) 30 30

V1,m3 0.3 0.3
w 0.5 0.5

out of the equation, which will lead to degeneration. We also
experimented with introducing clamping to all T variables not
in the equations, but between the integration steps. At first
glance, this eliminates the need to introduce T -clamping in
numerous equations. However, this leads to a deeper problem.
If at the current integration step the solution of the equations
is located outside the T -clamps, and a clamp is applied before
the next step, then the starting point of the next step will no
longer satisfy the equations. This can increase the residual
and unnecessarily trigger additional iterations. Therefore, we
recommend avoiding the use of clamps and any solution-
modifying algorithms between the integration steps.

Fine-tuning: after we have found parameter values with
satisfactory convergence characteristics, see Figure 5j-l, we
fine-tune the parameters to achieve optimal runtime while
maintaining acceptable stability. To do this, we introduce
the following characteristics: div1 – number of cases with
divergent Newton iteration at the last integration step; div2
– number of cases with divergent Newton iteration at any
integration step; div3 – number of cases that do not reach
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stationarity after integration, at nominal level res = 1%.
The runtime value is averaged over all cases from the N85
set, convergent or not. Simulations were performed on i7-
14700K CPU computer. The values of div1-3 and runtime
should be minimized. As the analysis shows, the values div1-
2 are correlated with each other, see Figure 5q, they are
also weakly correlated with div3. Also, the value div3 is
weakly anticorrelated with runtime. For the analysis, one graph
Figure 5r is sufficient, representing numerical experiments in
coordinates (runtime,div3). The best solution marked with a
line in the figure marks the tradeoff boundary, the Pareto front,
on which these criteria cannot be simultaneously reduced. The
characteristics of the stationary simulator are marked with
a cross in the figure. It is evident from the graph that the
dynamic solver clearly overperforms the stationary one.

In greater detail, the characteristics of fine-tuning runs are
given in Table III. The first three lines (235-240) correspond
to the configuration of Figure 5j-l. Next, we chose the point
(235) and optimized the dynamic schedule described by three
parameters (n, dt, t1), the number of integration steps, the step
size, and the time of the first startup phase. The dependent
parameters are (t2 = 2t1, tend = ndt), the time of the
second startup phase, and the total integration time. At the
beginning (258-259), we decreased n from the starting value
n = 100 to n = 50, 25, which corresponds to a shortening of
the integration interval tend with fixed (dt, t1). Then (260-
261), we increased dt → dt a and decreased n → n/a,
a = 2, 4, which corresponds to more sparse integration with
constant (t1, tend). If we consider weighting as equivalent
to dynamic damping, then changing dt above corresponds to
changing the weight from the initial w = 0.5 to w = 0.67, 0.8.
Next (262–263) we increased dt → dt a simultaneously with
(t1, tend) → (t1, tend)a, a = 2, 4, with n remaining constant,
which is equivalent to decreasing the dynamic damping in all
equations; in this case, w was varied as described above. The
system has an exact symmetry: scaling the step dt and the
coefficients of dynamic terms such as (V1, ϵd) simultaneously
does not change the equations. The three transformations
described exhaust the space of variables (n, dt, t1). In sub-
sequent experiments (266-271) we considered combinations
of these transformations corresponding to their cross-effects.
Next, we selected 3 points (258,259,266) on the Pareto front
(runtime,div3) as the most promising candidates. For them, we
decreased (dt, t1, tend) → (dt, t1, tend)/a, a = 10, 102, 103,
with n remaining constant. This corresponds to an increase
in dynamic damping in the equations and was done to catch
a solution with strong damping like Figure 5l. In this case,
w = 0.5 was not changed, since it is already strong enough.

Table IV presents two optimal configurations (281,282), the
first column corresponds to enhanced stability div1-3=(0,13,0)
and runtime=37s, the second – to acceptable stability div1-
3=(0,12,1) and the shortest runtime=31s. These solutions are
also shown in Figure 5s-t. Based on the results of the analysis,
the user can independently select the required mode and has
a sufficient number of handles for detailed adjustment of the
convergence.

VI. CONCLUSION

This paper considered the modeling of mixing flows in
dynamic simulation of pipeline fluid transport. Mixed charac-
teristics include molar mass, heat value, chemical composition
and temperature of the transported fluids. In the absence of
chemical reactions, the modeling is based on the universal con-
servation laws for molar flows and total energy. The modeling
leads to a system of differential algebraic equations, including
linear molar mixing formulas, nonlinear temperature-energy
relationships, and piecewise-linear element equations for cool-
ers and heaters. In one approach, for nonlinear relations, lin-
earization is carried out in the vicinity of the previous integra-
tion step, piecewise-linear relations are reduced to linear ones
using the active set method. The resulting sequence of linear
systems is solved by a sparse linear solver, typically in one
iteration per integration step. In alternative implementation,
exact minmax formulas for coolers and heaters are used,
solution is performed by a stabilized Newtonian solver. The
functionality and stability of the developed approach have been
tested in a number of realistic network scenarios.

Numerical experiments on the moderate size N1 network
allow us to follow the mixing processes in detail, including the
evolution of molar mass, heat value, chemical composition,
and temperature. Experiments on the N85 set of large-scale
natural gas networks demonstrate the stability of the developed
methods and its sensitivity to such details as nonlocality of
equations used in the implementation of heaters. Hydrogen
and carbon dioxide pipeline scenarios are also used for testing
the temperature modeling and the convergence of simulation.

Based on numerous simulations, the stability of the dynamic
solver was studied in detail. The factors affecting stability and
runtime were identified, and their optimal configuration was
selected. Each equation was analyzed separately, as well as
their full set. The challenges encountered during the analysis
include

• system degeneration,
• the appearance of stochastic degrees of freedom,
• jumps in thermodynamic functions on phase transitions,
• proper scaling of equations.

Parameters that greatly affect the stability and speed of simu-
lation were identified. These include

• regularizing and weighting constants,
• dimensioning of dynamic terms and startup procedure,
• the size of the integration step,
• the total number of the integration steps.

The optimal choice of these parameters allowed us to acceler-
ate significantly the dynamic simulation of fluid transport for
realistically large network scenarios.

Our further research includes fine-tuning the underlying
sparse linear solvers, adaptive choice of the number of in-
tegration steps, and hardware acceleration.
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Abstract—Autonomous driving requires decision-making sys-
tems that can safely handle complex, dynamic traffic scenarios.
This paper presents a maneuver-based decision-making framework
for autonomous vehicles using Deep Reinforcement Learning
(DRL). The approach focuses on high-level driving maneuvers,
specifically Adaptive Cruise Control (ACC) for maintaining safe
distances and speeds, and Automatic Emergency Braking (AEB)
for collision avoidance. Policies are trained in a high-fidelity
simulation environment using state-of-the-art Reinforcement
Learning(RL) algorithms—Proximal Policy Optimization (PPO)
and Deep Deterministic Policy Gradient (DDPG)—to learn optimal
driving strategies. The learned policies are then transferred
from simulation to a physical autonomous vehicle platform
to evaluate real-world performance. Experiments in simulation
demonstrate that both PPO and DDPG achieve efficient and safe
driving behavior: DDPG converges faster and produces smoother
control actions, while PPO learns more conservative policies
that prioritize safety in unpredictable conditions. Real-world
validation experiments corroborate effective simulation-to-real
policy transfer, with PPO maintaining robust safety margins and
DDPG executing more aggressive yet efficient maneuvers. In
summary, the study achieves a reliable RL-based decision-making
system for autonomous driving and provides a comparative
analysis of policy optimization methods. Key contributions include
a maneuver-based RL framework, demonstration of effective sim-
to-real policy transfer, and insights into the trade-off between
safety and efficiency for different RL algorithms in autonomous
driving.

Keywords-Autonomous Driving; Maneuver-based Decision-
making; Reinforcement Learning; Simulation-to-real transfer.

I. INTRODUCTION

Autonomous driving technology has evolved significantly in
recent years, driven by the increasing demand for intelligent
decision-making systems capable of handling complex and
dynamic traffic scenarios. Traditional rule-based decision-
making frameworks, while effective in structured environments,
often struggle to generalize across diverse real-world conditions
due to their reliance on predefined heuristics and mathematical
models [1][2][3]. This limitation has led to the growing adop-
tion of learning-based approaches, particularly reinforcement
learning (RL), which enables autonomous systems to learn
adaptive policies through interaction with the environment [2].
Among RL methods, policy-based techniques such as Policy
Gradient (PG) and Proximal Policy Optimization (PPO) have
demonstrated notable advantages in stability and adaptability,
making them suitable for autonomous driving applications [4].

A fundamental challenge in autonomous driving is the
development of robust car-following models. These models

are essential for ensuring vehicle safety, enhancing traffic
flow efficiency, and minimizing driver workload. Effective
car-following systems must accurately predict and respond to
the dynamics of surrounding vehicles, road conditions, and
various driving scenarios, making their robustness critical for
real-world application.

Adaptive Cruise Control (ACC) [5, p. 24] and Automatic
Emergency Braking (AEB) [5, p. 666] are two key function-
alities in longitudinal vehicle control, designed to regulate
speed based on traffic conditions and apply braking when
necessary to prevent collisions. While traditional car-following
models have relied on mathematical formulations such as the
Intelligent Driver Model (IDM) [5, p. 148], these approaches
are inherently limited in their ability to handle unexpected
driving behaviors and extreme traffic conditions. In response
to these challenges, this study applies reinforcement learning
to enhance maneuver-based decision-making in autonomous
vehicles, focusing on policy-based RL methods that optimize
decision policies for ACC and AEB [6][7].

This study builds upon previous work [1] through systematic
evaluation of the effectiveness of PG and PPO in training
autonomous driving policies within a simulated environment.
Policy-based reinforcement learning, as opposed to value-
based approaches such as Deep Q-Networks (DQN) and Deep
Deterministic Policy Gradient (DDPG), directly optimizes
policy functions, offering improved convergence stability and
enhanced adaptability to dynamic environments [8][9]. The
study utilizes a high-fidelity Webots simulation framework [10]
to replicate real-world driving conditions, enabling controlled
experimentation and systematic performance evaluation of RL-
based decision-making models. The effectiveness of trained
policies is assessed through scenario-based testing, including
obstacle avoidance, emergency braking, and adaptive speed
control, with a focus on generalization to diverse driving
conditions [11][12]. A comparative analysis of PG and PPO
highlights their respective advantages and trade-offs, providing
insights into the selection of reinforcement learning methods
for autonomous vehicle control. The study contributes to the
field by advancing reinforcement learning-based maneuver
decision-making in autonomous driving, demonstrating that
RL-based models can effectively address the limitations of
traditional car-following approaches while improving safety,
efficiency, and adaptability. The findings pave the way for
further exploration of learning-based decision frameworks
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in real-world autonomous vehicle deployments, emphasizing
the role of policy-based reinforcement learning in optimizing
vehicle behavior under varying traffic conditions.

The remainder of this paper is structured as follows. Section
II provides a comprehensive review of the extant literature
on RL in the context of autonomous driving. The third
section of the text provides a comprehensive overview of the
DDPG algorithm and the theoretical background that underpins
it. Section IV provides a comprehensive overview of the
vehicle platform’s hardware and software components. The
fifth section of this text provides a comprehensive description
of the RL decision-making system. Section VI is devoted to
the presentation of the Webots simulation setup and sensor
modelling. Section VII details the experiments and outcomes
of the simulation and ROS 2 validation. Finally, Section VIII
concludes with a summary of future work.

II. RELATED WORK

A. Reinforcement Learning in Autonomous Driving

RL, especially deep RL, has been widely applied in
autonomous driving decision-making [2]. Researchers have
explored a variety of strategies, from perception-based control
to hierarchical decision-making. Key challenges include state
representation (such as directly using high-dimensional sensor
data or learning abstract low-dimensional features) [2][3],
policy optimization (e.g., value iteration, policy gradient
methods), and improving real-time decision-making efficiency
[4]. Surveys have summarized RL algorithms in autonomous
driving, addressing computational challenges such as perception
uncertainty and safety validation [11][13][14].

B. Policy-based Decision-Making Methods

PPO and DDPG are two widely used deep RL algorithms
in autonomous driving decision-making. DDPG follows an
Actor-Critic architecture and is capable of handling continuous
control actions, benefiting from experience replay for higher
sample efficiency, whereas PPO stabilizes training via clipped
probability ratios [8][15]. Studies comparing DDPG and PPO
for autonomous driving tasks have found that DDPG generally
achieves faster convergence and higher cumulative rewards
[8][12][16]. However, PPO is more stable and easier to fine-tune
in complex environments. Hybrid methodologies combining
these approaches are under investigation to reconcile training
stability with decision-making efficacy [6].

C. Sim-to-Real Transfer in Autonomous Driving

Transferring RL policies from simulation to real-world
driving (“sim-to-real”) remains a key challenge. The simulation
gap arises from discrepancies in vehicle dynamics, sensor
noise, and environmental uncertainties [9][17]. Techniques
such as domain randomization—where environment parameters
are randomly perturbed during training—help improve policy
robustness [17][18]. Another approach is domain adaptation,
where pre-trained policies are fine-tuned using real-world data
[19]. Studies have successfully transferred RL-trained driving
policies to real vehicles within a short adaptation period [17].

The integration of digital twin frameworks further facilitates
progressive transfer learning [17][18].

D. Arbitration Mechanism in Decision-Making

Arbitration mechanisms play a critical role in multi-task
and multi-attribute decision-making for autonomous vehicles.
Autonomous driving involves multiple behavior modules (e.g.,
cruising, following, lane changing, and emergency braking),
requiring arbitration to resolve conflicts [13][15]. Hierarchical
arbitration architectures allow modular behavior selection
based on priority or cost functions [11][15]. For example,
prioritization-based arbitration ensures that emergency braking
overrides ACC when a collision risk is detected [15]. Cost-
based arbitration dynamically balances driving comfort and
safety by selecting the optimal behavior based on real-time
evaluations [15].

E. RL-Based Control for ACC and AEB

ACC and AEB are essential longitudinal control functions in
autonomous vehicles. Reinforcement learning has been used to
optimize these functionalities [9][12]. PPO has been applied to
vision-based ACC, achieving smoother speed control compared
to traditional rule-based strategies [4]. Safety-constrained RL
approaches incorporate safety domains into policy optimization,
ensuring collision-free following behavior [6][11]. RL-based
AEB decision-making has been modeled as a Markov Decision
Process, with deep RL policies learning optimal braking
intensities [13][15]. Comparative studies suggest that DDPG-
based strategies outperform traditional ACC/AEB controllers
in high-density traffic, reducing the likelihood of multi-vehicle
collisions [11][16]. These advancements highlight RL’s poten-
tial in improving vehicle control systems, ensuring both safety
and efficiency.

III. BACKGROUND

DDPG represents a reinforcement learning algorithm specifi-
cally designed for continuous control domains, grounded in the
theoretical framework of the Deterministic Policy Gradient
Theorem established by Silver et al. [20]. This algorithm
employs deep neural networks to jointly approximate policy
and value functions, preserving the low-variance characteristics
of DPG while enhancing generalization capabilities in high-
dimensional state spaces.

The policy gradient is computed as:

∇θJ(θ) = Es∼ρπ

[
∇θµθ(s)∇aQ

µ(s, a)
∣∣
a=µθ(s)

]
, (1)

where ∇θJ(θ) represents the gradient of the policy objective
with respect to the policy parameters θ, guiding how the
policy should be updated. The term ρπ(s) denotes the state
distribution under the current policy π, while µθ(s) is the
deterministic policy mapping states to actions. The function
Qµ(s, a) represents the action-value function, estimating the
expected cumulative reward when executing action a in state
s. The term ∇θµθ(s) captures how the policy changes with
respect to its parameters, and ∇aQ

µ(s, a)|a=µθ(s) evaluates
how the expected return changes with respect to the selected
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action. By leveraging this gradient, DDPG efficiently updates
the policy network using feedback from the critic network,
enabling stable learning in high-dimensional continuous action
spaces.

Architecturally, DDPG adopts a dual-network configuration:
the policy network (Actor) generates deterministic action
mappings from states, whereas the value network (Critic)
estimates action values through temporal difference error
minimization.

Three pivotal mechanisms ensure training stability: Firstly,
target networks updated via a soft replacement strategy mitigate
value function divergence. Secondly, an experience replay
buffer enables random sampling of historical state transition
tuples (s, a, r, s′), effectively decoupling temporal correlations
in sequential data. Thirdly, action space perturbations gener-
ated through the Ornstein-Uhlenbeck stochastic process [21]
maintain policy continuity while ensuring sufficient exploration.

Theoretical analyses demonstrate that compared to con-
ventional policy gradient methods and PPO, DDPG exhibits
superior sample efficiency and convergence stability in contin-
uous control tasks, attributable to the high signal-to-noise ratio
inherent in deterministic policy gradients.

Actor Network
µ(s|θµ)

Critic Network
Q(s, a|θQ)

Target Actor
µ′(s|θµ′

)
Target Critic
Q′(s, a|θQ′

)

Environment Replay Buffer
D

Action at

Delay Update Delay Update

Q Gradient

(s, a, r, s′)Action at

Noise
Nt

⊕Sampling

Soft Update

Soft Update

Figure 1. Reinforcement Learning DDPG model

IV. AUTONOMOUS VEHICLE PLATFORM

This section first introduces the design of the autonomous
vehicle system, including both software and hardware compo-
nents.

A. Hardware System Design

To achieve autonomous driving, a vehicle with a drive-by-
wire chassis is required. This vehicle can be controlled via the
CAN bus and Ethernet to operate the throttle, steering wheel
(not yet implemented), brakes, and turn signals while also
providing data on vehicle speed and pose. The sensor platform
of the autonomous vehicle plays a crucial role in enabling
autonomous driving functionalities. Figure 2 illustrates the
sensor integration on an autonomous vehicle, featuring four

Short Range
LiDAR

Stereo
Camera

Long Range
LiDAR

Antennas

Figure 2. Autonomous Vehicle and Sensor Integration

LiDARs for 360◦ scanning and a stereo camera for depth
perception. The sensor setup constructed in this study also
includes a combination of an INS/GNSS unit, edge computing
devices, and a high-speed communication network.

The primary perception sensors include a Robosense M1P
solid-state LiDAR and three Robosense Bpearl LiDARs for
blind-spot detection. The Robosense M1P LiDAR, installed
at the front of the vehicle, features 128 lines, a theoretical
detection range of 200m, a 40◦ vertical field of view, and
a 120◦ horizontal field of view, making it well-suited for
scanning objects in the vehicle’s frontal region. To reduce
perception blind spots and enhance environmental awareness,
three Robosense Bpearl LiDARs, each with 32 lines, a detection
range of 30m, a 90◦ vertical field of view, and a 360◦

horizontal field of view, are installed on both sides and the rear
of the vehicle. This configuration allows for comprehensive
environmental perception by capturing information about
surrounding obstacles.

In addition to LiDAR-based perception, a Nerian SceneScan
Pro stereo camera is mounted at the front of the vehicle
to enhance environmental sensing. Due to its large baseline,
the stereo camera provides accurate point cloud data within
10m ahead with minimal error. Furthermore, it captures RGB
image data, allowing for more detailed scene understanding
and environmental perception. Figure 4 illustrates the sensor
configuration of an autonomous vehicle (AV), showcasing the
horizontal field of view (FOV) and detection range of its
LiDAR and camera systems. This multi-sensor setup ensures
360◦ environmental perception, enabling robust object detection
and navigation for autonomous driving systems.

For localization and navigation, the system utilizes a NovAtel
PwrPak7D INS/GNSS unit, which integrates NovAtel’s OEM7
GNSS (Global Navigation Satellite System/Inertial Navigation
System) receiver with an Inertial Measurement Unit (IMU).
This setup enables precise positioning, velocity estimation, and
attitude estimation, even in challenging GNSS environments.
Supporting multiple satellite constellations, including GPS
and Galileo, and featuring RTK (Real-Time Kinematic) and
SPAN technology for tightly coupled GNSS/INS integration,
the unit ensures high-precision localization. It provides 400Hz
acceleration and angular velocity data and 20Hz RTK-based
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Figure 4. Multi-Sensor Configuration for Autonomous Vehicle Perception

centimeter-level GPS positioning data, ensuring robust local-
ization performance.

To handle computationally intensive autonomous driving
tasks, the system is equipped with three Nvidia Jetson Orin
edge computing devices, each offering 270TOPS of computa-
tional power. These devices are designed to meet automotive
regulatory requirements for AI-based edge computing. The
communication infrastructure includes a Planet industrial
Ethernet switch, which supports 1G, 2.5G, and 10G Ethernet
interfaces, ensuring real-time data transmission between sensors

and computing units. The integration of a Teltonika 5G router
(latency < 5ms) enables real-time V2X communication, which
is essential for validating the RL policy’s response to cloud-
based vehicle connectivity in the future.

B. Software System Design

The software system of the autonomous vehicle consists
of four core modules: perception, localization, planning and
control, and reinforcement learning-based autonomous decision-
making, as illustrated in Figure 3. This section focuses primarily
on the first three vehicle-side modules, which are essential for
real-time autonomous navigation and decision-making:

• Perception Module: Responsible for processing raw sensor
data to extract critical information, including vehicle
pose, dimensions, velocity, and environmental features. It
integrates data from multiple sources, such as LiDAR and
camera, to build a comprehensive understanding of the
surroundings.

• Localization Module: Provides precise, high-frequency
estimation of the vehicle’s absolute position by leveraging
GNSS, RTK based GPS, and IMUS. This module ensures
that the vehicle maintains accurate positioning, even in
low-GNSS environments such as tunnels or urban canyons.

• Planning and Control Module: Generates safe, efficient,
and dynamically feasible driving trajectories based on the
vehicle’s current state, detected objects, traffic conditions,
and RL-based decision-making inputs. It continuously
adjusts the steering angle, throttle, and braking system
at high frequency to ensure precise trajectory tracking,
vehicle stability, and smooth maneuvering.
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In order to ensure the maintainability of software and the
compatibility of the ecosystem, the Robot Operating System
(ROS) is adopted as the middleware for data exchange between
the different modules of the autonomous driving system. Within
this architecture, various processes operate independently as
ROS nodes, and inter-node communication is facilitated via
TCP using a topic-based publish-subscribe mechanism.

The vehicle system as a whole is modularised, with each
subsystem encapsulated and orchestrated within a Kubernetes
framework. This containerized approach enhances scalability,
reliability, and ease of management, allowing each subsystem’s
functionalities to be deployed, monitored, and maintained
independently. The efficacy of this architecture is evidenced by
its ability to streamline resource allocation, facilitate system
updates, and enhance fault isolation.

C. Perception Module Design

At the perception layer, LiDAR data from the Robosense
M1P and Bpearl LiDARs is processed through a structured
pipeline to enable accurate object detection and tracking,
as shown in Figure 5. Initially, voxel filtering is applied
to downsample the raw LiDAR point cloud, reducing data
redundancy while preserving essential geometric features.
Subsequently, the RANSAC algorithm is employed to segment
and remove ground points, effectively isolating non-ground
points and minimizing environmental noise interference. The
remaining points are then clustered using Euclidean clustering,
which groups points into distinct objects based on spatial
proximity, enabling robust obstacle detection [22][23].

For object tracking, a Kalman Filter (KF)-based algorithm
is implemented to estimate and predict the dynamic states
of detected objects. The KF algorithm operates on a state
vector comprising the object’s position (x, y), velocity (vx, vy),
yaw angle, and angular velocity (ω). It first computes a prior
state estimate using the system’s motion model, then updates
the Kalman gain and refines the estimate based on the latest
detection outputs. This iterative process yields optimal state
estimates, ensuring accurate and stable tracking of objects over
time [24].

The final output of the perception layer is a structured
object list, which includes detailed attributes such as position,
velocity, bounding box dimensions, and orientation for each
detected object. This comprehensive representation serves as
a critical input for higher-level decision-making modules in

the autonomous driving system, enabling safe and efficient
navigation in dynamic environments.

D. Localization Module Design

The localization module plays a crucial role in autonomous
driving systems, serving as the foundation for precise vehicle
positioning. It establishes an accurate spatial relationship
between the vehicle and the High-Definition (HD) map, ensur-
ing that this information is reliably provided to downstream
planning and control modules. Given that localization errors
can directly impact vehicle stability and even lead to loss
of control, the module is designed to meet stringent stability
and robustness requirements, ensuring resilience in complex
real-world environments.

One of the most direct and widely used localization tech-
niques is RTK GPS, which enables real-time positioning with
centimeter-level accuracy. However, GPS signals are inherently
vulnerable to obstructions and interference caused by tunnels,
urban canyons, tall buildings, and dense foliage, leading to
signal degradation or complete positioning loss. To mitigate
these challenges, extensive testing has been conducted on
the NovAtel PwrPak7D, a high-precision GNSS/INS receiver.
Results indicate that it maintains centimeter-level positioning
accuracy even in GNSS-challenged environments, such as
underground tunnels and areas with heavy tree coverage
[25]. This capability significantly enhances the robustness of
localization, ensuring that autonomous vehicles can navigate
safely and reliably even in scenarios where conventional GNSS
solutions fail.

E. Planning and Control Module Design

The overall workflow of the planning and control module is
depicted in Figure 6. The planning module employs a hybrid
global-local path planning approach:

• Global Path Planning: Uses open-source OpenStreetMaps
(OSM) to construct a topological road network and applies
the Dijkstra algorithm to determine the shortest path,
forming a global reference trajectory. This trajectory
consists of a series of nodes that guide the vehicle at
a macroscopic level.

• Local Path Planning: Uses a Hybrid A* algorithm to
generate kinematically feasible candidate trajectories in
the vicinity of the global path. The cost function optimizes
path smoothness, obstacle clearance, and deviation from
the global path. When an obstacle is detected in the
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perception layer, the local planner dynamically adjusts
the trajectory to ensure real-time obstacle avoidance and
driving safety.

The computed trajectory is fed into the controller module,
which calculates steering and throttle inputs to control the
vehicle. Currently, only throttle control is implemented via
Ethernet, while steering still requires manual operation. Once
the trajectory from the planning module is obtained, a PID
controller is used to generate throttle control commands,
ensuring the vehicle follows the trajectory at an appropriate
speed. In tests, the vehicle’s steering still requires manual
intervention to properly track the current trajectory.

V. RL-BASED DECISION SYSTEM DESIGN

The decision arbitration framework integrates an RL policy
with a multi-objective optimization process to ensure safe,
feasible, and human-centric autonomous driving. As illustrated
in Figure 7, the system operates through a hierarchical
structure where raw sensor inputs are first transformed into
a structured state representation, processed by an RL policy
to generate candidate actions, and subsequently refined by
a decision arbitrator. The arbitrator evaluates each candidate
action through a rigorous multi-dimensional analysis, balancing
applicability, risk, comfort, and system design constraints to
produce final decisions of autonomous driving.

A. Applicability Criterion and Risk Assessment
The applicability criterion ensures that proposed actions

adhere to both physical and regulatory limitations. Kinematic
feasibility is verified by checking whether the action falls within
the vehicle’s dynamic boundaries, such as maximum steering
rates and acceleration thresholds. Traffic rule compliance is
enforced through real-time cross-referencing with HD map
data, ensuring adherence to lane markings, traffic signals, and
right-of-way protocols [26][27].

Risk assessment quantifies collision probabilities using time-
to-collision (TTC) metrics and spatiotemporal occupancy grids,
which project predicted trajectories of surrounding agents
into a unified reference frame. Actions intersecting high-risk
zones—defined by TTC values e.g. below 1.5 s or overlapping
occupancy cells—are systematically rejected [28].

B. Comfort Optimization and System Design Considerations
Comfort optimization focuses on minimizing passenger

discomfort through jerk constraints and lateral acceleration
limits. Jerk, defined as the rate of change of acceleration, is
penalized to avoid abrupt maneuvers, while lateral acceleration
is capped at 2.5m/s2 to ensure smooth turning. These metrics
are dynamically weighted based on contextual factors, such
as road type and passenger preferences, to align with human
subjective evaluations [29].

System design considerations further refine actions by
accounting for platform-specific limitations, including actuation
latency and communication reliability. For instance, in scenarios
with elevated packet loss rates, the arbitrator reduces action
aggressiveness to mitigate instability caused by delayed control
signals [30].

C. Multi-Attribute Decision Making (MADM) and Control
Barrier Functions (CBF)

The arbitration process is formalized as a constrained
optimization problem, where candidate actions are ranked using
a Pareto-optimality framework. Feasible actions are first filtered
through hard constraints, such as collision avoidance and traffic
rule violations. Remaining candidates are evaluated across risk
and comfort dimensions, with the arbitrator selecting the action
that maximizes a utility function combining efficiency, safety,
and passenger comfort.

Theoretical underpinnings of the arbitrator draw from multi-
attribute decision-making (MADM) and control barrier func-
tions (CBFs). MADM principles, particularly the Technique
for Order Preference by Similarity to Ideal Solution (TOPSIS),
enable systematic ranking of actions in multi-criteria spaces
[31]. CBFs provide formal safety guarantees by transforming
safety constraints into differentiable barriers, ensuring real-time
verifiability [32].

This hybrid approach seeks to integrate data-driven adapt-
ability with robust safety assurance mechanisms, addressing a
critical challenge in the deployment of RL-based systems for
autonomous driving.

By harmonizing data-driven exploration with formal verifi-
cation, this framework advances the deployability of RL-based
autonomous systems, offering a scalable solution for real-world
applications where safety and adaptability are paramount.

VI. SIMULATION ENVIRONMENT DESIGN

A. Environment Design and Real-World Replication

The Webots [10] simulation environment has been metic-
ulously constructed to reflect the ExerShuttle project’s real-
world testing site by incorporating OSM data to replicate road
networks, intersections, and infrastructure elements such as
sidewalks, parking zones, and traffic signs. Although Webots
supports advanced features—including dynamic terrain editing,
diverse road surface modeling (e.g., asphalt, gravel), and
environmental condition simulation (e.g., rain, fog, low-light
scenarios)—the current reinforcement learning (RL) training
focuses exclusively on fundamental strategies, specifically
Adaptive Cruise Control (ACC) and Autonomous Emergency
Braking (AEB). To accelerate the training process and reduce
computational complexity, the simulation environment has been
deliberately simplified. This includes minimizing environmental
variability, limiting dynamic obstacles, and reducing interaction
complexity. Nonetheless, Webots’ capabilities, such as real-time
environmental adjustment via the Supervisor API and dynamic
agent behavior modeling, provide a flexible foundation for
future scenario enhancements. Traffic participants, including
static obstacles (e.g., parked vehicles) and dynamic agents
(e.g., pedestrians, cyclists), are modeled using Webots’ built-
in library and can be configured to follow predefined traffic
rules or exhibit randomized behaviors to simulate realistic
interactions.

The ExerShuttle vehicle’s kinematics were simulated using
Webots’ Ackermann steering model, calibrated to match the
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physical shuttle’s parameters, including a wheelbase of 2.8m,
a maximum steering angle of 25◦, and a peak acceleration of
2.5m/s2. A 3D CAD model of the ExerShuttle vehicle was
imported into Webots to preserve geometric accuracy and visual
fidelity. Collision detection boundaries were defined to enable
precise physical interactions with the environment, ensuring
realistic responses to collisions or near-miss scenarios.

The scenario customization framework adopts a phased
testing approach. Currently, the initial training phase involves
simplified tasks, including single-lane following and adaptive
cruise control. The Webots Supervisor API enables real-time
modification of environmental parameters, such as the dynamic
placement of obstacles. Subsequent advanced phases will
incorporate more complex interactions, including multi-vehicle
overtaking, emergency braking in congested scenarios, and
dynamic adjustments to traffic signal sequences, aiming to

Short Range
LiDAR

Stereo
Camera

Long Range
LiDAR

Figure 8. Simulated Autonomous Vehicle and Sensor Integration

rigorously assess the adaptability of RL agents under dynamic
conditions. These advanced phases remain subjects for future
investigation.

B. Sensor Configuration and Realistic Perception Modeling

Sensor integration formed the backbone of the simulation’s
perception system, bridging the virtual environment with
the RL agent’s decision-making processes. A RoboSense
M1P solid-state LiDAR, modeled using a custom model
file, provided front-facing obstacle detection with a range of
150m, a horizontal FOV of 120◦, and 32 vertical channels
to generate dense point clouds. This sensor emulated real-
world performance by incorporating noise models for raindrop
interference and signal attenuation in foggy conditions. Three
RoboSense Bpearl LiDARs, positioned on the vehicle’s sides
and rear, extended coverage to eliminate blind spots, each
offering a 30m range and 360◦ horizontal FOV. Data from
these sensors were fused into a 360◦ occupancy grid, enabling
the RL agent to detect and classify objects such as vehicles,
pedestrians, and static barriers.

Stereo vision was simulated using two RGB cameras
(1280×720 resolution, 60FPS) spaced 57 cm apart to replicate
binocular depth perception. A Webots RangeFinder supple-
mented this setup with ground-truth depth data, providing

52International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a 10m range and 0.1m resolution for validating the stereo
camera’s output. Localization was achieved through Webots’
built-in GPS and IMU modules, which delivered error-free
positioning with 5 cm accuracy and 0.1◦ angular resolution.
These modules replaced the physical ExerShuttle vehicle’s
Novatel GNSS/INS system, streamlining the simulation while
maintaining localization fidelity. Actuator control was imple-
mented through Webots’ motor nodes, with steering commands
mapped to the Ackermann vehicle’s front wheels via PID con-
trollers to ensure smooth trajectory tracking. Throttle and brake
signals were translated into torque values, capped at 250Nm, to
replicate the real vehicle’s powertrain characteristics, including
acceleration profiles and regenerative braking behavior.

C. Communication Architecture and RL Integration

Real-time communication between sensors, actuators, and
the RL agent relied on a hybrid TCP/IP and Webots’ internal
messaging framework. LiDAR point clouds and camera frames
were streamed to the agent at 20Hz via TCP/IP, with data
packets structured to minimize latency. Control signals from
the agent, including steering angles and acceleration values,
were executed within a 100, ms latency window to maintain
simulation stability. A custom OpenAI Gym [33] interface
bridged Webots and the RL framework, with the step function
processing actions and returning state observations, rewards,
and termination flags. The reset function reinitialized the
simulation to predefined states, such as the vehicle’s starting
position and environmental conditions, ensuring consistent
training episodes.

Sensor data were preprocessed into a 64-dimensional state
vector, comprising normalized LiDAR distance measurements
(10 angular bins), vehicle speed, relative yaw angle, and prox-
imity to lane boundaries. Reward signals were computed within
Webots’ Supervisor module, prioritizing collision avoidance,
lane-keeping accuracy, and adherence to speed limits. For
example, the agent received penalties for deviations from
the lane centerline or excessive acceleration, while rewards
were granted for maintaining safe distances from leading
vehicles. Challenges such as Webots’ lack of native stereo
camera support were addressed by fusing RGB camera outputs
with RangeFinder data, while computational bottlenecks in
complex scenarios were mitigated through parallelized sensor
data processing across CPU threads. Custom PROTO files for
LiDARs underwent iterative tuning to match real-world noise
characteristics, including angular resolution adjustments and
signal dropout simulations.

VII. EXPERIMENTS AND RESULTS

A. Reinforcement Learning Training Analysis

The training dynamics and operational performance of the
PPO and DDPG algorithms were systematically evaluated
through reward convergence patterns and their effectiveness in
simulated vehicle control tasks. The testing environment was
built using Webots, a high-fidelity robotic simulation platform,
where both algorithms were applied to autonomous driving
scenarios requiring ACC and AEB functionalities.

To ensure a controlled and comparable evaluation, the ACC
system was implemented using the IDM, a well-established rule-
based approach for vehicle-following behavior. This provided
a benchmark for assessing the learned policies’ performance.
Meanwhile, AEB was governed by a maximum deceleration
constraint, where the vehicle’s braking force was determined
based on its physical limits to ensure rapid and effective emer-
gency stopping. These predefined control strategies served as a
baseline for evaluating the learning efficiency and generalization
capabilities of PPO and DDPG in real-time driving scenarios.
All experiments were conducted using Webots 2023b operating
at real-time speed (1×) on a computing platform featuring an
Intel Core i9-8950HK CPU and NVIDIA Quadro P2000 GPU.

The comparative training trajectories of PPO and DDPG
algorithms, illustrated in Figure 9, reveal distinct differences
in convergence patterns and operational dynamics. As shown
in Figure 9(a), PPO exhibits an extended phase of negative
rewards spanning Episodes 1–47, whereas DDPG transitions to
positive rewards as early as Episode 2. Over the full training
sequence, PPO demonstrates a gradual increase, peaking at a
moderate reward of 678.68, while DDPG rapidly converges
to higher sustained rewards of 744.35. A focused analysis
in Figure 9(b) further highlights DDPG’s 92.7% faster initial
reward accumulation compared to PPO within the first 100
episodes, with respective reward slopes of 8.44 and 0.73 units
per episode.

A quantitative comparison of PPO and DDPG driving
behaviors, presented in Table I, reveals distinct operational
profiles influenced by their core learning mechanisms. PPO
achieves superior collision avoidance, reflected in its lower
wrong behavior/collision rate of 0.5% versus DDPG’s 1.3%.
This advantage corresponds with PPO’s conservative optimiza-
tion strategy, where its clipped probability ratio (ε = 0.2)
systematically discourages risky maneuvers. However, this
cautious stance also leads to a higher rate of AEB interventions
(1.1% compared to 0.5%), indicating a defensive decision-
making bias that prioritizes risk mitigation at the potential
expense of traffic flow efficiency.

Moreover, the significant inverse correlation between col-
lision rates and AEB activation frequencies (r = −0.89,
p < 0.05) underscores an inherent safety-efficiency trade-off.
DDPG, benefiting from a deterministic policy architecture,
excels in smoother acceleration control within adaptive cruise
scenarios but is more susceptible to rare-edge cases, such as
sudden pedestrian crossings.

TABLE I. COMPARISON OF DRIVING BEHAVIOR UNDER TWO ALGORITHMS

Algorithm Wrong behavior or
Collision (%)

AEB Selection Rate (%)

PPO 0.5 1.1

DDPG 1.3 0.5

53International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



200 400 600 800 1,000

−1,000

0

Mean Reward PPO
Mean Reward DDPG

(a) Full training process

20 40 60 80 100

−1,000

0

Mean Reward PPO
Mean Reward DDPG

(b) First 100 episodes

Figure 9. Training results of PPO and DDPG models (horizontal axis: Episode number, vertical axis: Mean reward value).

B. Experimental Validation in ROS2-Based Open-Loop Testing

The trained PPO and DDPG models were deployed on the
ExerShuttle platform within a ROS2 Humble environment to
assess their real-world applicability. The tests were designed to
evaluate the models’ decision-making capabilities in practical
autonomous driving situations.

Robust perception and control were achieved by fusing sensor
inputs from LiDAR and GPS subsystems into a state vector at
a 10Hz update rate. The data processing pipeline employed
dedicated ROS2 nodes for coordinate transformation and feature
normalization, ensuring that refined inputs were accurately fed
into the policy network for real-time inference. This architecture
facilitated precise environmental perception and timely policy
execution, both critical for evaluating model performance across
various driving scenarios.

To systematically evaluate the real-world applicability of
PPO and DDPG, three critical driving scenarios were tested:
stationary vehicle interception, dynamic object-following, and
free-flow traffic conditions.

Sensor data for all three scenarios were initially recorded
using ROS2 bag files to ensure consistent testing conditions.
These datasets were later utilized for offline evaluation of
various models. Results from top-performing models are high-
lighted and tabulated in Table II, facilitating the identification
of the optimal approach for each scenario.

TABLE II. SCENARIO-SPECIFIC ALGORITHM PERFORMANCE

Scenario Algorithm ACC
Activation

(%)

AEB (%)

Stationary Vehicle PPO 11.3 88.7

DDPG 27.7 72.3

Object-Following PPO 84.5 15.5

DDPG 91.8 8.2

Free Flow PPO 99.6 0.4

DDPG 99.8 0.2

1) Stationary Vehicle Interception: In stationary scenarios
involving either static or dynamic obstacles, PPO exhibited a
conservative braking strategy, activating the AEB system in
88.7% of instances and relying minimally on ACC (11.3%).
This early intervention strategy, with a braking initiation
distance of 35m (TTC = 2.8 s), ensured complete collision

avoidance. Conversely, DDPG engaged AEB in only 72.3% of
instances, opting for throttle modulation through ACC (22.7%)
until reaching a critical proximity of 22m before initiating
emergency braking. While DDPG achieved a 97% success rate
in collision avoidance, its delayed reaction time elevated the
risk of collisions in rare and critical edge-case scenarios.

2) Dynamic Object-Following Performance: For car-
following scenarios with a lead object varying speed between
5–10 km/h, PPO maintained an ACC activation rate of 84.5%,
ensuring a stable 2.1 ± 0.3 s following gap. However, it
occasionally triggered unnecessary AEB (15.5%) due to its
early threat anticipation. In contrast, DDPG relied more on
ACC (91.8%) to maintain a tighter 1.8±0.5 s following distance.
Despite its efficiency, DDPG’s policy resulted in 8.2% AEB
activations, primarily due to delayed reaction times to sudden
lead vehicle decelerations.

3) Free-Flow Traffic Performance: In free-flow traffic scenar-
ios, both PPO and DDPG algorithms exhibited high compliance
with ACC, achieving rates of 99.6% and 99.8%, respectively,
and maintaining stable cruising speeds. Nonetheless, PPO
demonstrated a marginally higher frequency of AEB activations
(0.4%), reflecting its conservative approach to maintaining
safety margins. Conversely, DDPG exhibited a smoother driving
profile, engaging AEB in only 0.2% of instances, indicating
a less conservative but more fluid response to environmental
stimuli.

4) Analysis of False AEB Activations: Unnecessary ac-
tivations of AEB occur in both object-following and free
flow scenarios. Upon post-hoc analysis, the primary cause
identified is the reward function’s safety component, which is
excessively penalizing in terms of TTC thresholds. This overly
cautious approach lead both algorithms, especially PPO, to
activate braking unnecessarily in response to perceived but non-
existent hazards. In contrast, the simulation training phase does
not provide sufficient training for scenarios involving objects
moving in front of the vehicle at different speeds. This lack
of exposure to such scenarios contributed to the algorithm’s
sensitivity and over-reaction in real-world conditions.

C. Limitations

Several limitations constrain the current findings. First, the
testing framework operates in an open-loop configuration
without full integration of the closed-loop control architecture
proposed in Figure 7. The state space representation and
reward function require additional refinement to properly
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align with the theoretical model’s requirements for continuous
environment interaction and safety constraint enforcement.
Second, real-world AEB validation faced inherent safety
restrictions such as predefined braking thresholds prevented
comprehensive evaluation of emergency braking accuracy
under diverse collision scenarios. Third, while the ROS2-
based deployment successfully demonstrated policy transfer
capability from simulation to physical hardware, the observed
performance gap (particularly in delayed response to sudden
obstacles) suggests the need for enhanced domain adaptation
techniques and perception system calibration.

Despite these constraints, the study provides empirical
validation of simulation-to-reality policy transfer in autonomous
driving applications. The experimental results demonstrate the
feasibility of transferring reinforcement learning policies from
high-fidelity simulations to physical vehicle platforms, with
both PPO and DDPG showing distinct operational advantages.

VIII. CONCLUSION AND FUTURE WORK

This study presented a comprehensive approach to maneuver-
based decision-making in autonomous driving using RL tech-
niques, specifically PPO and DDPG. The research leveraged
a high-fidelity Webots simulation environment, designed to
replicate real-world conditions, ensuring robust training and
testing for ACC and AEB functionalities.

The results demonstrated that while DDPG achieved faster
convergence and smoother control in simulated environments,
PPO exhibited superior safety outcomes, particularly in com-
plex and unpredictable driving scenarios. Real-world validation
on the ExerShuttle platform further confirmed the effectiveness
of the sim-to-real transfer, highlighting PPO’s conservative
but safer approach and DDPG’s efficient yet occasionally
riskier maneuvers. Notwithstanding these encouraging re-
sults, identified challenges—including delayed responses in
dynamic scenarios and limitations inherent in open-loop
testing—underscore the need for additional refinements to
augment real-world deployability.

Future work will focus on enhancing the integration of the
RL decision-making module with the vehicle’s control systems
to enable autonomy, ensuring more realistic and dynamic
interaction with the environment. In an effort to enhance
the model’s adaptability to diverse operational environments,
domain adaptation strategies will be refined by incorporating
techniques such as adversarial learning and fine-tuning with
real-world data. Additionally, the reward function will be
optimized to ensure a better balance between safety, efficiency,
and comfort, especially in complex scenarios. The expansion of
real-world testing under diverse environmental and traffic con-
ditions will provide deeper insights into model generalizability.
Furthermore, improving arbitration mechanisms by leveraging
dynamic risk assessments and adaptive comfort optimization
will strengthen decision-making reliability. These efforts aim
to develop a more robust and adaptable autonomous driving
system capable of handling real-world complexities effectively.
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Abstract— This paper proposes a method that leverages 

Visible Light Communication (VLC) to enhance traffic signal 

efficiency and optimize vehicle trajectories at urban 

intersections. By integrating VLC-based localization with 

learning-based traffic signal control, the system enables real-

time communication between vehicles and infrastructure, 

facilitating data collection and coordinated decision-making. 

Designed for multi-intersection environments, the approach 

reduces pedestrian and vehicle waiting times while improving 

overall safety. Its adaptive framework dynamically adjusts to 

different traffic patterns within signal phases, ensuring 

flexibility and efficiency. Cooperative mechanisms regulate 

traffic flow across intersections, enhancing road network 

performance. Evaluated using the SUMO urban mobility 

simulator, the system demonstrates significant reductions in 

waiting and travel times. Additionally, an agent-based scheme 

optimizes traffic signal scheduling based on VLC-driven 

interactions. The proposed approach is decentralized, scalable, 

and well-suited for real-world traffic management 

applications.  

 

Keywords— Intelligent Transport System (ITS); Visible Light 

Communication; traffic signal control; urban intersections; 

traffic flow optimization; pedestrian safety; SUMO simulator; 

cooperative communication. 

I. INTRODUCTION  

Urban traffic management is a significant challenge as 

increasing vehicle and pedestrian volumes lead to 

congestion, delays, and safety risks. Expanding road 

infrastructure is no longer viable, making adaptive traffic 

signal control essential for optimizing flow at intersections, 

which often act as bottlenecks. Adaptive systems, using 

real-time data such as traffic flow and vehicle queues, can 

reduce congestion and improve efficiency. Deep 

Reinforcement Learning (DRL) has shown promise in 

dynamically controlling traffic signals, but managing 

multiple intersections remains complex due to varying 

conditions and the need for data sharing [1] [2] [3] [4]. 

The transportation landscape is rapidly evolving with the 

integration of smart sensors, Visible Light Communication 

(VLC), and artificial intelligence. VLC, using light intensity 

modulation from LEDs for data transmission, shows 

promise in revolutionizing Smart Mobility solutions and 

addressing societal goals such as reducing emissions and 

enhancing traffic safety [5]. It is widely implemented in 

various domains, including vehicular communication and 

traffic signal systems, highlighting its versatility and 

efficiency. However, current traffic signal optimization 

often overlooks pedestrian dynamics within intersections, 

necessitating comprehensive systems that consider both 

vehicular and pedestrian flows.  

Connected vehicle (CV) technologies enhance traffic 

management by enabling real-time information exchange 

between vehicles and infrastructure, improving safety and 

flow. Visible Light Communication (VLC) complements 

CVs by using LED-based infrastructure, such as streetlights 

and vehicle headlights, for both illumination and data 

transmission [6]. VLC’s integration with DRL offers a dual-

purpose solution for optimizing traffic signals and vehicle 

trajectories at intersections. 
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This study explores how DRL, combined with CV and 

VLC technologies, can improve traffic flow and intersection 

efficiency, demonstrating the potential for smarter, more 

coordinated urban traffic management. 

"How can Deep Reinforcement Learning (DRL) be 

effectively applied to optimize traffic signal control and 

vehicle trajectories at urban intersections, leveraging 

connected vehicle technologies and Visible Light 

Communication (VLC) to enhance coordination and reduce 

traffic congestion?"  

This question addresses the core focus of applying DRL in 

vehicular communication, specifically optimizing traffic 

control through the integration of emerging technologies 

such as VLC and CVs. By exploring these advanced 

technologies, this research aims to demonstrate how they 

can improve traffic flow and intersection efficiency in real-

world scenarios. 

This paper proposes integrating VLC localization 

services with learning-based traffic signal control to manage 

pedestrian and vehicular traffic holistically [7]. Leveraging 

Reinforcement Learning (RL) concepts, the system 

optimizes traffic flow and enhances safety by considering 

interactions between vehicles and pedestrians. It introduces 

a pedestrian mobility model tailored for outdoor scenarios, 

analyzing multiple pedestrian behaviors, and incorporating 

them into the traffic signal control scheme. Validated 

through a case study in Lisbon's downtown, the model 

integrates pedestrian preferences to optimize routing 

algorithms [8].  

Simulation experiments validate the effectiveness of the 

approach, utilizing real intersection data to demonstrate 

improved traffic flow and reduced waiting times.  

The paper is structured to discuss, in Section I, the 

importance of traffic control, in Section II, the challenges it 

faces, and the motivation behind the proposed solution. It 

then delves, in Section III, into the complexities of 

managing traffic in multi-intersection environments and, in 

Section IV, presents a model for traffic signal control 

incorporating machine learning elements, and analyzes 

simulated results. Finally, the conclusions, in Section V, 

summarize the findings, insights gained, limitations, and 

potential future directions of the research. 

II. TRAFFIC CONTROL CHALLENGES  

A. Pedestrian Dynamics and Complexity in Multi-

Intersection Environments 

Traffic signal control research has traditionally 

prioritized vehicles, but there's now a shift towards 

pedestrian-friendly systems to prevent delays and accidents 

[9][10]. Sidewalks present challenges due to bi-directional 

flow, and differing speeds and movements between 

pedestrians and vehicles further complicate matters [11]. 

Our adaptive traffic control considers factors like queue 

lengths in neighboring intersections to balance scalability 

and efficiency. Our strategy is designed to address real-time 

traffic demands by modeling current and anticipated future 

traffic flows. Compared to traditional fixed coil detectors, 

our adaptive system in V2X environments gathers more 

granular data, including vehicle positions, speeds, queue 

lengths, and stopping times. V2V links play a crucial role in 

safety functionalities like pre-crash sensing, while V/P2I 

links provide valuable information to connected vehicles. 

B. Integrating V-VLC for Innovative Traffic Solutions 

With wireless tech advancements and connected vehicle 

(CV) [12 ] systems like V2V and V2I, integrating VLC 

localization with learning-based traffic control can manage 

both pedestrian and vehicular traffic in multi-intersections. 

It employs RL to enhance safety and reduce waiting times 

using V2V, V/P2I, and I2V/P communications. This 

approach synchronizes signal control in real-time, 

considering pedestrian and vehicle factors in the state and 

reward design, utilizing sidewalks for crucial pedestrian 

location info. SUMO simulations [13] assess the V-VLC 

system's effectiveness, with agent-based models learning to 

optimize traffic flow dynamically. Dynamic diagrams and 

state matrices illustrate the concept, showing potential for 

optimal traffic control policies. 

III. UNLOCKING TRAFFIC CONTROL  

A. VLC Background 

The V-VLC system, as depicted in Figure 1a, utilizes a 
mesh cellular hybrid structure with two controllers. The 
"mesh" controller at streetlights relays messages to vehicles, 
while the "mesh/cellular" hybrid controller acts as a border-
router for edge computing [10][14].  

Cloud communication (I2IM) through embedded 
computing platforms for processing and sensor interfacing. It 
also facilitates peer-to-peer communication (V2V) among 
vehicles, enhancing data sharing. 

The Vehicular Visible Light Communication system (V-
VLC) consists of a transmitter generating modulated light 
and a receiver detecting light variation, both wirelessly 
connected. LED-produced light is modulated using ON-
OFF-keying (OOK) amplitude modulation (Figure 1b). 
Square unit cells in the environment feature tetra-chromatic 
White light (WLEDs) sources at cell corners. The V-VLC 
system uses coded signals transmitted by devices like 
streetlights (L), headlights (I), and traffic lights (I) to 
communicate directly with identified vehicles and 
pedestrians (L/I2V/P), or indirectly between vehicles through 
their headlights (V2V). PIN-PIN photodetectors within 
mobile receivers receive and decode coded signals. This 
information aids in pinpointing positions within the network 
and provides directional guidance along cardinal points for 
drivers/pedestrians [15]. 

The system employs queue/request/response mechanisms 
and temporal/space relative pose concepts to manage vehicle 
passage through intersections. Vehicle speed is determined 
using transmitter IDs for tracking, while mesh nodes 
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estimate indirect Vehicle -to-Vehicle (V2V) relative poses in 
scenarios with multiple neighboring vehicles. 
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Figure 1. a) 2D representation of the simultaneous geo-localization as a 

function of node density, mobility and transmission range. b) Emitter and 

receivers’ relative positions. Illustration of the coverage map in the unit 

cell: footprint regions (#1-#9) and steering angle codes (2-9). 

The integration of VLC enables direct monitoring among 
pedestrians, vehicles, and infrastructure, focusing on critical 
aspects such as queue formation and pedestrian corner 
density to enhance road safety. Pedestrian-to-Infrastructure-
to-Pedestrian (P2I2P) communication enables travel time 
calculations, while real-time data on speed and waiting times 
are analyzed using transmitter tracking IDs. 

B. Traffic Scenario and Phasing Diagram 

The simulated scenario, as shown in Figure 2a, features 
two intersections, each with two 4-way junctions, consisting 
of 2 lanes per arm spanning 100 meters in total length. 

Traffic flows from compass directions, with lanes 
indicating movement options: right lanes for right turns or 
going straight, and left lanes for left turns only. Central 
traffic light systems, regulated by Intelligent Managers 
(IMs), control traffic. Features like emitters (streetlamps), 
pedestrian lanes, waiting areas, and crosswalks are 
integrated. Four traffic flows along cardinal points are 
considered, with road request and response segments 
offering binary choices (turn left/straight or turn right). 
Assumptions include a total influx of 2300 cars per hour, 
primarily from east and west directions, with 25% expected 
to turn and 75% to continue straight. Pedestrian influx is 
around 11200 per hour, crossing in all directions at an 

average speed of 3 km/h. Figure 2b outlines intersection 
phase progressions within a structured cycle length, 
comprising eight vehicular phases and an exclusive 
pedestrian phase. Each phase is subdivided into discrete time 
sequences, providing a comprehensive temporal framework 
[16] [17]. 
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Figure 2. Simulated scenario: Four-legged intersection and environment 

with the optical infrastructure (Xij), the generated footprints (1-9) and the 
connected cars and pedestrians. b) Phasing diagram and schematic diagram 

of the C2 intersection with coded lanes (L/0-7) and traffic lights (TL/0-15). 

Each flow (illustrated by the different vehicle colors) 
comprises vehicles moving straight or making left turns, with 
specific vehicles representing top requests in the sequence. 
The assumption is that specific vehicles, labeled a1, b1, a2, b2, 
a3, c1, b3, e1, a4, c2, a5, and f1, represent the top requests in the 
given sequence. 

C. Communication Protocol, Coding, and Decoding 

Techniques  

Data transmission in the VLC system follows a 
synchronous approach using a 64-bit data frame structure. 
Information is encoded using On-Off Keying (OOK) 
modulation, with each luminaire containing WLEDs 
(RGBV), enabling simultaneous transmission of four 
signals. A PIN-PIN demultiplexer decodes the message 
based on calibrated amplitudes of RGBV signals. The 
communication protocol includes components like Start of 
Frame (SoF) for synchronization, Identification Blocks 
encoding communication type (COM) and localization 
(position, time), and other ID Blocks for additional 
identifiers, Traffic Message containing vehicle information, 
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and End of Frame (EoF) indicating the end of transmission. 
This structured protocol ensures efficient encoding and 
decoding of critical movement information, maintaining 
synchronization and data integrity in the VLC system. In 
Table 1 the communication protocol is dispicted. 

 
TABLE I. COMMUNICATION PROTOCOL. 

    COM Position  ID  (veic) Time   payload     

L2V Sync 1 x y 0 bits END Hour Min Sec          EOF 

V2V Sync 2 x y 
Lane 

 (0–7) 

Veic. 

(nr) 
END Hour Min Sec 

Car 

IDx 

Car 

IDy 

nr 

 behind 
    EOF 

V2I Sync 3 x y 
TL 

(0–15) 

Veic. 

(nr). 
END Hour Min Sec 

Car 

IDx 

Car 

IDy 

nr  

behind 
    EOF 

I2V Sync 4 x y 
TL 

(0–15) 

ID 

Veic. 
END Hour Min Sec 

Car 

IDx 

Car 

IDy 

nr 

 behind 
  EOF 

P2I Sync 5 x y 
TL 

(0–15) 
Direct. END Hour Min Sec         EOF 

I2P Sync 6 x y 
TL 

(0–15) 
Phase END Hour Min Sec         EOF 

 1  
Decoding the information received from the 

photocurrent signal captured by the photodetector involves a 
critical step reliant on a pre-established calibration curve 
[1]. This curve meticulously maps each conceivable 
decoding level to a sequence of bits. Essentially, the 
calibration curve serves as a guide, facilitating the 
establishment of associations between photocurrent 
thresholds and specific bit sequences. 

IV. RESULTS 

A. VLC Algorithms 

Figure 3 displays the decoded optical signals (at the top 
of the figures) and the signals received (MUX) by the 
receivers in a V2V (COM 2) and V2I (COM 3) 
communication scenario involving a leader vehicle ao at 
position (R3,10, G3,11, B4,10, ). This vehicle is communicating 
with the agent at the second intersection (C2) on lane L0 
(direction E) at 10:25:46 and is followed by three other 
vehicles (Veic. nr) V1, V2, and V3 with the same direction, 
located at positions (IDx,y ) R3,8, G3,6 and  R3,4, respectively. 

Figure 4 demonstrates the MUX signal and the decoded 
messages sent by the traffic lights to pedestrians (I2P1,2). 
This visual representation helps to understand the 
communication between pedestrians waiting in the corners 
and the corresponding traffic lights, providing insights into 
the signals exchanged for pedestrian crossings at both 
intersections (C1 and C2). 

Upon pedestrian q2 receiving information from the traffic 
light C2, it becomes evident that the current active phase is 
N-S (Phase 1), signifying that the pedestrian did not arrive in 
time for their designated phase (Phase 0). 
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Figure 4. Normalized MUX signal responses and the corresponding 

decoded messages, displayed at the top, sent by the IM to pedestrians 

waiting in the corners (I2P1,2) (b) at various frame times. 

Consequently, the pedestrian is required to wait for an 
estimated cycle time of 3 (cycle time) minutes before being 
granted the opportunity to cross. Subsequently, the 
pedestrian crosses the crosswalk, covering the distance to the 
next intersection in approximately 1 minute and 50 seconds. 
Upon arrival, the pedestrian waits in the designated waiting 
zone at position R3,4-G3,5 until the pedestrian phase becomes 
active once again. At 10:28:35, the pedestrian establishes 
communication with traffic light TL13 at the C1 (P12I). The 
traffic light promptly responds (I2P1) at 10:28:36, providing 
crucial information that the currently active phase is the final 
one in the cycle (Phase 6). These interactions highlight the 
effectiveness of the pedestrian's communication with the 
traffic lights, enabling them to stay informed about the active 
phase, waiting time, and make decisions accordingly. 
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B. Dynamic Traffic Control: Integrating Pedestrian 

Consideration  

Assessing the effectiveness of the proposed V-VLC 
system in multi-intersection utilizes the Simulation of Urban 
MObility (SUMO), employing agent-based simulations.  

SUMO tests traffic control algorithms, manages 
intersections, and oversees pedestrian crossings, mirroring 
real-world conditions. For data analysis, SUMO collects and 
analyzes simulation data, including vehicle trajectories, 
travel times, congestion levels, and pedestrian movements.  
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Figure 5.  State phasing diagrams for C1 and C2 intersections. 

The simulation scenario, adapted to the SUMO 
simulator, provides insights into traffic light signals and 
vehicle/pedestrian movements within the terminals. In 
Figure 5 a state diagram was generated for C2 intersection, 
incorporating both vehicles in the lanes (2300v/h) and 
pedestrians (11200 p/h) in the sidewalks during two cycles 
of 120 seconds. These diagrams offer insights into the 
dynamic behavior of traffic light signals and 
carrier/pedestrian movements within the simulated 
terminals. As can be observed in the diagrams it is possible 
to distinguish the different cycles that occur during the 
simulation. It always begins with a pedestrian phase (Phase 
0), during which some pedestrians can cross the crosswalk, 
turning red for pedestrians starting from 11 seconds. Then, 
phases dedicated to vehicles (Phases 1-8) take place until it 
concludes at 123 seconds. At this moment, the second cycle 
begins, with the pedestrian phase becoming active again. The 
same process repeats until 247 seconds, marking the end of 
this second cycle and the initiation of a third cycle. These 
diagrams align with the analysis conducted for pedestrians. 

V. INTELLIGENT TRAFFIC CONTROL SYSTEM 

With the data collected on vehicles via VLC through the 
cells in Figure 1, implemented via lamps along the roads as 
shown in Figure 2, an intelligent traffic system must be 
developed to optimize traffic flow at intersections. This 
system utilizes reinforcement learning (RL), a machine 

learning paradigm where an agent learns to make decisions 
by interacting with its environment. Agents in RL aim to 
achieve a goal in uncertain, potentially complex 
environments by receiving feedback in the form of rewards 
or punishments. The fundamental idea is for the agent to 
learn optimal behavior or strategies through trial and error.  

At each time step t, the agent receives a state input 𝑠t, 
based on the observation of the environment and then 
executes an action 𝑎t, that transforms the state observed to a 
next state 𝑠t+1. Then the reward 𝑟t, a metric that defines how 
good the action was for the environment, is calculated. In 
this case, the reward is defined by (1), using the accumulated 
total waiting time, atwt, as a metric for vehicles (veh) and 
pedestrians (ped). atwtt and atwtt−1 are the accumulated total 
waiting time of all the cars/pedestrians in the intersection 
captured respectively at agentstep t and agentstep t−1. The 
weights of the pveh and pped are set based on the desired 
priority that the agent should have towards vehicles and 
pedestrians during network training. The agent will learn a 
policy that benefits one more than the other, or keeps the 
system balanced if the weights are equal. 

If the agent’s behavior leads to positive environmental 
reward, which indicates that the waiting time is longer in the 
past, t-1, than at the present moment, t, then the tendency of 
producing this behavior by the agent will be strengthened, 
and vice versa. The goal is to maximize the cumulative 
discounted reward. 

𝑟t = pveh(atwtveh,t-1- atwtveh,t) +pped(atwtped,t-1- atwtped,t) (1) 

This experience ex = (𝑠t, 𝑎t, 𝑟t, 𝑠t+1) will be stored in the 
replay memory, to be used in the future to train the agent. 
The replay memory is a dataset of an agent’s experiences Dt 
= (e1, e2, … , et), which are gathered when the agent interact 
with the environment as time goes by (t = 1, 2…, n). 

To train the agent, the deep Q-Learning technique is 
employed, leveraging the Q-Learning algorithm [18] [1]. The 
Q-value represents the expected cumulative reward of taking 
a particular action in a particular state and following the 
optimal policy thereafter. These Q-values are predicted by a 
Neural Network (NN) that takes the state as input and 
outputs Q-values for each possible action. 

The Q-value represents the expected cumulative reward 
of taking a specific action in each state while following the 
optimal policy thereafter.  

A neural network (NN) predicts these Q-values by taking 
the state as input and outputting Q-values for each possible 
action. The state of the environment comprises 100 cells at 
each intersection, indicating the presence of vehicles or 
pedestrians. These cells are set to '1' if occupied and '0' if not. 
Each lane, divided into 10 cells, indicates vehicle movement 
toward the intersection, with cell sizes increasing farther 
from the intersection. With 8 lanes per junction, there are 80 
vehicle cells per intersection. For pedestrians, only the 
waiting zones are considered, each divided into 5 cells, 
totaling 20 pedestrian cells per intersection as draft in Figure 
6, where the Flowchart during simulation and training is also 
displayed. 

The neural network's input layer consists of 100 neurons 
representing the state of the environment. This is followed by 
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five hidden layers, each with 400 neurons using rectified 
linear units (ReLUs). The output layer features nine neurons, 
each representing the Q-values for potential actions. To 
refine Q-value predictions, a Mean Squared Error (MSE) 
function quantifies the disparity between predicted and target 
Q-values, enhancing the learning process. N represents the 
number of samples stored in memory, and Qtarget and Qpred 

denote the target and predicted values, respectively. After 
each training episode, target Q-values for action-state pairs 
are calculated based on Equation (2). 

 

 

 

Figure 6. Deep Reinforcement Learning and flowchart during 

simulation and training . 

 

         (2) 

 
N is the number of samples stored in memory, and the 

target and predicted value, Qtarget and Qpred, respectively. 
After each episode of training, the target Q-values for action-
state pairs are calculated based on (3). 

 

                      (3) 

 
The nine Q-values at the neural network's output 

correspond to the nine actions shown in Figure 7. The agent 
selects the action that best suits the current traffic situation, 
without following a predefined order. Conversely, today's 

dynamic traffic systems at junctions follow a fixed sequence 
of phases, as shown in Figure 7.  

 

Figure 7. Nine possible actions that can be chosen by the agent. 

This can result in activating a phase that does not align 
with current traffic needs. The next section compares these 
two systems to highlight their differences and evaluate their 
effectiveness. 

. 

VI. SIMULATION RESULTS 

A. Traffic Signal Control Model 

The objective of this section is to compare the dynamic 
system of nine fixed phases and variable timing (Fig. 3c) 
with the intelligent system where the agent defines the order 
and timing of phases according to the combined flow of 
vehicles and pedestrians, intelligent system.  

In order to implement the system, reinforcement learning 
(RL) is used, which is a type of machine learning where the 
agent learns to make decisions through interactions with the 
environment. RL-based approaches typically consider the 
traffic flow states surrounding intersections as observable 
states. The change in signal timing plans is treated as an 
action, and the traffic control performance as feedback. This 
section presents the process of constructing an urban traffic 
control system using the reinforcement learning method [19, 
20, 21]. RL enables systems to take actions in a dynamic 
environment through trial and error methods to maximize 
rewards based on the feedback generated from taking 
actions. The main entity of RL is the agent that receives and 
interprets information from the environment and takes 
actions. This permits the agent to learn through trial and 
error.  

The primary objective for these agents is to attain a goal 
within an environment characterized by uncertainty and 
potential complexity. Feedback, in the form of rewards or 
punishments, serves as the guiding mechanism for the agent's 
learning process. The reward function evaluates the 
difference in accumulated waiting time between the current 
and previous steps in all lanes, with negative rewards 
indicating higher waiting times [22].  

B. Training Results 

To evaluate the behaviour of the intelligent traffic control 
system in relation to pedestrian and vehicle scenarios, a 
comparison was made with the dynamic traffic control 
system. The neural network used was trained with a reward 
system that weighted the waiting times for vehicles (pveh) and 
pedestrians (pped) equally, for 300 epochs, each lasting one 
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hour. Both systems considered the same generation rates for 
pedestrians and vehicles, totalling 2300 vehicles and 11000 
pedestrians in the traffic scenario. 

Figure 8 shows the cumulative negative reward from 
training the network for both agents. Both agents evolved 
and learned from their traffic experiences throughout the 
episodes. The curves converged towards less negative 
reward values, indicating better decision-making over time. 

 

Figure 8.  Cumulative Negative reward for both agents in training. 

After training the network, tests were conducted to 
compare both systems under two traffic scenarios 
representing peak hour conditions. The first scenario 
involved high vehicle and pedestrian traffic (High-High) 
with 2300 cars and 11000 pedestrians. The second scenario 
had high vehicle traffic but low pedestrian traffic (High-
Low), with 2300 cars and 5600 pedestrians. 

C. Testing Results – High-High and High-Low scenarios 

Figures 9 and 10 display the number of pedestrians 
waiting in zones at the two junctions for both traffic 
scenarios.  

 
 

 

Figure 9.  Comparison of the number of pedestrians stopped waiting in 

both systems for the High-High scenario. 

 

Figure 10.  Comparison of the number of pedestrians stopped waiting in 

both systems for the High-Low scenario.  

Figures 11a and 11b illustrate vehicle waiting times 
under both scenarios.  

 

 

Figure 11. Comparison of the number of cars in the entire environment for 

both systems for the High-High (a) and High-Low (b) scenarios. 

a) 

a) 

b) 
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Figure 11a shows that the intelligent system reaches a 
peak of waiting vehicles between 8 and 15 minutes due to 
higher pedestrian traffic affecting vehicle flow. In contrast, 
Figure 11b indicates a peak at around 15 minutes when 
pedestrian traffic is lower, allowing the system to balance 
vehicle and pedestrian phases better. 

Despite both scenarios having high vehicle traffic, the 
intelligent system manages fewer waiting vehicles in the low 
pedestrian scenario. The dynamic system shows consistent 
behavior with a 120-second cycle time, but the high 
pedestrian count negatively impacts vehicle dispatch, 
suggesting that many waiting pedestrians might lead to poor 
vehicle flow. 

D. Testing Results – Phase diagram 

The objective is to compare the dynamic system of nine 
fixed phases and variable timing (Figure 7) with the 
intelligent system where the agent defines the order and 
timing of phases according to the combined flow of vehicles 
and pedestrians.  

The intelligent system under consideration was trained 
using a reward equation that assigned different weights to 
vehicles and pedestrians, 25% and 75%, respectively, 
prioritizing pedestrian traffic flow in the environment. 
Consequently, when pedestrians are requesting to cross 
pedestrian crossings, the agents prioritize their requests 
during periods of significant pedestrian traffic ensuring 
appropriate attention is given. This prioritization naturally 
impacts vehicle traffic to some extent, but not excessively.  

The neural networks for each scenario underwent training 
with 300 episodes, each lasting 3600 seconds. To 
characterize the scenarios, several variables related to traffic 
were employed to assess the system's performance. These 
variables include queue sizes, where individual intersections 
in each scenario were analyzed to compare the flow of cars 
in each. The average queue size for each scenario was also 
calculated to observe the impact of the number of cars on the 
environment and the system's response in each case. The 
average speed of cars was also considered, as vehicle speed 
provides insights into the fluidity of traffic. Lastly, the 
number of cars in halting (waiting) was analyzed, providing 
insights into the impact of the number of vehicles on the 
environment. 

To investigate the behavior of pedestrians in the 
environment, some variables were considered: average speed 
of pedestrians and halting. The first allows observing the 
influence of the cycle durations of each vehicle scenario on 
pedestrian speed and the second enables the analysis of the 
number of people who are stationary in waiting zones across 
all intersections over time giving insight into the number of 
people per square meter in each of the waiting zones.  

In Figure 12 the simulated pedestrian and vehicle average 
speed with and without RL are displayed using SUMO 
simulator.  

0 500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

 

 

A
v
e
ra

g
e
 s

p
e
e
d
 (

m
/s

) 

Time (s)

 Dynamic

 Intelligent

a) 

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

 

 

A
v
e

ra
g

e
 s

p
e

e
d

 (
m

/s
) 

Time (s)

Pedestrians

 Dynamic

 Intelligent

 
b) 

Figure 12. Comparative trends of the vehicles (a) and pedestrians 

(b) average speed over time for both dynamic and intelligent traffic 

scenarios. 

 
In Figure13 the simulated halting for both pedestrians 

and vehicles is displayed.  
The size of these peaks in the halting sessions (Figure 11) 

indicates the stress level and demonstrates pedestrian’s 
reaction to connected vehicles cars. Aperiodic peaks in 
halting sessions are linked to crossing moments. 
Comparatively, smaller peaks are observed in the intelligent 
halting sessions, while higher, more cyclical peaks are 
observed in dynamic halting sessions. 
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Figure 13. Comparative trends of the vehicles (a) and pedestians (b) halting 

over time for both dynamic and intelligent traffic scenarios. 

The dynamic system strictly adheres to the phase cycle, 
activating the pedestrian phase with every cycle length. This 
behavior somewhat benefits cars, as the pedestrian phase is 
only active every cycle length, naturally impeding 
pedestrians. In both systems, during the second half hour of 
requests, when pedestrian and vehicle traffic are light, the 
system reduces the high values of waiting cars and 
pedestrians in queues and adjusts its behavior by analyzing 
the impact of its previous actions on the environment. 

This study shows promising results in determining the 
stress level of pedestrians in the presence of connected 
vehicles and demonstrates the capabilities of VLC for future 
research. In Figure 14, the different phases along almost one 
hour simulation are displayed for both intersections: C1 (a) 
and C2 (b), respectively. On the top the nine possible phases 
(agent actions) are draft. 

The aperiodic peaks in the halting intelligent pedestrian 
session (Fig. 11b) are linked to the overlap of crossing 
moments in C1 and C2, that corresponds to phase number 9 
in both. 
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Figure 14. Comparative trends of the selected phases over time for both 

intersections: C1 (a), C2 (b). ON the top the nine possible phases are 

pointed out. 

So, by integrating VLC technology among pedestrians, 
vehicles, and surrounding infrastructure has emerged as a 
pivotal advancement in optimizing traffic signals and vehicle 
trajectories, allowing for direct monitoring of critical factors 
such as queue formation, dissipation, relative speed 
thresholds, inter-vehicle spacing, and pedestrian corner 
density, ultimately contributing to enhance road safety. 

 

         

 

65International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VII. CONCLUSIONS 

This paper sets the groundwork for advancing intelligent 
traffic management by highlighting the potential of VLC 
technology to enhance safety and efficiency at urban 
intersections. Our focus was on optimizing both vehicular 
and pedestrian traffic, addressing the previously overlooked 
aspect of pedestrian phases. By analyzing agents' behavior 
and decision-making, particularly concerning pedestrian 
safety, we aimed to refine the timing of pedestrian phases. 

In the domain of traffic optimization, our state 
representation incorporates environmental information, 
vehicle and pedestrian distribution data from V-VLC 
messages, and a proposed phasing diagram guiding agent 
actions. We developed dynamic and intelligent control 
system models to securely manage traffic at two connected 
intersections. Through Reinforcement Learning and the 
SUMO simulator, we conducted a thorough analysis. With 
an agent at each intersection, the system optimizes traffic 
lights based on communication from VLC-ready vehicles, 
devising strategies to enhance flow and coordinate with other 
agents for overall traffic optimization. 

Overall, the intelligent system demonstrates superior 
adaptability and efficiency. It manages to reduce pedestrian 
waiting times while still maintaining a reasonable level of 
vehicle flow. In comparison, the dynamic system's fixed 
cycle often leads to longer pedestrian wait times, which can 
cause significant congestion. Therefore, the intelligent 
system proves to be more effective in handling the traffic 
scenarios studied, providing a better balance between vehicle 
and pedestrian needs. 
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Abstract—Directed graphs such as neural networks can be 

described by Arrow Terms that link a finite set of incoming nodes 

to some response node. Scott and Engeler have shown that its 

powerset is a model for Combinatory Logic. This algebra is 

called Graph Model of Combinatory Logic. Since Combinatory 

Logic is Turing-complete, the model explains both traditional 

programming logic as well as neural networks such as the brain 

or Artificial Neural Networks as used in a Large Language Model. 

The underlying graph model is a general model for all kinds of 

knowledge. The graph model would yield a powerful AI-tool if 

used as a blueprint for implementing AI. Chain of Thoughts 

would come for free, and explainability with it. However, its 

performance would make such a tool impractical and useless. 

The paper proposes a combined approach for adding 

explainability to AI and creating Intelligent Systems. It is the 

strategy humans use when they try to explain their ideas. First, 

the generative power of neural networks is used to produce an 

idea or solution. Next, humans create a chain of thoughts that 

explain such ideas to others and try to provide evidence. AI 

could follow the same strategy. The architecture of such 

intelligent systems consists of two distinct elements: a well-

trained artificial neural network for observing and generating 

solution approaches, and a controlling engine for fact checking 

and reliability assessment. 

Keywords—Intelligent Systems; Chain-of-Thought (CoT); 

Explainable AI (XAI); Artificial Neural Networks (ANN); Deep 

Neural Network (DNN); Combinatory Logic; Quality Function 

Deployment (QFD). 

I.  INTRODUCTION 

This paper is a revised version of the author’s contribution 
to the 1st International Conference on Systems Explainability, 
held in Valencia, Spain, in autumn 2024 [1]. 

A. Short History of AI and its Philosophical Background 

In the early 20th century, there were some shocking events 
taking place in mathematical logic and natural science. Gödel 
[2], when trying to solve some of Hilbert’s 23 problems, 
detected that predicate logic, something with a long history 
dating back to the ancient Greeks, is undecidable. This insight 
gave birth to theoretical computer science, including the 
theory of computation, founded by Turing [3]. For a modern 
compilation, see Raatikainen [4]. 

Schönfinkel and Curry [5] developed Combinatory Logic 
to avoid the problems introduced when using logical 

quantifiers, and Church invented Lambda Calculus as a rival 
formalism [6]. Scott and Engeler developed the Graph Model 
[7], based on Arrow Terms, and proved that this is a model of 
combinatory logic. This means that you can combine sets of 
arrow terms to get new arrow terms, and that combinators, 
accelerators, and constructors can be used to create new 
elements of algebra. 

Graphs in the form of neural networks appeared already at 
the origins of Artificial Intelligence (AI). Its first instantiation 
in modern times was the Perceptron, a network of neurons 
postulated by Rosenblatt [8]. It later became a directed graph 
[9]. Rosenblatt was also the first who postulated concepts, 
among perception and recognition, as constituent parts of AI 
[8, p. 1]. 

Since its origins, AI has experienced difficulties; however, 
today there are many AI applications that provide value for 
the user. In some areas, training an AI model is simpler and 
more rewarding than finding and programming an algorithm. 

For instance, AI-powered visual recognition systems excel 
in recognizing and classifying objects, following the ideas 
established by Rosenblatt [8]. However, they have difficulty 
recognizing temporal dependencies and are unable to combine 
what they have learned, although attempts have been made to 
develop methods using sequential data and the ability to 
capture temporal patterns. AI lacks what humans use in such 
cases: a concept. 

Logical skills such as inference and deduction provide 
quite a challenge, as exemplified by the ARC Price challenge, 
a sort of intelligence test for AI models, proposed by Chollet 
[10]. A Large Language Model (LLM) easily summarizes 
texts or books but it still does not understand what is written 
in it, in the sense that the US National Council of English 
Teachers calls Literacy, see [11], [12]. 

Artificial Neural Networks (ANN) can be divided into four 
types: Recurrent Neural Network (RNN), Fuzzy Neural 
Network (FNN), Convoluted Neural Network (CNN) and 
Deep Neural Network (DNN). DNN are the most successfully 
used for LLM and thus the most important type of ANN 
regarding explainability because they rely on many hidden 
layers. Among the rapidly developing literature, Gerven & 
Bothe’s classification are a good start [13]. Natural Neural 
Networks, in analogy to ANNs, are abbreviated by NNN. 

IBM defines Explainable Artificial Intelligence (XAI) as 
a set of processes and methods that allow human users to 
comprehend and trust the results created by machine learning 
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algorithms [14]. Current approaches to XAI attempt to use 
statistical correlations as a basis for reasoning. From a 
theoretical perspective, this is unlikely to work, because of 
Gödel [2]. However, engineers try to use statistical methods 
to circumvent Gödel’s undecidability. Sometimes the results 
look convincing. Dallanoce [15] compiled a list of available 
processes and methods for XAI. 

Artificial General Intelligence (AGI) is a type of artificial 
intelligence (AI) that falls within the lower and upper limits of 
human cognitive capabilities across a wide range of cognitive 
tasks. The creation of AGI is a primary goal of AI research 
and companies such as OpenAI and Meta, but what exactly 
AGI refers to is controversial [16]. 

Current attempts towards AGI focus on the investigation 
of Chain of Thoughts (CoT). Using an LLM based on 
DeepSeek with CoT enabled yields the feeling that the LLM 
does some “reasoning” because it displays the intermediate 
results obtained with the processing of some query [17]. The 
real innovation behind DeepSeek is using a hash function to 
avoid processing useless branches in an LLM. This is not what 
reasoning really is, namely the use of logic based on factual 
knowledge to find previously unknown answers. The hash 
function is still based on statistics from a suitable training set 
[18]. 

B. Research Questions 

The aim of this paper is to recall prior work in logic and 
AI to understand how neural networks work. To do this, we 
investigate the following three research questions: 

 
RQ 1: How are neural networks and especially DNNs 

linked to the graph model? 
RQ 2: Does CoT relate to a sequence of arrow terms? 
RQ 3: Can the graph model explain AI? 

 
The motivation for this is that we are experiencing the 

fourth AI hype in sixty years and that its acceptance in society 
is currently transitioning from admiration to rejection. 
Because the nature of AI is poorly understood not only by 
society but also by the AI research community. We believe 
that the graph model is an excellent way to understand what 
intelligence is, both natural and artificial. However, it is not 
an answer to how to construct XAI. 

C. Paper Structure 

We first explain combinatory logic (Section II) and the 
motivation for building a model (Section III). Then we 
compare DNNs with graphs and explain how arrow schemes 
represent what a DNN does and have an outlook on the 
architecture of intelligent systems (Section IV). Finally, we 
present the method for designing intelligent systems (Section 
V) and explain how we want to go ahead (Section VI). 

II. COMBINATORY LOGIC 

In the past decades, there has been a lack of attention and 
consequently of publications on Combinatory Logic. 
Nevertheless, it explains quite a bit what artificial intelligence 
can do and what not.  

A. Combinatory Logic and Axiom of Choice  

Combinatorial Logic is a notation that eliminates the need 
for quantified variables in mathematical logic, and thus the 
need to explain what the meaning of existential quantifiers 
∃𝑥 ∈ 𝑀 is, see Curry [5] and [19]. Eliminating quantifiers is 
an elegant way to avoid the Axiom of Choice [20] in its 
traditional form. Combinatory Logic can be used as a 
theoretical model for computation and as design for functional 
languages (Engeler [21]); however, the original motivation for 
combinatory logic was to better understand the role of 
quantifiers in mathematical logic. 

Combinatory logic is based on Combinators which were 
introduced by Schönfinkel in 1920. A combinator is a higher-
order function that uses only functional applications, and 
earlier defined combinators, to define a result from its 
arguments. 

The combination operation is denoted as 𝑀 • 𝑁  for all 
combinatory terms 𝑀,𝑁. To make sure there are at least two 
combinatory terms, we postulate the existence of two special 
combinators 𝐒 and 𝐊.  

They are characterized by the following two properties (1) 
and (2): 

 𝐊 • 𝑃 • 𝑄 = 𝑃 (1) 

 𝐒 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • (𝑃 • 𝑅) (2) 

𝑃, 𝑄, 𝑅 are terms in combinatory logic. The combinator 𝐊 
acts as projection, and 𝐒  is a substitution operator for 
combinatory terms. Equations (1) and (2) act like axioms in 
traditional mathematical logic. 

Like an assembly language for computers, or a Turing 
machine, the 𝐒-𝐊 terms become quite lengthy and are barely 
readable by humans, but they work fine as a foundation for 
computer science. The power of these two operators is best 
understood when we use them to define other, handier, and 
more understandable combinators.  

The identity combinator for instance is defined as 

 𝐈: = 𝐒 • 𝐊 • 𝐊 (3) 

 Indeed, 𝐈 • 𝑀 = 𝐒 • 𝐊 • 𝐊 • 𝑀 = 𝐊 • 𝑀 • (𝐊 • 𝑀) = 𝑀 . 
Association is to the left. Moreover, 𝐒 and 𝐊 are sufficient to 
build a Turing machine. Thus, combinatory logic is Turing-
complete. For proof, consult Barendregt [22, pp. 17-22]. 

B. Functionality by the Lambda Combinator 

Curry’s Lambda Calculus [23] is a formal language that 
can be understood as a prototype programming language. The 
𝐒 -𝐊  terms implement the lambda calculus by recursively 
defining the Lambda Combinator 𝐋𝐱  for a variable 𝑥  as 
follows: 

 

𝐋𝐱 • 𝑥 = 𝐈 

𝐋𝐱 • 𝑌 = 𝐊 • 𝑌 if 𝑌 different from 𝑥 

𝐋𝐱 • 𝑀 • 𝑁 = 𝐒 • 𝐋𝐱 • 𝑀 • 𝐋𝐱 • 𝑁 

(4) 

The definition holds for any term 𝐱 of combinatory logic. 
Usually, on writes suggestively 𝜆𝑥.𝑀 instead of 𝐋𝐱 • 𝑀, for 
any combinatory term 𝑀 . Lambda Terms 𝜆𝑥.𝑀  offer the 
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possibility of programmatic parametrization. Note that 𝜆𝑥.𝑀 
is a combinatory term, as proofed by (4), and that this 
introduces a kind of variable in combinatory logic with  
precisely defined binding behavior.  

The Lambda combinator allows writing programs in 
combinatory logic using a higher-level language. When a 
lambda term is compiled, the resulting combinatorial term 
looks like machine code in traditional programming 
languages.  

C. The Fixpoint Combinator 

Given any combinatory term 𝑍, the Fixpoint Combinator 
𝐘 generates a combinatory term 𝐘 • 𝑍, called Fixpoint of 𝑍, 
that fulfills 𝐘 • 𝑍 = 𝑍 • (𝐘 • 𝑍) . This means that 𝑍  can be 
applied to its fixpoint as many times as wanted and still yields 
back the same combinatory term.  

In linear algebra, such fixpoint combinators yield an 
eigenvector solution 𝐘 • 𝑍 to some problem 𝑍.  

According to Barendregt in his textbook about Lambda 
calculus [22, p. 12], the fixpoint combinator can be written as  

 𝐘:= 𝜆𝑓. (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) • (𝜆𝑥. 𝑓 • (𝑥 • 𝑥)) (5) 

Translating (5) into an 𝐒–𝐊  term demonstrates how 
combinatory logic works, see [24].  

When translated into arrow terms, the fixpoint combinator 
contains loops. Fixpoint operations are related to infinite 
loops, thus, to programming constructions that never end and 
have no normal form. Applying 𝐘, or any equivalent fixpoint 
combinator to a combinatory term Z, usually does not 
terminate. An infinite loop can occur, and must sometimes 
occur, otherwise Turing would be wrong and all finite state 
machines would reach a finishing state [3].  

D. A few More Sample Combinators  

The following samples are taken from Zachos 1978 [25], 
where all proofs are given: 

• Composition:  

𝐁 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑄 • 𝑅 by  
𝐁:= 𝐒 • (𝐊 • 𝐒) • 𝐊 

• Exchange of arguments: 
𝐂 • 𝑃 • 𝑄 • 𝑅 = 𝑃 • 𝑅 • 𝑄 by  
𝐂: = 𝐒 • (𝐁 • 𝐁 • 𝐒) • (𝐊 • 𝐊) 

• Argument identification: 

𝐖 • 𝑃 • 𝑄 = 𝑃 • 𝑄 • 𝑄 by  
𝐖:= 𝐒 • 𝐒 • (𝐊 • 𝐈) 

• Composition:  
𝚽 • 𝑂 • 𝑃 • 𝑄 • 𝑅 = 𝑂 • (𝑃 • 𝑅) • (𝑄 • 𝑅) by  

𝚽:= 𝐁 • (𝐁 • 𝐒) • 𝐁) 
• Composition:  

𝚿 • 𝑂 • 𝑃 • 𝑄 • 𝑅 = 𝑂 • (𝑃 • 𝑄) • (𝑃 • 𝑅) by  
𝚿:= 𝐁 • (𝐁 • 𝐖 • (𝐁 • 𝐂)) • 𝐁 • 𝐁 • (𝐁 • 𝐁) 

• Fixpoint Combinator:  
𝐘 • 𝑅 = 𝑅 • (𝒀 • 𝑅) by  
𝐘:= 𝐖 • 𝐒 • (𝐁 • 𝐖 • 𝐁) 

There is no negation combinator, because with a negation 

𝑵 we would have 𝐘 • 𝑵 = 𝑵 • (𝒀 • 𝑵). This contra-intuitive 

example explains why so few people dare to work with 

combinatory logic. However, it also strengthens our point 

that it is highly rewarding to try it. 

It is a specific human behavior to identify complicated 

behavior with simple explanations, such as “Exchange of 

arguments.” If you expand that combinator, it would be near 

to unreadable; same with the fixpoint operator 𝐘, as shown in 

[24]. 

III. THE GRAPH MODEL OF COMBINATORY LOGIC 

The graph model is a versatile model for knowledge in all 
its different forms. It is highly recursive and Turing-complete, 
which means it can also be used to describe conventional 
algorithmic programming. The LISP language was once 
created to allow programming in a framework close to the 
graph model [26]. 

A. A Logic Needs a Model  

A Model for a logical structure is a set-theoretic 
construction that has the properties postulated for the logic 
and can be proved to be non-empty. Then it means that such 
logic makes sense as far as it describes an existing structure 
and can be used to prove something about the model. 

Let ℒ be a non-empty set. Engeler [7] defined a Graph as 
the set of ordered pairs: 

 〈{𝑎1, 𝑎2, … , 𝑎𝑚}, 𝑏〉 (6) 

with 𝑎1, 𝑎2, … , 𝑎𝑚, 𝑏 ∈ ℒ. We write {𝑎1, … , 𝑎𝑚} → 𝑏 for the 
ordered pair to make notation mnemonic, i.e., referring to 
directed graphs, and call them Arrow Terms. These terms 
describe the constituent elements of directed graphs with 
multiple origins and a single node. We refer to ℒ  as 
Observations, and to terms {𝑎1, … , 𝑎𝑚} → 𝑏 as Concepts, i.e., 
a non-empty finite set of arrow terms with level 1 or higher. 

We extend the definition of arrow terms to a powerset by 
including all formal set-theoretic objects recursively defined 
as follows: 

 
Every element of ℒ is an arrow term. 

Let 𝑎1, … , 𝑎𝑚, 𝑏 be arrow terms.  

Then {𝑎1, … , 𝑎𝑚} → 𝑏 is also an arrow term. 
(7) 

The left-hand side of an arrow term is a finite set of arrow 
terms, and the right-hand side is a single arrow term. This 
definition is recursive. Elements of ℒ are also arrow terms. 
The arrow, where present, should suggest the ordering in a 
graph, not logical imply.  

B. Einstein-Notation for Arrow Terms 

To avoid the many set-theoretical parenthesis, the 
following notation, called Arrow Schemes, is applied, in 
analogy to the Einstein notation [27, p. 6]: 

• 𝑎𝑖  for a finite set of arrow terms,  𝑖  denoting some 

Choice Function selecting finitely many specific 

terms out of a set of arrow terms 𝑎. 

• 𝑎1 for a singleton set of arrow terms; i.e., 𝑎1 = {𝑎} 
where 𝑎 is an arrow term. 

• ∅ for the empty set, such as in the arrow term ∅ → 𝑎. 

• 𝑎𝑖 + 𝑏𝑗  for the union of two observation sets 𝑎𝑖 ,𝑏𝑗 . 

(8) 
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The application rule for 𝑀 and 𝑁 now reads: 

 𝑀 • 𝑁 = (𝑎𝑖 → 𝑏) • 𝑁 = {𝑏|∃𝑎𝑖 → 𝑏 ∈ 𝑀; 𝑎𝑖 ⊂ 𝑁} (9) 

Arrow schemes always represent sets of arrow terms. 
(𝑎𝑖 → 𝑏) ⊂ 𝑀  is the subset of level 1 arrow terms in 𝑀 , 
provided 𝑎𝑖 ∈ 𝑀  and 𝑏 ∈ 𝑀 . Thus,  (𝑎𝑖 → 𝑏)𝑗  denotes a 

concept, together with two choice functions 𝑖, 𝑗 . Each set 
element has at least one arrow. 

The choice function 𝑖 chooses specific observations 𝑎𝑖 out 
of a (larger) set of observations 𝑎 . This is what Zhong 
describes as Grounding when linking observations to real-
world objects [28]. In AI, grounding is crucial for linking AI 
engines to the real world. If 𝑎  denotes knowledge, i.e., an 
infinite set of arrow terms of any level, 𝑎𝑖 can become part of 
a concept consisting of specific arrow terms referring to some 
specific object, specified by the choice function 𝑖 . Choice 
functions therefore have the power of focusing knowledge on 
specific objects in specific areas. That makes choice functions 
interesting for intelligent systems and AI. 

There is a conjunction of choice functions, thus  𝑎𝑖,𝑗 
denotes the union of a finite number of grounded arrow 
schemes: 

 𝑎𝑖,𝑗 = 𝑎𝑖,1 ∪ 𝑎𝑖,2 ∪ …∪ 𝑎𝑖,𝑚 =⋃𝑎𝑖,𝑘

𝑚

𝑘=1

 (10) 

There is also cascading of choice functions. Assume 𝑁 =
(𝑎𝑗 → 𝑏)𝑘, then: 

 
𝑀 = (((𝑎𝑗 → 𝑏)𝑘 → 𝑏𝑖)𝑙

→ 𝑐) and 

𝑀 • 𝑁 = (𝑏𝑖𝑙 → 𝑐) 
(11) 

The choice function might be used for grounding an arrow 
scheme to observations.  

An arrow scheme without outer indices represents a 
potentially infinite set of arrow terms. Thus, writing 𝑎, we 
mean knowledge about an observed object. Adding an index, 
𝑎𝑗, indicates such a grounded object together with a choice 

function 𝑗 that chooses finitely many specific observations or 
knowledge. 

While on the first glimpse, the Einstein notation seems like 
just another way of denoting arrow terms, for representing 
such data in computers it means that the simple enumeration 
of finite data sets is replaced by an intelligent choice function 
providing grounding that must be computed and can be either 
programmed or guessed by an intelligent system. 

For practical applications, the choice function is an 
important part of deep learning. It means learning by 
generalization. The more choices you get on the left-hand 
side, the more knowledge you acquire. The ARC price 
competition for instance is easily solvable if we can generalize 
our choice functions good enough, drawing conclusions from 
the samples into general rules. However, generalization is not 
easily available with current AI technology. Controlling 
Combinators, see Section IV.C, are a workaround. 

C. The Graph Model of Combinatory Logic 

The algebra of observations represented as arrow terms is 
a combinatory algebra and thus a model of combinatory logic. 
The following definitions demonstrate how the graph model 
implements Curry’s combinators 𝐒 and 𝐊 fulfilling equations 
(1) and (2), following [5]. 

• 𝐈 = 𝑎1 → 𝑎 is the Identification, i.e., (𝑎1 → 𝑎) • 𝑏 = 𝑏 

• 𝐊 = 𝑎1 → ∅ → 𝑎 selects the 1st argument: 

𝐊 •  𝑏 • c = (𝑏1 → ∅ → 𝑏) • 𝑏 • c = (∅ → 𝑏) • c = b 

• 𝐊𝐈 = ∅ → 𝑎1 → 𝑎 selects the 2nd argument: 

𝐊𝐈 • 𝑏 • c = (∅ → 𝑐1 → 𝑐) • 𝑏 • c = (𝑐1 → 𝑐) • 𝑐 = c 

• 𝐒 = (𝑎𝑖 → (𝑏𝑗 → 𝑐))
1
→ (𝑑𝑘 → 𝑏)𝑖 → (𝑎𝑖 + 𝑏𝑗,𝑖 → 𝑐) 

(12) 

Therefore, the algebra of observations is a model of 
combinatory logic. The interested reader can find complete 
proofs in Engeler [7, p. 389].  

The Lambda Theorem from Barendregt [23] says that 
with 𝐒 and 𝐊, an abstraction operator can be constructed that 
adds algorithmic skills to knowledge represented as arrow 
schemes, following equation (4).  

𝑥1
𝑥2

𝑥 

 

𝑎1

𝑎2

𝑎𝑚

𝑎1

𝑎2

𝑎𝑚

 =   →   
→  

 
𝑵 =   →   

  • 𝑵 =    

Figure 1. A Neural Network becomes a Combinatorial Algebra  

As the name “graph model” suggests, arrow terms are an 
algebraic way of describing neural networks. Thus, something 
that nature uses to acquire and work with knowledge. 

Figure 1 illustrates the effect of the combination according 
to equation (9). It becomes apparent that the graph model 
describes graphs indeed, with loops. Repeatedly applying 
equation (9) leads to what we perceive as the “response of a 
neural network”. The combination of knowledge and 
combinators thus plays a significant role in AI. 

However, Figure 1 is not only a picture of an abstract 
graph. It can also be understood as a part of a Deep Neural 
Network (DNN) – or of a Natural Neural Network (NNN). 
Engeler [29] associated neuroscience with the graph model in 
2019, by explaining how a brain works. He used the graph 
model as an algebraic representation of NNN. 

IV. TOWARDS INTELLIGENT SYSTEMS 

Barceló et al. has shown in 2019 that modern neural 
network architectures are Turing-complete [30]. This is also a 
property of the graph model but not of every DNN. An 
architecture for intelligent systems should be suitable for 
using conventional algorithmic programming instead of 
complex arrow notations. 

71International Journal on Advances in Intelligent Systems, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/intelligent_systems/

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. Solving the World Formula 

Artificial neural networks learn continuously by using 
corrective feedback loops to improve their predictive 
analytics. Neural networks perform supervised learning tasks, 
building knowledge from training data where the right answer 
is provided in advance. In contrast, in unsupervised learning, 
algorithms learn patterns exclusively from unlabeled data 
[31]. There exist mixed forms; a famous example of semi-
supervised learning has led to the creation of ChatGPT [32]. 

In both cases, the principle is the same as with Six Sigma 
Transfer Functions (SSTF) [33]: One has to solve an equation 
(13), where the expected response   is known but neither the 
required controls   nor the transfer function 𝑨 itself, which 
cause this response, are known. Transfer functions are 
abundant in technology and science – just to mention the Fast 
Fourier Transform (FFT) of audio and video signals from 
analog to digital [34] – and AI-enabled applications belong 
also to that category. In either case, the problem to be solved 
is: 

  = 𝑨  (13) 

The equation (13) is often called the “World Formula” 
[35]. In the case of AI, the world formula describes Deep 
Learning (DL), i.e., the process of parametrizing the model so 
that it provides the expected answers. 

In AI, the transfer function 𝑨 is usually represented as a 
large sparse matrix. For small dimensions, the easiest way to 
solve equation (13) is the Eigenvector method used by Saaty 
for the Analytic Hierarchy Process (AHP), for decision 
making method [36]. The method also works for Quality 
Function Deployment (QFD) [33, p. 34].  
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Figure 2. Solving the World Formula 

The idea of the Eigenvector solution method is to calculate 
the Principal Eigenvector  𝑬 with the property: 

  𝑬 = 𝑨𝑨
  𝑬 (14) 

The principal eigenvector exists due to the Perron-
Frobenius theorem [33, p. 365]. Setting  𝑬 = 𝑨

  𝑬 yields an 
approximate solution to equation (13), using equation (14), 
provided that   𝑨 𝑬  is close enough. The Euclidean 
distance (15) is called the Convergence Gap: 

 ‖  𝑨 𝑬‖ (15) 

The eigenvector method is not applicable for large AI 
matrices, because the solution is numerical and not algebraic. 
New methods suitable for large sparse matrices representing 
neural networks had to be invented, see for example Hinton 
[31]. 

The breakthrough for solving such matrices, and thus 
enabling machines for deep learning, happened in 2012 and 
involves breaking up those matrices into smaller pieces that 
can be managed in parallel. Its impact on humanity and 
society might become comparable with the FFT transform of 
1977 that made the analog/digital conversion of audio and 
video in real-time possible and thus stood at the origins of the 
Internet of today. 
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Figure 3. Deep Learning as a Transfer Function 

Once the neural net has been sufficiently trained, the 
model can be used to predict responses not just for the training 
set but for any query submitted to the AI. The convergence 
gap in Figure 3, the vector distance between the true response 
and the response received, is what we consider the inaccuracy, 
or uncertainty, of the trained model. 

 

B. How Arrow Schemes describe DNNs  

While it is obvious how an NNN is represented by arrow 
schemes, this is not equally clear for ANNs. The reason is that 
directed graphs contain loops while looping in ANNs is very 
restricted. There exist certain architectures for ANNs that 
allow for loops, within narrow limits; however, a Multi-
Layered Perceptron (MLP) as used for LLMs does not [13].  
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Figure 4. Multi-Layered Perceptron as an DNN 
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Consequently, a DNN has only a limited ability to emulate 
an NNN. In principle, every arrow scheme 𝑎𝑖 → 𝑏 describes 
one node in a directed but not loop-free graph. Some arrow 
schemes describe algorithmic concepts such as in equation 
(12) or as explained in equation (5). Other arrow schemes 
simply connect observations 𝑎𝑖 to some response 𝑏. General 
knowledge has many facets.  

It would be wonderful if we had the ability to look at an 
LLM and identify arrow schemes for each node. This would 
add full explainability to AI, but unfortunately, this has no 
practical value. Neither combinatory terms nor arrow schemes 
have normal forms. Very often there is a wide variety of 
solutions that are equivalent but widely different; not only 
formally but also in effectiveness. 

This makes explainability of AI difficult. The lack of 
normal forms blocks all attempts to find the one sequence of 
arrow schemes that explains what AI is doing. AI engineers 
have no other choice than trying to train their DNNs such that 
the response meets expectations but without exactly knowing 
what happens. It is comforting, however, that they share the 
same sad fate with neuroscientists. It is astonishing how long-
forgotten theoretical results such as the lack of a normal form 
in combinatory logic yields economically relevant results, 
nowadays, in the evolving AI ecosystem. Consult Lachowski 
[37] for a survey of the performance challenges that occur 
around combinatory logic. 

However, there is a famous saying that nothing is too 
difficult for the engineer (“Inventor of Anything”). Recent 
findings suggest that AI is capable of recognizing chains of 
thought that lead to the observation of a specific response [38]. 
This complements earlier findings that describe CoT as a 
prompting technique [17]. Thus, there exist AI architectures 
that allow us to identify at least some arrow schemes that 
describe what AI does. It is not necessarily the whole truth, 
just as it is not when people explain their thoughts to 
colleagues. But it should be enough to convince them. 

Having a complete sequence of arrow schemes describing 
approximatively some DNN would lead to explainable AI that 
even is able to get certified for safety-critical applications. 
However, the problem with hidden layers remains. While the 
QFD method uses identifiable topics for each layer [39], an 
DNN has none; they remain hidden and unknown. Thus, much 
of the intermediate reasoning also remains hidden. RQ 2 
remains at least partially unanswered. If the input data and 
response can only be captured by arrow schemes, the 
intermediate steps must be guessed based on domain 
knowledge, but it is not known exactly what the AI engine did 
consider. AI might change behavior and create hazardous 
changes to the hidden layers. Low-rank adaptation (LoRA) of 
LLMs is an attempt to limit such change [40]. In QFD, on the 
contrary, intermediate stages are identifiable based on their 
topic; for example, when deploying customer needs, we first 
go to user stories and then to testable features. 

Another approach to better explainable AI is already well 
established: Retrieval-Augmented Generation (RAG) might 
avoid hallucinations for LLMs [41] by referencing knowledge 
databases and including them into the generation of responses. 
RAG impacts the architecture of intelligent systems by 
connecting neural networks to knowledge databases [42]. 

RAG corresponds to grounding arrow schemes using the 
choice function; RAG is indispensable for explainable AI. 

This is the motivation for looking at AI architecture. In 
some way, it must be complemented by functionality that 
controls the behavior of AI. With such controls an AI-engine 
can perform safety-critical tasks. When certifying an AI-
engine for safety, it is not necessary to convert all nodes of an 
DNN into arrow schemes, but we can focus on the overall 
result, because these results are not presented plainly but 
reviewed by a controlling combinator first. If an AI fails on 
such tasks, we do not have a white-box trace of all nodes 
including their arrow schemes that have contributed to this 
failure, but we are at least as good as with traditional safety-
preserving methods and techniques. 

C. The Architecture of Intelligent Systems 

Intelligent systems using AI are based upon Controlling 
Combinators. Controlling combinators are derived from the 
idea behind fixpoint combinators, see equation (5) but refer to 
effective factual knowledge or to skills. Examples from 
Engeler include controlling combinators for learning 
mathematics, or for playing violin [29].  

A Controlling Operator 𝐂 acts on a controlled object 𝑋 by 
its application 𝐂 • 𝑋. Control means that knowledge needed to 
execute a task that is represented by arrow schemes in 𝑋 is 
sufficiently well-known and described. This implies the need 
for a metric that measures the convergence gap. Note that 𝐂 
itself a term of the graph model of combinatory logic and thus 
a combinatory algebra term. Then, accomplishing control can 
be formulated by (16): 

 𝐂 • 𝑋 = 𝑋 (16) 

The equation (16) is a theoretical statement, referring to a 
potentially infinite loop. For solving practical problems, 𝑋 
must be approximated by finite subterms.  

Thus, the control problem is solved by a Control Sequence 
𝑋0 ⊆ 𝑋1 ⊆ 𝑋2 ⊆  , a series of finite subterms and the 
controlling operator 𝐂 , starting with an initial 𝑋0 and 
determined by (17): 

 𝑋𝑖+1 = 𝐂 • 𝑋𝑖 , 𝑖 ∈ ℕ (17) 

This is called Focusing. The details can be found in 
Engeler [29, p. 299]. The controlling operator 𝐂 gathers all 
faculties that may help in the solution. The inclusion operator 
in equation (17) is explained by the graph model. The control 
problem is a repeated process involving substitution, like 
finding the fixpoint of a combinator, and thus increasing the 
number of arrow schemes, and especially of choice functions, 
in the resulting focusing process.  

Controlling combinators both collect and use empirical 
data for continuous training. Such an intelligent system 
incorporates the necessary functional processes for fine-
tuning based on feedback received. For further details, please 
refer to the authors' paper on solving the control problem [43]. 

If the “Skills Definition” in Figure 5 is a training set, the 
program scheme represents Deep Learning [44]. In case the 
definition is linked to some feedback or hash function as in 
DeepSeek, it is Reinforcement Learning [45]. In all these 
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cases, the controlling combinators use the convergence gap; 
the measurable variation between actual behavior and 
expectations and requirements. In AI, the convergence gap is 
the same as in equation (15), but it is called “Loss Function”. 
This term originates from Signal Theory and originally 
describes the loss of fidelity in analog sound transmission. 
Since the discovery of the Fast-Fourier Transform (FFT) 
[34], one understands that A/D-convergence is not a loss, but 
an acquisition of enough knowledge to reach a specific 
threshold for high-fidelity rendering of music. Deep learning 
uses the same principles. 

Both come as (large) vectors and thus the Euclidean 
distance is easily computable. If learning is continuous, e.g., 
by experiences, by external feedback from a tutor, or by 
physical sensors, it is called an Intelligent System. 
Expectations and correct answers might also come from an 
external knowledge database, allowing the intelligent system 
to learn autonomously. 
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Figure 5. Controlling Combinators for self-learning intelligent systems  

The architecture for RAG now extends. Instead of 
embedding the reference into response generation [42], and 
hoping it works, we set up functional processes for comparing 
LLM results with evidence from the knowledge database and 
calculating the convergence gap.  

The convergence gap of such a system fully explains its 
behavior. Under well-defined conditions, such a system can 
be certified, even for safety critical tasks. 

It is also possible to add more than one AI engine to an 
intelligent system, compare results and go forward with the 
most reliable one. Insufficient training, biases, and 
hallucinations therefore would become detectable.  

Figure 6 shows an example of an intelligent system design 
that relies on two separate visual recognition engines 
analyzing the same scenario, one through a camera and the 
other through a Lidar. Such architecture requires that the 
reliability of each AI engine be known, under certain 
conditions, such as weather. In this way, the intelligent system 
can explain why it selected one or the other response. 

If both AI engines provide an identical answer, this 
increases the overall reliability of the intelligent system's 
response significantly. 

The graph model delivers the metrics for defining 
controlling combinators by inclusion, and it also allows us to 
combine knowledge and thus reliability correctly, by equation 
(9). This is discussed in the following section.  
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Figure 6. An Intelligent System that selects the most reliable AI response 

Figure 6 shows a simple example of an intelligent system 
that combines two different AI engines that are used to 
visually recognize identical objects. Reliability might depend 
upon illumination and weather. Figure 5 and Figure 6 both 
show the importance of calculating reliability when operating 
intelligent systems. 

V. DESIGNING INTELLIGENT SYSTEMS 

Intelligent systems rely on the capability of measuring the 
quality of knowledge [46]. To this purpose, it is necessary to 
consider how software can be measured. This is not so easy, 
as software is not a tangible entity. The standard solution to 
this measurement challenge is to measure the functionality of 
software. As always in measurement theory, this is best 
achieved by constructing a model for the functionality and 
measuring the relevant model elements. 

A. The COSMIC Model for Functionality 

The COSMIC standard identifies layers. The layers’ 
boundaries detect the flow of data moving from one object 
into another. Every Data Movement transports a Data Group, 
identifying the data moved from one object to another.  

Data groups hold the information needed to assess privacy 
protection needs, or safety risk exposure, of data. They also 
transport knowledge from one Object of Interest into another. 
In certain cases, the data groups contain enough information 
to allow for generating code out of a COSMIC model [47]. 

The constituent element of the COSMIC model is a 
Functional Process. A functional process is an object together 
with a set of data movements, classified as either Read or 
Write, or Entry or eXit. These data movements connect the 
functional process with Persistent Data Stores, or Devices 
respectively Other Applications, e.g., an AI engine. They 
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represent the Functional User Requirements (FUR) for the 
software being measured [48, p. 42].  

Figure 7 is a sample Data Movement Maps according to 
ISO/IEC 19761 COSMIC. The connectors represent Data 
Movements. The data groups that they convey can be viewed 
as a single data set. Each data group should occur in a model 
only once. Its uniqueness is indicated by color-filled trapezes 
at their origin. Another move of the same data group between 
the same objects within a COSMIC functional process lets the 
trapeze blank. 

Objects of Interest: For data movement maps, we draw 
four types of lifelines: 

• Functional Processes: Objects that perform one or several 

functional processes in the COSMIC sense.  

• Persistent Data Store: Objects that persistently hold data.  

• Devices: A device can be a system user or anything providing 

or consuming data. They send (Entry) or receive (eXit) data 

groups from or to functional processes. 

• Other Applications: Other applications use functional 

processes the same way as devices do; however, they typically 

represent other software or systems that can be modeled the 

same way using data movement maps. 

Device Data Log
Functional

Process
Sensor Actuator AI Engine

1.// Move some Data

2.// Prompt AI Engine

3.// Response from AI Engine

4.// Move Data to Actuator

5.// Log Data

Trigger

 

Figure 7. Sample Data Movement Map 

The lifeline for functional processes represents, for 
example, a Virtual Machine (VM) or an Electronic Control 
Unit (ECU) that performs various calculations and 
implements several functional processes as defined in the 
COSMIC manual [48, p. 42]. Triggers usually indicate the 
starting data movement of one COSMIC functional process. 
Thus, one functional process lifeline can have several triggers. 
Lifelines representing persistent data stores can provide data 
services for more than one functional process. LLMs, or other 
AI engines appear as Another Application in the data 
movement maps. 

B. Assigning Reliability Scores to Objects of Interest 

A typical data movement map for an intelligent system 
consists of devices such as sensors, actuators, and persistent 
data sources, collecting data and delivering them to a 
functional process that prepares them as input to a suitable AI 
engine such as a neural network, a specific knowledge base, 
or some search engine. Another functional process will then 
work with its response and execute recommendations using a 
Generative Pretrained Translator (GPT) to communicate the 
response to a user through an output device. This is necessary 
because all knowledge in intelligent systems is represented by 
token vectors. 

However, neither sensors, actuators nor an AI tool can be 
trusted 100%. Thus, data groups need to have special attribute 
for this: Reliability. 

If data is persistently stored, it retains its reliability. All 
other data has some degree of reliability that is either known 
from physical devices, by assessing an AI tool with a test set, 
or by the functional processes the data groups go through. 
Reliability originates from devices or other applications. 
Although reliability is measured commonly by percentage 
numbers, it is a standard deviation, not a linear reliability 
average [49]. 

C. Combining Reliabilities with Regard to FUR 

The data movement map describes how data groups move 
through the software. The functional processes combine these 
reliabilities by combining uncertainties associated with 
knowledge-based actions. In our example, the reliability of the 
data groups originating from the functional process in Figure 
7 is the combination of the reliability of all incoming data. The 
expected overall reliability of the intelligent system is 
calculated from the uncertainty expectations of the output of 
the functional process. 

The way data is combined in functional processes depends 
on the FUR that implements them. This requires an 
understanding of the discipline of requirements engineering 
for knowledge-processing systems [50]. As explained before, 
requirements address knowledge with distinct levels of 
certainty: While observations are usually not completely 
certain and learning concepts will never be fully reliable, there 
are rules, the so-called Lambda Concepts, that work in a 
mechanical way, preserving reliability. It is not a promising 
idea to implement Lambda concepts by arrow schemes. There 
exist much more efficient tools: conventional programming, 
that in turn also have a model expressible as arrow schemes. 
Typically, in intelligent systems Lambda concepts are 
implemented as programs according to rules, mostly in Python 
[51]. 

Depending on the FUR, functional processes can also 
reduce uncertainty, for instance when it selects the most 
reliable response between various kinds of AI engines as 
shown in Figure 6. The diverse ways of combining reliability 
are discussed in more detail in [46]. 

D. Propagating Reliability through Functional Processes 

Lambda concepts might extract one source and discard the 
second or do substitution. Such operations might keep 
uncertainty unchanged by a functional process. Functional 
processes that implement Lambda concepts combine 
according to the 𝑀𝑎𝑥  principle, which preserves the 
maximum reliability of the different input data groups and 
propagates the maximum degree of knowledge reliability, 
while the normal combination of different uncertainties 
usually increases uncertainty and is called the 𝐶𝑜 𝑏 
principle. Since subsequent uncertainties can correct the initial 
uncertainty of data groups from the first source, the reliability 
is expected to decrease only according to the expected value 
obtained with the statistical sensitivity analysis, which means 
that the reliability decreases at a lower rate than with naive 
multiplication.  
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Let 𝑢𝑖  be the uncertainty of the 𝑖th input in a functional 
process with 𝑛 input data groups. The uncertainty of the output 
of this functional process is: 

 𝑢𝐶𝑜𝑚𝑏 = √∑𝑢𝑖
2

 

𝑖=1

  (18) 

This is the Euclidean distance between the uncertainties of 
the input data groups. Thus, the reliability propagation follows 
the same statistical rules as the profiles in Six Sigma transfer 
functions [33, p. 34]. 

1. Uncertainty

Radius

Certainty

Uncertainties

2. Uncertainty

Radius

 

Figure 8. Combination of Uncertainties originating from AI input 

The Reliability of a functional process with 𝑛 input data 
movements carrying data groups with uncertainties 
𝑢1, 𝑢2, … , 𝑢  is defined as:  

 𝑅𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡 (𝑢1, 𝑢2, … , 𝑢 ) =   𝑢𝐶𝑜𝑚𝑏  (19) 

With graphical visualization (Figure 8) we aim to explain 
the statistical methods used without going into formalisms. 
The figure proofs equation (19) in the special case of three 
dimensions (𝑛 =  ).  

Assume there are some uncertainties originating from the 
first input source. The response range in the 𝑛-dimensional 
space of all responses is produced by some functional process. 
By combining this with the uncertainty originating from the 
second input source, it is unknown where the second 
uncertainty builds over the previous partial response. 

Thus, the bundle of outcomes with an encompassing 
second uncertainty radius representing the expected 
uncertainty of a  functional process with two inputs combined 
can correct part of the first. Expected uncertainties thus must 
be combined by using equation (19). 

Reliability of a data group might change when originating 
from different functional processes. Also, a functional process 
might produce more than one data group as an eXit or Write 
data movement with different reliabilities, dependent from the 
data group. 

E. Making an LLM Reliable 

Not if we combine with a source of information with 
known reliability. We should set up a functional process 
connecting The LLM with some factual repository such as 
Wolfram|Alpha, or whatever is suitable for its topics. Best we 
feed the facts to the LLM and let the LLM apply its pretrained 
conversational capabilities as a transformer to transfer factual 
knowledge into arguments and explanations. Then the 
reliability combines from the reliability of the facts with the 
reliability of the LLM as a transformer and we can chain it 
with a Lambda concept that checks whether the LLM has kept 
well to the original facts. Thus, the FUR we have against the 
LLM is that we expect it to reproduce available facts with a 
known reliability. Here we assume 95%. As a further 
assumption, Wolfram|Alpha has been measured to be 98% 
reliable in the chosen context.  

In Figure 9, there are two functional processes, one 
feeding the facts to the LLM and one comparing results. The 
persistent store serves for logging results, learning, and for 
communication between the two functional processes. The 
data movement map explains how the data groups are moved 
from one object to another. 

User Wolfram|Alpha Furnish Query LLM Compare Result Answer Query

1.// Query

Query

2.// Store Query

3.// Get Topic

4.// Topic

5.// Get Facts

6.// Store Facts

7.// Ask Query

8.// Feed Knowledge

9.// Generated AI

Response

10.// Get facts

11.// Controlled Response

12.// Remember Response

 

Figure 9. Data Movement Map for Combining LLM with Wolfram|Alpha 

The Compare Result functional process in Figure 8 
combines uncertainties according to the statistical methods 
explained in equations (18) and  (19) as follows: 

 √ %2 +  %2 =  . % (20) 

With regard to equation (19), this yields a reliability of 
9 .6% for the query functionality represented in Figure 9. 
Figure 9 and the equation (20) have been created and 
computed using an Excel-based tool from the authors, which 
is available to interested reader [33]. 

F. The Future of AI: Intelligent Systems 

The current hype with AI is suffering from the same 
problem earlier attempts had: QFD, Expert Systems, and 
many other machine-based reasoning and decision tools could 
not explain how reliable they are. You could believe them or 
not; and sometimes, the non-believers proved to be true. 
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The new ability to build LLMs with recognizable CoT still 
does not answer the question, how reliable they are. Taking 
the graph model as an explanation of reliability, recognizing 
that knowledge and algorithmic processing are from the same 
source, namely the graph model, shows a way how to build 
intelligent systems with known reliability. It makes AI-based 
decisions and process control suitable for legal assessment and 
technical certification. 

It is obvious that the reliability of a data group might 
change during operations of an intelligent system. Functional 
processes can calculate reliability, keep a log trace of it, and 
use it to guide processing through all programming steps in 
the data movement map. 

In theory, intelligent systems consist of a controlling 
combinator, in most cases realized by implementing some 
functional processes, and an ANN part, typically 
implementing an LLM that is trained on the specific 
knowledge domain. This reflects equations (16) and (17). 
Obviously, both parts, the controlling combinator and the 
knowledge acquisition combinator. Both can be described as 
arrow schemes in the graph model, but they are implemented 
differently, in the most effective way. It is indeed not 
necessary to train an LLM to do reasoning, because a 
controlling combinator implementing functional processes in 
Python are much more effective. Explaining, maintaining, and 
improving such a controlling combinator is much easier in 
Python (or any other suitable programming environment) than 
training an LLM. However, it is possible to train an LLM in 
logical reasoning, but this is not needed. It is much more 
straightforward, and way more effective, to use Engeler’s 
controlling combinator as a design paradigm for intelligent 
systems. 

VI. CONCLUSION AND FUTURE WORK  

Like humans, the result of any ANN is as unreliable as any 
result from an uneducated NNN. Without logical foundations, 
logical reasoning, and feedback from the environment, 
humans are also just hallucinating.  

Intelligent systems can do better, except getting feedback 
and learning from it. The key is to combine combinators 
representing neural networks with combinators doing logical 
derivations. This is primarily a design principle, but secondly 
also an operating paradigm. 

In this paper, we have provided evidence for: 

RQ 1: DNNs can be represented in the graph model 
of combinatory logic as well as any other 
neural network, including the brain or QFD; 

RQ 2: CoT does not relate to a defined and unique 
sequence of arrow schemes because of 
missing normal form, but can be explained 
using other arrow schemes, such as QFD; 

RQ 3: Intelligent systems explain how AI behavior 
can be controlled. 

The graph model of combinatorial logic does not provide 
an alternative for implementing AI, but it is an excellent guide 
and theoretical foundation for what can be done with AI, for 

explaining AI, but also for learning where AI meets its limits. 
The current step forward is collecting several designs of 
intelligent systems with controlling combinators, finding 
methods for measuring reliability and defining suitable 
convergence gaps. This work in progress of the authors is 
shared with interested parties; the authors have no institution 
or sponsor to help with this [52]. 

It is possible that ANNs can learn logical reasoning based 
on facts. However, combining AI engines with feedback loops 
originating from reality requires much less effort. Testing AI 
results for feasibility and physical soundness using traditional 
programming methods creates trustworthiness and adds 
credibility and explainability to AI results. 

It remains the idea that AI could be explained by searching 
for arrow schemes that provide the same responses. Since 
combinatory logic does not have normal forms, this seems 
feasible. It could be used as a validation process for AI. 
However, for now, this is a future research project. 
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